
Reduced Latency IEEE Floating-Point Standard Adder Architectures

A.Beaumont-Smith, N.Burgess, S. Lefrere and C.C. Lim
CHiPTec, Department of Electrical and Electronic Engineering, The University of Adelaide

Adelaide, 5005, Australia
abeaumon@eleceng.adelaide.edu.au

Abstract

The design and implementation of a double precision
floating-point IEEE-754 standard adder is described which
uses “flagged prefixaddition” to merge rounding with the
significand addition. The floating-point adder is imple-
mented in0:5�m CMOS, measures1:8mm2, has a 3-cycle
latency and implements all rounding modes. A modified ver-
sion of this floating-point adder can perform accumulation
in 2-cycles with a small amount of extra hardware for use in
a parallel processor node. This is achieved by feeding back
the previous un-normalised but correctly rounded result to-
gether with the normalisation distance. A 2-cycle latency
floating-point adder architecture with potentially the same
cycle time that also employs flagged prefixaddition is de-
scribed. It also incorporates a fast prediction scheme for
the true subtraction of significands with an exponent differ-
ence of 1, with one less adder.

Key Words: floating-point, adder, arithmetic, VLSI.

1. Introduction

Floating-point (FP) addition is the most frequent FP
operation and FP adders are therefore critically important
components in modern microprocessors [4, 6, 7, 12, 5] and
digital signal processors [23]. FP adders must be fast to
match the increasing clock rates demanded by deep submi-
cron technologies with a small number of pipelining stages
to minimise latency and improve branch resolution time. FP
adders must also be small, particularly for use in parallel
processing systems [1, 11] with multiple FP units (FPUs).

The design of FP adders is considered more difficult than
most other arithmetic units due to the relatively large num-
ber of sequentially dependent operations required for a sin-
gle addition (we use addition to mean an add or subtract
operation) and the extra circuits to deal with special cases
such as infinity arithmetic, zeros and NaNs, as demanded
by the IEEE-754 standard. As a result, there is scope for

investigating smaller and faster FP adders by re-organising
the algorithm and using new circuit techniques.

This paper discusses the design and implementation of
an IEEE-754 compliant double precision 3-cycle floating-
point adder which uses minimal hardware for use in a par-
allel processor with multiple FPUs [1]. This is achieved
by merging the rounding stage with the significand addition
by using a flagged prefix adder [2] which provides an “in-
stant” plus “1” or plus “2” of the significand result for a
small increase (one complex gate plus a half adder delay)
in critical path length with much less hardware than two
adders or one compound adder. We then presents a modi-
fied version of this FP adder that supports 2-cycle latency
accumulation by overlapping the alignment and normalisa-
tion shifts into the first pipeline stage. A further algorithm
is proposed to perform FP addition in 2 cycles which can
match the latency of FP multipliers. Providing matched la-
tencies of multipliers, adders and accumulators in multiple
FPUs in a microprocessor simplifies the pipeline scheduling
and improves branch resolution times. This new FP adder
also incorporates a fast prediction scheme for the true sub-
traction of significands with an exponent difference of “1”,
with one less adder.

Traditional methods for performing FP addition can be
found in Omondi [18] and Goldberg [4], who describe al-
gorithms based on the sequence of significand operations:
swap, shift, add, normalise and round. They also discuss
how to construct faster FP adders. Implementations of FP
adders are reported in [6, 7, 12, 5, 9, 13, 10]. Algorithms
and circuits which have been used to improve their design
are described in [17, 8, 3, 20, 16, 21, 15, 22, 19].

Some of these improvements are as follows:

� the serial computations such as additions can be re-
duced by placing extra adders (or parts thereof) in
parallel to compute speculative results for exponent
subtraction (Ea � Eb andEb � Ea) and rounding
(Ma+Mb andMa+Mb+1) then selecting the cor-
rect result (e.g. T9000 [9]).

� by using a binary weighted alignment shifter, the cal-

culation of the exponent differences (Ea � Eb and
Eb �Ea) can be done in parallel with the significand
alignment shift.

