
A 32-Bit Logarithmic Arithmetic Unit and Its Performance Compared to Floating-
Point

J.N. Coleman and E.I. Chester
 Department of Electrical & Electronic Engineering, The University, Newcastle upon Tyne, NE1 7RU,

United Kingdom.
j.n.coleman@ncl.ac.uk

Abstract
 As an alternative to floating-point, several papers have
proposed the use of a logarithmic number system, in
which a real number is represented as a fixed-point
logarithm. Multiplication and division therefore proceed
in minimal time with no rounding error. However, the
system can only offer an overall advantage if addition
and subtraction can be performed with speed and
accuracy at least equal to that of floating-point, but
these operations require the interpolation of a non-linear
function which has hitherto been either time-consuming
or inaccurate. We present a procedure by which
additions and subtractions can be performed rapidly and
accurately, and show that these operations are thereby
competitive with their floating-point equivalents. We
then show that the average performance of the
logarithmic system exceeds floating-point, in terms of
both speed and accuracy.

1. Introduction

 As an alternative to floating-point, several papers have
proposed the use of a logarithmic number system for the
representation of real numbers. In a LNS a number x is
represented as the fixed-point value i = log2x, with a
special arrangement to indicate zero x and an additional
bit to show its sign. For i = log2x and j = log2y, and
assuming without loss of generality that j ≤ i, LNS
arithmetic involves the computations
 log2(x + y) = i + log2(1 + 2j−i) (1)
 log2(x − y) = i + log2(1 − 2j−i) (2)
 log2(x ∗ y) = i + j
 log2(x / y) = i − j
 By suitable choice of position for the binary point, a
LNS can have similar range and precision to a FLP
system of equal wordlength. The most valuable
advantage of the LNS is that multiplication and division
can be performed much more rapidly than in FLP, as
they require only one fixed-point addition time. These
operations are also infinitely more accurate, returning an
exact result where FLP has potentially a half-bit
rounding error. If LNS addition and subtraction could be
performed with speed and accuracy at least equivalent to
FLP, then the average performance of the LNS would
significantly exceed that of FLP, but unfortunately these
operations require the evaluation of a non-linear function
F = log2(1 ± 2j−i), illustrated in fig. 1.1. For practical
purposes, this can only be held in a lookup table, and for
practical wordlengths it is not possible to store the entire

range of values, so an interpolation must be performed.
The function is irrational and thereby subject to a half-bit
rounding error, the interpolation procedure tends to
introduce additional error, and the entire process is time-
consuming. Designs for LNS addition operations have
therefore so far tended to be slower or less accurate than
FLP, or to be restricted to short wordlengths. No designs
to date appear to offer both the speed and the accuracy of
FLP at 32-bits precision.
 In this work we present such a design. Section 2
describes two original algorithms for the evaluation of
addition and subtraction with equivalent accuracy to
FLP. It is shown in section 3 that a VLSI implementation
of these algorithms will have speed approximately equal
to that of an equivalent FLP unit. As the LNS device also
maintains the intrinsic advantages of LNS multiplication
and division in terms of both speed and accuracy, the
average performance of this unit is considerably better
than that of a 32-bit FLP unit. The results of some
systematic larger-scale simulations designed to compare
the accuracy of the two systems are given in section 4.

Fig. 1.1. LNS add and subtract functions

2. Arithmetic algorithms
J.N. Coleman

 The use of 16-bit LNS arithmetic was originally
proposed as an alternative to 16-bit fixed-point by
Kingsbury and Rayner in 1971 [1]. Simulated LNS