� the position of where the round bit is to be added
when performing a true addition depends on whether
the significand result overflows, so speculative com-
putation of the two cases may be done [10].

� calculation of the normalisation distance can be done
by a leading zero anticipator to provide the normali-
sation shift to within one bit, in parallel with the sig-
nificand addition [8].

� a fast integer adder is crucial to the design of FP
adders for calculating the result significand and sets
the minimum cycle time [14].

Further improvements in speed can be made by split-
ting the algorithm into two parallel data paths based on
the exponent difference [5, 10, 3, 16, 15], namely near
(jEa � Ebj � 1) and far (jEa � Ebj > 1) computations,
by noting that the alignment and normalisation phases are
disjoint operations for large shifts. However there is a sig-
nificant increase in hardware cost since the significand addi-
tion hardware cannot be shared as with the traditional three
stage pipeline.

Other FP adder designs have moved the rounding stage
before the normalisation [21, 19, 12]. Quach and Flynn de-
scribe an FP adder [21] which uses a compound significand
adder with two outputs plus a row of half adders and effec-
tively has a duplicated carry chain. Kowaleskiet al. [12]
describe an adder as part of a 263,000 transistor FP unit
which contains separate add and multiply pipelines with a
latency of 4-cycles at433MHz in a 0:35�m process. The
significands are simultaneously added and rounded by em-
ploying a half adder which makes available a LSB for the
case where a “1” is added for taking the two’s complement
of one input. Decode logic on two LSBs of both operands
calculates if there will be a carry out of this section as a re-
sult of rounding, either by adding one or two. A circuit is
used to determine if the MSB is “1” as a result of adding
the significands in which case the round bit is added to the
second LSB to compensate for the subsequent normalisa-
tion by 1-bit to the right. The significands are added by
using a combination of carry look-ahead and carry select
logic. Precomputed signals predict how far the rounding
carry will propagate into the adder. The MSB computed
before rounding is used to select the bitwise sums for the
result. Nielsenet al. describe a redundant-add FP adder
[15] with addition and rounding separated by normalisation.
By using redundant arithmetic, the increment for the round-
ing is not costly. A variable latency architecture [16] has
been proposed which results in a one, two, or three clock
cycle data dependent addition. However, this implies that

the host system can take advantage of up to three simulta-
neously emerging results, which represents a considerable
scheduling difficulty.

FP adders that have an accumulation mode or can by-
pass incomplete results are of interest in vector and deeply
pipelined machines. Hagiharaet al. [6] report a0:35�m,
125MHz FPU with a 3-cycle FP adder which adds three
operands simultaneously, so two new operands can be ac-
cumulated per cycle, saving 25% of the accumulation ex-
ecution time in a vector pipelined processor for use in su-
percomputers. Heikes and Colon-Bonet [7] report a FMAC
architecture incorporating a floating point adder path with
4-cycle latency at250MHz in a0:5�mCMOS process em-
ploying dual-rail domino logic. The rounding is delayed
and can produce a bypassable unrounded result in 3-cycles.

Throughout the rest of this paper, all operands are as-
sumed to be64-bit IEEE-754 format floating-point numbers
with a52-bit fractional significand (M = s51s50 : : : s0), an
11-bit biased exponent (E = e10e9 : : : e0) and a1-bit sign
(S). For all examples in this paper, the FP numbersA and
B have significandsMa andMb, exponentsEa andEb and
signsSa andSb respectively. The prefix true is used to de-
scribe the underlying addition and subtraction process of the
significand adder, i.e. (�1:0) add (1:5) is a true subtraction.

2. A 3-cycle Floating Point Adder using a
Flagged Prefix Integer Adder

A 3-cycle IEEE-754 double precision FP adder is shown
in Figure 1. The control signals have been omitted for
clarity and the pipelining stages are indicated by horizon-
tal bars. It is similar in design to the traditional three stage
pipeline adder in that the first stage is an exponent subtrac-
tion, significand swap, unpacking and alignment shift, the
second stage performs the significand addition and the third
stage performs the post normalisation shift. Rounding of
the significand, which is normally done after the normali-
sation shift, is merged with the significand addition in the
second pipeline stage using a flagged prefix adder.

In stage 1, a pass transistor type shifter was used which
consumes less area than a binary weighted multiplexer. Two
adders subtract54 from the twin exponent differences to
provide a valid signal for the barrel shifter if the shift is
within range. The critical path for the first stage is through
the exponent subtractors, alignment decoder and pass tran-
sistor select circuits in the shifter.

2.1. Signi�cand addition and rounding

In the case of true subtraction, the smaller number can
be negated using two’s complement form and added using a
fast carry propagate adder to produce the magnitude of the
result. Finding the smallest significand can be very costly

if the exponents are equal, so one technique to speed up the
operation employs two adders to calculateMa �Mb and
Mb �Ma in parallel and select the positive result. Another
similar method is to calculateMa+Mb+1 (Ma�Mb) and
Ma+Mb which can be negated to giveMb�Ma. The same
circuit can be used to perform rounding for true addition.
Both methods generally use two adders in parallel.

Eb−Ea

Ma Mb Ea Eb

unpack

unpack

Alignment
Sticky

Calc.

Ea−Eb

Ea−Eb−54 Eb−Ea−54

=2046 ?

Flagged Prefix Adder

invert

Leading Zero Anticipator

Exp − LZA
Normalise

set zero/NaN/max/min

true addition/
subtraction
& swap logic

= 0 ?

Plus1

Plus2

Round
Logic

Significand Result
Exponent Result

Decoder

Decoder

Sign Result

52
11

6

5353

52 52
11 11

11

shift right 1

54

2

5
Sign
logic

Select logict

Exception logic

Swap significands

6

2 sticky

invert

A+B

true subtract

overflow

A+B+1
A+B+2
A+B
A+B+1
A+B+2 2

INC

DEC

INC (if shr)

Figure 1. A 3-cycle floating point adder.

There are four implemented rounding modes, round to-
wards zero, nearest and plus/minus infinity. Rounding of
the result to53-bits must be carried out as if the result was
exact (to infinite precision) and then the rounding rules ap-
plied to determine if the significand of the result should be
truncated or incremented. The53-bit result, pre-shift guard,
round and sticky bits are be passed to the rounder circuit;
the final guard, round and sticky bits are determined from
the postshift amount. The guard bit is the bit below the LSB
of the 53-bit result and the round bit is to the right of the
guard bit. The pre-shift sticky bit is obtained by OR’ing the
pre-shifted significand bits below the pre-shift round bit.

The true subtraction operation requires that a “1” be
added into the LSB of the smallest number for the two’s
complement operation ofMb since the positive result is

needed. To produce an exact representation of the result,
the “1” must be added into a bit infinitely below the number
so that the “1” propagates through the infinite string of trail-
ing zeroes up to the pre-shifted LSB. The only case where
the “1” can propagate to the round bit is when all of the pre-
shifted bits ofMb below the round bit are zero (which are
then inverted). So “1” is added into the round bit if the pre-
shift sticky bit is zero for true-subtraction. True addition
can either:

� produce a significand result greater than or equal to
one and less than two and the pre-shift guard, pre-
shift round and pre-shift sticky bits become the guard,
round and sticky bits for the rounding circuit.

� cause an overflow to occur if the result is greater than
or equal to two and less than four, in which case the
LSB becomes the guard bit, the pre-shift guard be-
comes the round bit, the pre-shift round and pre-shift
sticky bits are OR’d to form the sticky bit for the
rounding circuit.

True subtraction can produce (assumingA � B):

� Ea = Eb : no rounding is possible, result is exact

� Ea � Eb = 1 : no rounding is done if the normal-
isation shift is� 1 since the round and sticky bits
must be zero. If the normalisation shift is zero then
rounding is performed (only the guard bit, which has
become the round bit, is used).

� Ea�Eb � 2 : the normalisation shift will be at most
one, and rounding is needed.

The rounding circuit drives the control signals for the
flagged prefix adder, described below, to instantly change
the significand result by plus “1” (for a true addition round
increment or a true subtraction with no increment) or plus
“2” (if the true addition result had overflowed or true sub-
traction and a round increment occurred).