arithmetic demonstrated that the greater dynamic range
of this system yielded a very significant improvement in
the response of a digital filter. Attention turned some
years later to the better roundoff-error characteristics of
the LNS when compared to FLP, and clear improvements
in noise-to-signal ratio were demonstrated in a filter [2],
and FFT [3].
 Implementation work began with a 1975 paper which
suggested a 12-bit device [4], whilst a 1988 proposal
extended this to 20-bits [5]. Both designs were direct
implementations of eqns 1 and 2, with a lookup table
covering all possible values (omitting those which
quantise to zero) of F(r = j − i). It is of course apparent
that as the wordlength increases, the table sizes increase
exponentially, which limits the practical utility of this
approach to about 20 bits. A 1991 design [6] extended
the wordlength to 28 bits by implementing the lookup
table throughout r only at intervals of ∆, where r = −n∆
− δ. Intervening values were obtained by interpolation
using the Taylor series
 F(r) = F(−n∆) + [D(−n∆) / 1!] δ
 + [D′(−n∆) / 2!] δ2 + ...
This design used only the first-order term, requiring the
additional storage of a table of derivatives D(r), and
introducing a multiplication into the critical speed path.
The scheme also exposed a further problem intrinsic to
LNS arithmetic: the difficulty of interpolating F(r) for
subtractions in the region −1 < r < 0. Here, as is evident
from fig. 1.1, D(r) → −∞. To maintain accuracy in the
face of the rapidly changing derivative, it is necessary to
implement a large number of successively smaller
intervals as r → 0. The large memory with its irregular
organisation is cumbersome to design, and complicates
the VLSI floor-planning. Although the accuracy achieved
by [6] was not reported, it would have been limited by the
rounding error in the function, plus any additional error
introduced by the interpolation procedure.
 A separate proposal in 1994 [7] involved the use of a
higher-order polynomial interpolator, with a novel
scheme for interleaving the stored values so as to reduce
the overall memory requirement. A design for a 32-bit
unit with a 287 Kbit lookup table was presented, and its
addition accuracy shown by simulation to be within FLP
limits. A variant had a smaller table with larger errors.
The critical speed path included a ROM, two multipliers,
three barrel-shifters, and five carry-propagate adders /
subtractors. Fabrication of the lower-accuracy variant
was done in 1995 [8], with a latency of 158 ns in add /
subtract operations, and 13 ns for multiply / divide.
 Some novel arithmetic transforms which may have the
potential to simplify the addition and subtraction algebra
are given in [9]. This work also includes a review of
recent practical applications of LNS arithmetic from the
U.S.A. and Japan. Areas cited include image processing
and DSP applications, graphics, and aircraft controls.
Fujitsu are making some use of the technique in their
microprocessors.
 The aim of the current work is to develop a 32-bit
adder / subtractor with speed and accuracy comparable to
that of a FLP system. We took as our starting-point a
first-order Taylor-series approximation, the critical delay
path of which comprises a ROM, a multiplier, and two
carry-propagate adders, which is at the limit of what can
be implemented without significantly exceeding the delay

of a FLP addition. We therefore faced two problems.
First, we had the difficulty, referred to above, of
interpolating the subtraction function in the region
−1 < r < 0. In 1995 we published an algorithm [10] for
transforming such a subtraction into one for which r <
−1, with little extra time delay. The second problem is
that, at 32-bit wordlengths, a first-order Taylor
interpolation yields far too high an error to meet the
desired accuracy without recourse to unreasonably large
lookup table sizes. A natural way to improve the accuracy
would be to evaluate the second order term, but
unfortunately this would considerably extend the delay
path. An alternative technique for function evaluation
without interpolation uses bipartite tables [11]. With this
method, it is possible to replace a table access with n
address bits with two simultaneous accesses each with
approximately 2/3 n address bits. For n = 28 bits as
required here, however, even this would yield an
unacceptably large table size.
 Using a crude first-order approximation procedure, we
now describe a new algorithm by which the error it yields
can be simultaneously evaluated, then accumulated into
the result, thereby correcting the error with a delay of
only one extra carry-save stage. We will show that a unit
designed to implement this algorithm will perform 32-bit
addition and subtraction operations with speed and
accuracy roughly equal to that of a FLP unit.