It is possible for the rounding incrementer to produce an
overflow of the significand and possibly the exponent. This
is detected and corrected with a shift right in the normali-
sation phase and uses the same multiplexer to do this as the
correction for the LZA.

2.2. A
agged pre�x adder for merged sig-
ni�cand addition/rounding

In this section only, we refer toA andB as significands.
To merge the rounding process with the significand addi-
tion, the following results need to be computed:A + B,
A + B + 1, A + B + 2, A � B, A � B + 1, B � A. To
compute this (in two’s complement form), the actual calcu-
lations are;A + B, A + B + 1, A + B + 2, A + B + 1,

A+B+2,A+B. Burgess proposed a flagged-prefix adder
[2] which computesA + B, A + B + 1, �(A + B + 2),
�(A+B +1),A�B � 1,A�B, B �A� 1 andB �A
for a minor increase in delay from a single addition (1 com-
plex gate plus a half adder). A flagged prefix adder shown
in Figure 2(a) is a modified parallel prefix-type carry looka-
head adder which calculates the longest string of one’s (up
to and including the first “0”) from the second LSB upwards
and sets them as “flag bits” to indicate those bits which can
be inverted for incrementing a two’s complement number.
The overhead is approximately1 extra complex gate plus a
half adder per bit over a prefix type adder. By way of com-
parison, a compound adder replaces each prefix cell by a
pair of multiplexers and has an extra row of output multi-
plexers. Therefore flagged prefix adders use approximately
70% of the logic of a compound adder.

A subset of the available functions in a flagged prefix
adder was used which simplified the flagged inversion cells
shown in Figure 2(b). The 2 least significant flagged inver-
sion cells were replaced with flag logic which provides a
plus “2” function in addition to the standard plus “1” func-
tion.

The flag bits start from the second LSB and must detect
the following strings of bit propagate (p), bit generate (g)
and bit kill (k) signals to facilitate a “plus 2” operation:

::::ppppppp; ::::ppppppk;

::::pppppkg; ::::ppppkgg; etc:

To simplify the detection of these bit strings a row of
half adders is placed before the prefix adder to convert the
“kgg...” conditions to strings of bit propagate signals. The
flag bits are then defined asfi = fi�1:pi�1 = P 0

i�1
, the

i � 1th group propagate signal, available from the prefix
tree.

The control signals,plus1andplus2for the flagged pre-
fix adder are generated from the rounding mode, sticky bit,
result LSB, round bits and the true addition/subtraction sig-
nals. These control signals together with the bit propagate
and generate signals, p0,g0,p1,g1 and the overflow signal
are used to drive theinc signal for the flagged inversion
cells.

In a true addition,A + B needs to be calculated. If the
result of the rounding circuit is an increment thenplus1 is
set. IfA+B overflows, then adding a “1” becomes adding
“2” to the unshifted significand, the LSB becomes the round
bit andplus2 is set. If the rounded result (A + B + 2 or
A + B + 1) produces an overflow then this is shifted right
one place and truncated.

For the case of true subtraction theplus1signal is auto-
matically set (for the negation of the second operand). If the
result also needs to be incremented due to rounding, then
the plus2signal is set. We could have added the compul-
sory “1” as a carry input to the LSB of the adder but we

may needA+B (actuallyB � A+ 1) if A+ B + 1 over-
flows and the requirement forA + B + 2 for true addition
means all operations can be performed with a single flagged
prefix adder.

Flagged inversion cells

Bit propagate and generate cells

A B

p g

f c

r

54 54

54 54

......
Half Adders

52 52

53

52,..,r2 r1,r0

g0,p0,g1,p1
c52,p52,c51

inc

Round
logic

flag
control

Prefix carry tree
and flag generation

S
a,

 S
b

tr
ue

 a
dd

/s
ub

ro
un

d
m

od
e

ro
un

d
bi

ts
 1

, 2

st
ic

ky
 b

it

plus1,
plus2

(a)

f
i

c
i−1

p
i

r
i

inv

(b)

Figure 2. (a) A flagged prefix adder for
merged significand addition and rounding
and (b) a flagged inversion cell.

2.3. Normalisation

The normalisation stage left shifts the significand to ob-
tain a leading “1” in the MSB, and adjusts the exponent by
the normalisation distance. For true subtraction, the posi-
tion of the leading “1” of the significand result is predicted
from the input significands to within1-bit using an LZA
[17, 8] which is calculated concurrently with the significand
addition. The normalisation distance is passed to a normal-
isation barrel shifter and subtracted from the exponent. The
LZA circuit is arranged so the error is always larger than
the required shift and correction circuits right shift the sig-
nificand and add “1” to the exponent if the normalisation
distance is too large. For true addition, the only possible
post-shifting that can be performed is a single shift right if
the significand addition and rounding operation produced
a supernormal result. The multiplexer to perform this is
shared with the LZA correction function.

The fractional significand can now be split off from the
implied “1” and packed with the exponent and sign bit to
produce the64-bit result.

2.4. Implementation

A micrograph of the fabricated0:5�m FP adder chip de-
scribed above is shown in Figure 3 and the main functional
blocks are highlighted. Most of the FP adder was con-
structed using static CMOS logic and it contains33; 000
transistors. It was full custom designed using VHDL for
high level design and verification with a suite of C test
routines. The adder was functionally verified against the
Berkeley IEEE-754 test vector set and sets of random vec-
tors generated by a golden device (SUN UltraSPARC 60
[5]). This FP adder will be used in a parallel processor node
[1] for fast matrix computations.

Flagged Adder

Align

Swap

Boundary Scan

Exp
Pipe 3

Norm

LZA

Pipe 2

Pipe 1

Exp
Pipe1Rnd

B
ou

nd
ar

y
Sc

an

Figure 3. Micrograph of the 0:5�m CMOS FP
adder chip.

3. A 2-cycle Accumulator Architecture

A new FP adder which supports 2-cycle accumulation
whilst still being able to perform 3-cycle pipelined addi-
tions is shown in Figure 4. A correctly rounded, possibly
un-normalised result is produced at the output of the sec-
ond stage of the FP adder described in the previous section,
together with the normalisation distance (which may be in
error by1-bit). This number may be either normalised in
the third stage of an adder or accumulated with the next but
one input using only a small amount of extra hardware (four
multiplexers). This is useful in processors where many short
accumulations are performed as it can reduce the pipeline
start-up and finishing cost.

In the accumulation mode, the normalisation of the ac-
cumulator and the alignment shift operations can be over-
lapped so the critical path does not pass through both

Eb−Ea

Ma

Mb

Ea

Eb

unpack

Alignment
Sticky

Calc.

Ea−Eb

Ea−Eb−54 Eb−Ea−54

=2046 ?

Flagged Prefix Adder

invert

Leading Zero Anticipator

Normalise

set zero/NaN/max/min

true addition/
subtraction
& swap logic

= 0 ?

Plus1

Plus2

Round
Logic

Decoder

Decoder

6

5353

52 52
11 11

11

shift right 1

Sign
logic

Select logict

Exception logic

Swap significands

6

2 sticky

invert

A+B

true subtract

overflow

A+B+1
A+B+2
A+B
A+B+1
A+B+2

shift right 1

Edist

Eu − Edist

Significand Result

Significand Result, Mu Exponent Result, Eu

Mr

Sign Result, Su

Eu−Ea

unpack

Bypass 1

Bypass 2

Exponent Result, Er

Sign Result, Sr

11

2

11

52

53

INC

INC (if shr)

INC (if shr)

Figure 4. A 3-cycle FP adder which can be
used as a 2-cycle accumulator.

shifters. The possibly un-normalised accumulator signifi-
cand,Mu is fed back to the start of the adder along with its
exponent,Eu, sign,Su and a normalisation distance,Edist.
There are three cases to be considered to align the accumu-
lator and addend significands:

� Ea � Eu : the normalisation distance,Edist can be
ignored andMu can be shifted further to the right
by the exponent difference (Ea � Eu). TheMu sig-
nificand bypasses the normalise shifter through the
bypass-1 multiplexer.