2.1. Data format, range and precision

 IEEE standard FLP representation uses a sign, 8-bit
biased exponent, and 23-bit significand. The latter has an
implied binary point immediately to its left, and a hidden
‘1’ to the left of the point. Extreme exponent values (0
and 255) are used to represent special cases, thus this
format holds values in the range ±(1.0 ∗ 2−126) to
(1.111... ∗ 2+127), ≈ ±1.2E−38 to 3.4E+38.

S 8-b Exponent 23-b Mantissa

 In the equivalent LNS representation used throughout
this work, the integer and fractional parts form a
coherent two’s complement fixed-point value in the
range ≈ −128 to +128. The real numbers represented are
in the range ±2−128 to 2+128, ≈ ±2.9E−39 to 3.4E+38. One
value, all ones, is used to represent the real number zero.

S 8-b Integer 23-b Fraction

2.2. Measurement of accuracy

Definitions In a FLP implementation with f-bit
significand, assuming that both significands represent
exact values, a result Â as returned by a practical
implementation can be regarded as an approximation to
the corresponding exact result A. Each result is thus in
error by e = Â − A. The errors throughout the range of
significands are generally quoted relative to the weight of
the LSB.

 e
A A

fmax rel = −
−

max($)

2
;

similarly emin rel, |e|max rel, eav rel, |e|av rel.
 In the equivalent LNS (i.e. with f-bit fractional part), it

may be correspondingly assumed that both logarithms
forming the inputs to an operation are exact. Each result
Î returned by the implementation is an approximation to
the corresponding exact logarithm I, and is thereby in
error by elog = Î − I. Thus

 e
I I
fmax rel log = −

−
max($)

2
;

similarly emin rel log, |e|max rel log, eav rel log, |e|av rel log.
 Since, however, the user is concerned not with the
logarithm per se, but rather with the value that it
represents, it is also possible to quote this error in a way
which allows direct comparison with the error returned
by FLP. The error in the value represented is then
expressed in terms of the weight of the LSB of an
equivalent FLP operation, i.e.

 e
I I

f'
max($)

max rel=
−−

−
2 1

2
;

similarly e′min rel, |e′|max rel, e′av rel, |e′|av rel.
 For f = 23, FLP arithmetic has emax rel = 0.5, emin rel =
−0.5, eav rel = 0, and |e|av rel = 0.1733, whilst logarithmic
addition and subtraction has best-case values of |e|max rel log
= 0.5, |e|av rel log = 0.25, e′max rel = 0.3464, e′min rel =
−0.3464, e′av rel = 0, and |e′|av rel = 0.1733. In LNS
multiplication and division all values are 0.
Theorem 1 If the operations defined in eqns 1 and
2 yield errors within a given emax rel log over all negative
values of j for i = 0, then they yield the same emax rel log
over all values of j for all values of i. An implementation
can thus be regarded as fully verified if it can be verified
over this subset.
Proof Let r j i= − . Then ()I i F r= + and

()$ $.I i F r= + Thus

() ()[]

e
F r F r

fmax rel log=
−

−

max $

2
Let i and j ∈ {minlog .. 0 .. maxlog}. By definition j ≤ i,
∴ r ∈ {minlog .. 0}. Then for {(i = 0, j = minlog) ..
(i = 0, j = 0)}, also r ∈ {minlog .. 0}.

2.3. Conventional LNS addition and
subtraction

 The function F(r) was shown in fig. 1.1. To minimise
its storage, ∆ is progressively increased as the function
becomes more linear with decreasing r, and an
intervening value of r lying in the nth interval is thus
correctly expressed as

 r n r nn

n

= − = = − − >
−

∑δ δ { }; () { }0 0
0

1

∆

In a typical system, the range of r will be partitioned at
each power of 2, and F(r) implemented with a small table
of equal size in each segment; i.e. ∆ will be doubled at
each increasing power of 2. For clarity of explanation,
however, the following text will omit further reference to
the variation in ∆, and abbreviate this expression to
 r = −n∆ − δ
In the programmed simulations the correct treatment of
∆ will nevertheless be maintained, so that their results
may be regarded as realistic of a practical