� Ea < Eu < Ea + Edist : the Mu significand is
shifted left by the exponent difference (Eu � Ea)
but not enough to make it normalised. It then by-
passes the alignment shifter through the bypass-2
multiplexer.

� Eu � Ea + Edist : in this case, both significands
need to be shifted.Mu must be normalised andMa

must be right shifted by the exponent difference less

the normalisation distance (Eu �Ea �Edist). Edist

can be in error by1-bit which can be detected by
the multiplexer directly after the normalisation shifter
and is applied to the bypass-2 multiplexer to correct
the shifted significand.

The length of the critical path has increased by an11-bit
adder delay, however speculative calculations forEa �Eb,
Eb � Ea, Ea � Eu andEu � Edist � Ea and multiplex-
ing the result would only increase the critical path by two
multiplexer delays.

In non-accumulation mode, the adder has the same ar-
chitecture and 3-cycle latency as the FP adder in previous
section. The post-normalisation step is independent of the
in-coming operands and the result is taken fromMr.

4. A 2-cycle Floating Point Adder Architecture

In this paper, an FP adder was designed which merged
rounding with the significand addition phase. A 2-cycle FP
adder can be constructed which has separate data paths de-
pending on whether or not the data requires a large align-
ment shift or large normalisation shift as shown in Figure
5. This is a speculative FP adder architecture and uses more
hardware than the previous design. A multiplexer at the out-
put of the near and far data paths selects the correct result
at the completion of the second pipeline stage. As noted
in the introduction, some recent microprocessors have used
this method to speed up FP addition [12],[5].

The far data path calculates the result for all true addition
operations and true subtraction operations which have an
exponent difference greater than or equal to 2. In this case
true subtraction of the significands leads to a result which
is always greater than one half and at most needs to be left
shifted by one bit, whereas a true addition can only lead to
the significand being shifted one place to the right if there
is an overflow. This is done with multiplexers at the output
of the far pipe-2 flagged prefix adder. The far data path
also computes results for some cases where the exponent
difference is “1” which are discussed below.

The near data path computes the true subtraction cases
where the exponent difference is “0” and (in some cases)
“1”. These computations may need a large number of result
significand left shifts for normalisation due to massive can-
cellation of the significands. The result of the near data path
is calculated speculatively as it is not known until well into
the first pipeline stage if the result will be needed.

The near pipe-1 stage uses a carry propagate adder to add
the significands which forms the critical path. To start the
addition as early as possible, thereby minimising the cycle
time, it is only necessary to check if the exponent LSBs dif-
fer to speculate if the exponents differ by “1” and one of the
significands is right shifted by1-bit. If the exponent LSBs

Sig.MSBs Ea �Eb = 1 Ea �Eb = �1
Ma(51), Range Norm. Range Norm.
Mb(51) (g.t.,l.t.) Shift (g.t.,l.t.) Shift
00 0:25, 1 2 0:25, 1 2
01 0, 0:75 54 0:75, 1:5 1
10 0:75, 1:5 1 0, 0:75 54
11 0:5, 1:25 1 0:5, 1:25 1

Table 1. Normalisation shifts needed for an
exponent difference of 1.

are equal and it turns out at the end of far pipe-1 that the
exponents are equal, the significand result is exact, requires
no rounding, and a normalisation shift then occurs in near
pipe-2.

If the exponent LSBs are different, it then needs to be
determined which of the significands is to be right shifted
by one bit. A speculative regime could calculate both
Ma �Mb=2 andMb �Ma=2 using two significand adders
and multiplex the correct result once the exponent differ-
ence is known, which has been calculated in parallel with
the significands.

A new method is proposed to determine which of the sig-
nificands should be right shifted by one bit, thereby elimi-
nating one of the adders and the multiplexer.

If we inspect the MSBs of the significands (before un-
packing), there are four cases to consider which depend on
the sign of the exponent difference as shown in Table 1.