implementation.
 Together with each value of F(r) is stored its derivative
D(r). The function of the intervening value of r is then
obtained by interpolation
 F(−n∆ − δ) ≈ F(-n∆) − δD(−n∆)
A conventional implementation is shown outside the
dotted lines in fig. 2.1. Following the initial subtraction
to obtain r, the latter is partitioned, effectively dividing
by ∆. The high-order bits represent n, and are used to
access the F and D tables, whilst the low-order bits
represent δ. F(−n∆) is then added to the product δD(−n∆)
to obtain the approximation to F(r), which is added to i
to yield the result.

Fig. 2.1. LNS implementation (new components
within dotted lines)

 The interpolation yields an error, as shown in the inset
to fig. 1.1
 ε(n, δ) = F(−n∆) − δD(−n∆) − F(−n∆ − δ)
For each n, ε increases with δ to a maximum
 E(n) ≈ F(−n∆) − ∆D(−n∆) − F(−n∆ − ∆)
An example of the errors arising during additions using
this interpolation method is shown in the upper curve of
fig. 2.2. These simulations were based on a 40-bit LNS,
with 8-bit integer part and 32-bit fraction. The non-zero
range of r was partitioned as described above, into 7
segments covering the sub-ranges 0..−1, −1..−2, ...
−32..−64, each segment being divided into a fixed
number of intervals. Additions were simulated for all
values of j for i = 0, and the results compared with
accurate values obtained from 80-bit FLP arithmetic. The
graph shows the maximum value, anywhere throughout
the range of r, of |ε| in terms of the LSB, i.e. |e|max rel log.
From theorem 1, these results are applicable to all
combinations of operands. The simulation was repeated,
varying the number of intervals in each segment from
128 to 4096. For 128-interval segments, ∆ is 225 within
the first segment at the RHS of F(r), and doubles at each
power of 2. It is evident that the maximum error reduces

by a factor of 4 with each doubling of the table size; this
because each time ∆ is halved, the accuracy of both F(r)
and D(r) improves by one bit.

Fig. 2.2. Error in 40-b add operations

Fig. 2.3. αα and εε vs n and δδ

Fig. 2.4. Storage requirement

2.4. Error correction algorithm

 In this paper we present a means to correct the error ε.
It is based on the observation that, for a given δ, the ratio
P = ε(n, δ) / E(n) is roughly constant for all n. It is
therefore possible to store for one n a table P of the error
at successive points throughout ∆, expressed as a
proportion of the maximum error E attained in that
interval. It is also necessary to store, together with F and
D for each interval, its value of E. The error ε is then

obtained for any (n, δ) as
 ε(n, δ) = E(n)P(δ)
This is added to the result of the interpolation, thereby
correcting the error.
 This scheme has the major practical advantage that the
lookups of E(n) and P(δ) can be performed at the same
time as those of F(n) and D(n), and their product can be
evaluated simultaneously with the multiplication in the
interpolation. Since the interpolation already requires a
final addition, this can be combined with the addition of
ε by using a carry-save stage. The entire correction
procedure can therefore be performed with only a few
extra gate delays. The extra hardware is shown within
the dotted lines in fig. 2.1.
 The error elog in the final corrected result (assuming P
calculated at n = 0) is
 elog = E(n)P(0, δ) − E(n)P(n, δ), which can be written
 elog = α(n, δ)ε(n, δ) where

 α δ δ
δ

(,)
(,)

(,)
n

P

P n
= −0

1

The value α(n, δ) represents the factor of the final elog
arising because of the approximation of P(n, δ) as
P(0, δ). It is difficult to derive an analytical expression
for the bounds of αε, and such an exercise would be of
little benefit because a practical implementation will
include a further source of error to be described in the
next paragraph. However this can be determined
numerically, and we shall present such a computational
verification below. We first illustrate with an example
the behaviour of α and ε. Their maximum magnitudes (ε
is shown relative to the LSB) within individual intervals
of n∆ = 1 are plotted against n in fig. 2.3. Plots are given
for two values of δ, at a small offset γ = 29 LSB from
each extreme of ∆, i.e. δ = γ, and δ = ∆ − γ. The value of
∆ has been increased at successive powers of 2
throughout r (resulting in discontinuities) with 512-word
tables in each segment. The remaining small
discontinuities appear because although the terms are
fairly evenly distributed across zero, the maximum
magnitude is plotted. It is evident that with respect to
both controlling variables n and δ, the two sources of
error α and ε are anticorrelated. As −n∆ ↓ α ↑ but ε ↓.
As δ ↑ α ↓ and ε ↑. Thus elog = αε is held at a relatively
low value throughout.
 A more substantial source of error arises from the fact
that for practical values of ∆ it is not feasible to store P
for all values of δ. Instead, the P table is implemented at
subintervals within ∆, with only the high-order bits of δ
being used to form the address to P. The simulations
described in section 2.3, to which theorem 1 applies,
were now repeated using the correction algorithm with a
P table of varying size. The results are shown in the
lower set of curves in fig. 2.2, which indicate that, for
small numbers of intervals per segment, the maximum
error is halved as the P table is doubled in size. With
512-word F, D and E tables, a P table of 4 Kwords will
reduce |e|max rel log by over 3 orders of magnitude, from
5022 to 3.9, i.e. it will leave two bits in error. However,
the algorithm is unable to make an exact correction, and
even with a large number of segments per interval, a
small error of about 2 still remains.
 The new P and E tables increase the overall storage
requirement. For the range of values shown in fig. 2.2,

these effects are illustrated in fig. 2.4. For the purpose of
this calculation, the F, D and P tables have been assumed
to comprise 32-bit words, and the E tables 16-bit words,
except in the 128-interval configuration where the larger
errors would require a 32-bit E table. For the example
illustrated above (512 intervals per segment, P = 4K), the
total storage requirement is roughly doubled, from 7168
words (229,376 bits) for the F and D tables only, to
14,848 words (417,792 bits) for the F, D, E and P tables.
In practice, these values would be reduced somewhat
because the tables would be implemented with only the
maximum necessary number of bits per segment, which
would gradually reduce through the range of r. This
would have to be calculated in detail for each individual
implementation, after the table sizes had been fixed. The
exact sizes of ROM for two possible implementations are
given later in this section.
 A number of simplifications are possible, which
substantially reduce the complexity and delay time of an
implementation. In the add / subtract unit, the two
multipliers would be realised as parallel arrays. In both
cases, both operands have fractional parts, and their
results therefore have twice the required number of
fractional bits. Rather than rounding the results, the low-
order bits may be truncated. This has a negligible effect
on accuracy, but does allow more than 50% reduction in
the number of multiplier cells. Second, the final carry-
propagate stage within both multipliers can be omitted,
and separate sum and carry vectors are passed to an
enlarged tree of carry-save adders. This saves the
majority of the carry-propagate addition time. The
simulations in section 2.6 will take these optimisations
into account.
 Finally, in order to avoid having signed multipliers, the
algebra can be rearranged such that the D, E and P tables
carry only positive values. The values of r, and therefore
δ, are similarly always positive.