Only one of the cases where the exponent bits differ is
where massive cancellation of result bits can occur requir-
ing large normalisation shifts. The other case where the ex-
ponent bits differ (eg. “10” for Ea � Eb = 1) and the “11”
case result in at most1-bit left shift and the “00” case results
in at most2-bits left shift. The cases where the MSBs are
equal (“00” and “11”) can be handled by the far data path
providing the normalising multiplexer in far pipe-2 is mod-
ified to perform a2-bit left shift. If the MSBs are not equal
(“01” and “10”), only one of these two cases can lead to
large normalisation shifts, so we always choose to specula-
tively calculateMa�Mb=2whenMa has a “0” in the MSB
andMb has an MSB equal to “1”, or calculateMb �Ma=2
whenMa has a “1” in the MSB andMb has a “0” in the
MSB. The operand with a “1” in the MSB is always right
shifted and the case where the MSB bits are reversed is
dealt with in the far data path. These results are always
exact requiring no rounding thus simplifying the near path
flagged prefix adder. Choosing which data path to use is
summarised in Table 2.

A circuit to determine which operand to shift can be built
with one CMOS complex gate and the need for an11-bit ex-
ponent subtraction to determine the sign of the exponent dif-
ference has been avoided. The only extra hardware needed

Eb−Ea

Ma Mb Ea Eb

unpack

unpack

Alignment
Sticky

Calc.

Ea−Eb

Ea−Eb−54 Eb−Ea−54

=2046 ?

Flagged Prefix Adder

invert

Exp − LZA Normalise

set zero/NaN/max/min

true addition/
subtraction
& swap logic

= 0 ?

Plus1

Plus2

Round
Logic

Significand Result

Exponent Result

Decoder

Decoder

Sign Result

52

11

6

5353

52 52
11 11

11

shift right 1

54

5

Sign
logic

Exception logic

Swap significands

6

2 sticky

true subtract

overflow

A+B+1
A+B+2
A+B
A+B+1
A+B+2

Flagged Prefix Adder Leading Zero Anticipator
Plus1

6

Select logict

Exception logic

invert

A+B

overflow

Shift 1 or 2 bits left/ 1 bit right

shift right 1

Ma Mb

52 52

set zero/max/min

2

2

Far Data Path Near Data Path

INC

DEC

INC (if shr)

Flag
LogicA+B+1

Figure 5. A 2-cycle floating-point adder.

Sig.MSBs
Exp.LSBs Am(51), near/far near data path
Ae0 Be0 Bm(51) data path alignment shift

same (00, 11) - near no shift
differ (10, 01) 00 far -

” 01 near Bm right 1-bit
” 10 near Am right 1-bit
” 11 far -

Table 2. Determining which significand to
shift as a function of significand MSBs and
exponent LSBs.

for the 2-cycle FP adder compared to the one shown in Fig-
ure 1 is an extra flagged prefix adder. Further speed im-
provements can be made in far pipe-1 by duplicating the
alignment shifter and computing the two exponent differ-
ences in parallel with the alignment shifts [9].

5. Acknowledgement

This work was gratefully supported by the Australian
Research Council and The Defence Science & Technology
Organisation, Australia. Thanks to Kiet To for designing
the boundary scan cells, Warren Marwood for providing
test equipment, Mike Liebelt and Amos Omondi for help-
ful discussions and the anonymous referees for their helpful
remarks.

References

[1] A. Beaumont-Smith, M. Liebelt, C. Lim, K. To, and W. Mar-
wood. A digital signal multi-processor for matrix applica-
tions. InProc. 14th IREE Australian Microelectronics Con-
ference, pages 245–250, Sep. 1997.

[2] N. Burgess. The flagged prefix adder for dual additions. In
Proc. SPIE ASPAAI-7, volume 3461, pages 567–575, San
Diego, Jul. 1998.

[3] M. Farmwald. On the Design of High Performance Digi-
tal Arithmetic Units. PhD thesis, Stanford University, Aug.
1981.

[4] D. Goldberg. Computer Architecture A Quantitative Ap-
proach, chapter Appendix A. Morgan Kaufmann, 1990.