2.5. Subtractor range shifter
From [10], with acknowledgement to the IEE

 The range shifter (fig. 2.5) simplifies the subtraction
operation by obviating the interpolation in the region −1
< r < 0, eliminating table D and reducing substantially
the size and complexity of table F, using instead two
much smaller and regularly organised tables. At and
below r = −1, the F and D tables are implemented as
before, but in this region are small. It relies on the
replacement of subtraction 2i − 2j with two successive
subtractions
 2i − 2j = (2i − 2j+k1) − 2j+k2, where
 2k1 + 2k2 = 1, i.e. k2 = log2(1 − 2k1)
 Factor 2k1 is individually chosen for each combination
of operands such that the index r1 for the inner
subtraction falls on the nearest modulo-∆1 boundary
beneath j − i, where ∆1 is now fixed at a large value.
F(r1) can therefore be obtained directly from lookup table
F1, which contains F(r) for −1 < r < −∆1 at modulo-∆1
intervals. Factor k1 is constrained to lie in the range −∆1
≤ k1 < 0, and can therefore be used to index another
lookup table F2, containing F(r) for all possible values of
r between −∆1 < r < 0, to obtain k2. Since 2k1 ≈ 1, k2 is a
large negative value. This has the effect of increasing the
magnitude of the index for the outer subtraction, r2, such

that r2 < −1. It therefore falls in the linear region of
F(r2), and can be obtained by interpolation from the
small remaining F and D tables covering this region.
 Thus
 r1 = (((j − i) DIV ∆1) − 1) ∗ ∆1 = j + k1 − i
 k1 = i − j + r1 = −(((j − i) MOD ∆1) + ∆1)
The subtraction becomes
 2i − 2j = 2i+F(r1) − 2j+F(k1), which generates an index r2
 r2 = j − i + F(k1) − F(r1)
 = j − i + log2[(1 − 2i−j+r1) / (1 − 2r1)]
 The value of r2 can be considered in three regions,
depending on the original operands i and j. For j − i ≤
−1, r2 is taken directly as j − i, and will lie in the linear
region of F from which F(r) can be obtained by
interpolation. For −1 < j − i < −∆1, r2 is derived as
shown above, and has a maximum of approximately
−(1 + ∆1). Thus it also lies in the linear region of F, and
F(r) is similarly obtained by interpolation. For the third
region, −∆1 ≤ j − i < 0, the derived value of r2 rises
above −1. However, this range is covered by the F2 table,
and F(r) is therefore already available as k2. Appropriate
multiplexing paths for the three regions can be arranged
either explicitly or by zeroing one of the inputs to an
arithmetic element.
 The modified values of j and i, known as j2 and i2, are
then subtracted, yielding a new value of r2 which is
guaranteed to fall in the linear region of F(r) below −1.
Together with i2, this is passed to the adder / subtractor
for completion of the outer subtraction.
 It is shown in [10] that the combined size of the F1 and
F2 tables is about one-seventh of that of the F and D
tables that would be required to yield an interpolation of
similar accuracy. In the current work, F1 and F2 are
2048 and 4096 words respectively.

Fig. 2.5. Subtractor range shifter

 A number of simplifications are possible in an
implementation of this scheme. In the calculation of k1
and r1, the subtraction j − i is not necessary because this
term is already available as r. Operation DIV returns a

truncated result, and since ∆1 is a power of 2 the DIV,
MOD and ∗ operations involve only bit-partitioning and
concatenation of zeroes. Thus the only arithmetic
operations required in these calculations are the addition
or subtraction of the single-bit constants ∆1 and 1.
However, it will be noted that there is a deterministic
relationship between the bit-partitioned values of r and
the functions k1 and r1 which form the indices to the F1
and F2 tables. The addition and subtraction can therefore
be avoided completely by rearranging the mapping of
addresses to function values in these tables. Calculation
of the modulo r1 and coefficient k1 can thus be done with
no time overhead at all. Finally, the subtraction to obtain
r2 can be rearranged in order to use the precalculated
value of r, and to use cumulative additions instead of an
addition and a subtraction. The entire unit can thus be
implemented with a worst-case delay of one ROM access,
a carry-propagate adder, and a carry-save stage.

2.6. Adder / subtractor design and evaluation

 Our objective was to produce a 32-bit design with 8-bit
integer part, 23-bit fraction and sign, having the same or
less error than FLP. To accomplish this, we have made a
detailed study of two separate designs, one optimised for
the maximum possible accuracy, and one for the smallest
ROM size. These are referred to as the high and low
accuracy designs.
 For the high-accuracy variant we have used the 40-bit
design described above, taking F, D and E at 512 words
and P at 4 Kwords. The incoming 32-bit operands are
expanded to 40 bits by concatenating zeroes, and the 40-
bit result rounded back to 32 bits with a rounder
incorporated into the final adder. Essentially, the 9 extra
internal bits are used as guard bits. After rounding, the
|e|max rel log of ≈ 4 observed in the 40-bit implementation is
vastly reduced. Following simulation in accordance with
theorem 1, the errors found are given in the upper row of
table 2.1.
 The same algorithm was also used to correct the error
in the subtraction operation. Since interpolation is

difficult when −1 < r < 0, we have used the algorithm
described in [10] to avoid interpolations in this region. It
must be noted that when this algorithm is invoked, the
subtraction is not done in accordance with eqn 2, since
the operands i and j are transformed into new values. As
a consequence, theorem 1 does not apply within this
restricted range. To have simulated a subtraction for all
combinations of i and j yielding -1 < r < 0 would have
been impractical, so here the operation was simulated for
all values of j over a limited subset of i, including values
around each power of 2 and random values in-between.
Results are also given in table 2.1.
 The storage requirement for this variant has been
calculated by taking the maximum number of bits for the
largest value held in each F, D and E table segment
individually. The segment sizes therefore reduce with
decreasing r. This optimised value is thus somewhat less
than the estimate presented in fig. 2.4. Total storage is
34,304 words or 856,064 bits, a size that can easily be
accommodated in a small area with contemporary
fabrication.
 In the low-accuracy variant, we have made a number of
simplifications to reduce the ROM size, whilst still
keeping a maximum error better than FLP. The number
of guard bits has been reduced from 9 to 4, which reduces
the size of all the tables commensurately. The F, D and E
tables are reduced to 256 words per segment, and P tables
to 1024 words. At this reduced level of precision, the
final segment (−32 .. −64) is not required, so the number
of segments is also reduced by one. The accuracy of this
variant is presented in the lower row of table 2.1. Its
storage requirement is 5632 words (108,032 bits) for
addition and 11,088 words (289,280 bits) for subtraction,
a total of 34,304 words (397,312 bits). This total is a
substantial reduction from that of the high-accuracy
variant, and is comparable with that used in [7].
 It is the low-accuracy variant which has been chosen
for further consideration. The hardware design and
simulations presented in subsequent sections of this
paper are all based on this low-accuracy variant.

Variant Operation |e|max rel log |e|av rel log e′max rel e′min rel e′av rel |e′|av rel

High acc. Add 0.5046 0.2509 0.3489 −0.3498 +0.0066 0.1739
Subtract 0.5074 0.2509 0.3517 −0.3493 −0.0067 0.1739

Low acc. Add 0.6556 0.2563 0.4544 −0.4233 +0.0447 0.1776
Subtract 0.7193 0.2563 0.4414 −0.4986 −0.0456 0.1777

Table 2.1. Errors in 32-bit LNS addition and subtraction operations

2.7. Discussion

 Apparently we have identified a useful property of the
logarithmic addition and subtraction functions. After
performing a Taylor interpolation, the shapes of the
curves of the errors within each interval remain
sufficiently similar throughout the range to permit a good
approximation to the curve for any interval to be made by
scaling from a template obtained from another interval.
This approximation technique has the major practical
advantage that the calculation of the interpolation error
can be performed at the same time as the interpolation
itself. The error can then be corrected by accumulating
this term, incurring a delay of only one extra carry-save

stage.
 Typically this scheme will reduce the maximum
interpolation error by several thousand times. It thus
yields accuracy equivalent to that which would be
obtained by increasing the size of the F and D tables by
some 64 - 128 times. However, it does so with only about
a twofold increase over the F and D table size. The
correction algorithm does not yield an exact result;
typically it is inaccurate by a few times the LSB, but this
can be overcome at minimal cost by performing the
arithmetic to more places than required and rounding the
result.
 We have illustrated two examples in detail. In the
high-accuracy variant, |e|max rel log for additions in a 40-bit