[5] D. Greenley et al. Ultrasparc: the next generation super-
scalar 64-bit sparc. InDigest of Papers, COMPCON 95,
pages 442–451, Mar. 1995.

[6] Y. Hagihara, S. Inui, F. Okamoto, M. Nishida, T. Nakamura,
and H. Yamada. Floating-point datapaths with online built-
in self speed test.IEEE J. Solid-State Circuits, 32(3):444–
449, Mar. 1997.

[7] C. Heikes and G. Colon-Bonet. A dual floating point co-
processor with and fmac architecture. InISSCC Dig. Tech.
Papers, pages 354–355, Feb. 1996.

[8] E. Hokenek and R. Montoye. Leading-zero anticipator (lza)
in the ibm risc system/6000 floating-point execution unit.
IBM J. Res. Develop., 34(1):71–77, Jan. 1990.

[9] S. Knowles. Arithmetic processor design for the t9000 trans-
puter. InProc. SPIE ASPAAI-2, San Diego, 1991.

[10] L. Kohn and S. Fu. A 1,000,000 transistor microprocessor.
In IEEE Int’l Solid-State Circuits Conf. Dig. Tech. papers,
pages 54–55, 1989.

[11] Y. Kondo, Y. Koshiba, Y. Arima, M. Murasaki, T. Yamada,
H. Amishiro, H. Mori, and K. Kyuma. A 1.2gflops neural
network chip for high-speed neural network servers.IEEE
J. Solid-State Circuits, 31(6):860–864, Jun. 1996.

[12] J. Kowaleski Jr., G. Wolrich, T. Fischer, R. Dupcak, P. Kroe-
sen, T. Pham, and A. Olesin. A dual-execution pipelined
floating point cmos processor. InISSCC Dig. Tech. Papers,
pages 358–359, Feb. 1996.

[13] R. Montoye, E. Hokenek, and S. Runyon. Design of the ibm
risc system/6000 floating-point execution unit.IBM J. Res.
Develop., 34(1):59–70, Jan. 1990.

[14] S. Naffziger. A sub-nanosecond 0.5mm 64b adder design.
In ISSCC Dig. Tech. Papers, pages 362–363, Feb. 1996.

[15] A. Nielsen, D. Matula, C. Lyu, and G. Even. Pipelined
packet-forwarding floating point: II. an adder. InProc. IEEE
13th Int’l Symp. on Computer Arithmetic, pages 148–155,
Asilomar, California, Jul. 1997.

[16] S. Oberman, H. Al-Twaijry, and M. Flynn. The snap project:
Design of floating point arithmetic units. InProc. IEEE 13th
Int’l Symp. on Computer Arithmetic, pages 156–165, 1997.

[17] V. Oklobdzija. An algorithmic and novel design of a lead-
ing zero detector circuit: Comparison with logic synthesis.
IEEE Transactions on VLSI Systems, 2(1):124–128, Mar.
1994.

[18] A. Omondi. Computer Arithmetic Systems, Algorithms, Ar-
chitecture and Implementations. Prentice Hall, 1994.

[19] W.-C. Park, S.-W. Lee, O.-Y. Kown, T.-D. Han, and S.-D.
Kim. Floating point adder/subtractor performing ieee round-
ing and addition/subtraction in parallel.IEICE Transactions
on Information and Systems, E79-D(4):297–305, Apr. 1996.

[20] S. Peng, S. Samudrala, and M. Gavrielov. On the implemen-
tation of shifters, multipliers, and dividers in vlsi floating
point units. InProc. IEEE Int’l Symp. on Computer Arith-
metic, pages 95–102, 1987.

[21] N. Quach and M. Flynn. Design and implementation of
the snap floating-point adder. Technical Report CSL-TR-
91-501, Stanford University, Dec. 1991.

[22] N. Quach, N. Takagi, and M. Flynn. On fast ieee rounding.
Technical Report CSL-TR-91-459, Stanford University, Jan.
1991.

[23] R. Simar Jr. Codevelopment of the tms320c6x velociti ar-
chitecture and compiler. InProc. ICASSP’98, Seattle Wash-
ington, May 1998.