LNS was reduced by three orders of magnitude by using
a 4 Kword P table. This 40-bit system was then used as
the basis for a 32-bit implementation, which yielded
|e′|max rel of 0.3517, an increase in accuracy over FLP of
more than half a bit. Values of |e′|av rel were also
comparable to FLP, although a small bias did persist
which is not present in FLP, seen in the non-zero values
of e′av rel. However, this bias is equal and opposite in add
and subtract operations, and so is eliminated in signed
arithmetic or in code using add and subtract in roughly
equal proportions. ROM size for this variant was 856
Kbits.
 In the low accuracy variant, the ROM sizes were
reduced as far as possible, whilst keeping |e′|max rel within
the FLP limit of 0.5. Once again, there was a more-or-
less equal and opposite bias in adds and subtracts, so the
system would be unbiased in normal use. The total ROM
was now 397 Kbits.
 A LNS multiply / divide system returns |e′|max rel of 0,
whereas the corresponding value for FLP is 0.5. A
realistic computation will involve both addition and
multiplication operations, and the accuracy of such a
computation will therefore lie between these extremes,
probably approximating to the average.

3. Physical design and speed

 This is an implementation of the low-accuracy variant
defined in section 2. It offers addition, subtraction,
multiplication and division operations on LNS format
operands. There are two data paths, for add / subtract and
multiply / divide, as shown in fig. 3.1.
 The two operands are passed directly to three units:
magnitude comparison and difference; zero, sign and
control; and multiply / divide.
 The magnitude comparator returns i, j, and r, and also
detects equality. It passes its results regarding the relative
magnitude of the two operands to the zero, sign and
control unit.
 Following the comparator, add / subtract operations are
completed in two specialised blocks of circuitry.
Additions are passed directly to the add / subtract unit,
which interpolates the result using the Taylor expansion
with the correction algorithm described in section 2. In
the case of subtractions, however, the data will follow
one of two paths. If −1 < r < 0, the operands will be
processed by the range shifter, which will modify their
values such that this is no longer the case. After
modification, or if r ≤ −1 initially in which case the
range shifter is bypassed, the operands are forwarded to
the adder / subtractor where the operation is completed.
 The zero, sign and control logic can detect zero operand
values, and is supplied with information about the
relative magnitude of the operands by the magnitude
comparator. In cases involving one or more zero
operands, or in cases where the two operands are equal,
the result may either follow one of the operands, or be
zero itself. The two operands and a ‘hot zero’ are
therefore available to the final multiplexor, the setting of
which is determined by the control logic. Meanwhile the
sign logic determines the sign of the result in accordance
with the normal procedures for sign-and-magnitude
arithmetic, and the sign bit is appended as the result
leaves the ALU.

Fig. 3.1. LNS ALU

3.1. VLSI Implementation

 A device has been designed to implement the circuits
described in this section, taking operands of the format
given in section 2.1. It was designed in a 0.7µ two-level-
metal standard-cell system, within the CADENCE
framework. In order to make the design as realistic as
possible, the designer had the leeway to use the system in
the most appropriate way, which meant that in some
cases he did not follow the circuits exactly as they are
presented above. In particular, as in all standard cell
systems, better results could sometimes be obtained by
synthesising blocks of logic than by designing by hand.
Typical delays through the worst-case speed paths were
measured with the timing simulator, and the results are
given in table 3.1. Two values are shown for subtraction,
depending on whether the range shifter is used.
 For comparison, a 32-bit FLP unit was designed in the
same way, and like the LNS unit was optimised for
speed. As far as possible, blocks were re-used from the
LNS design. This unit took operands of the format shown
in section 2.1, and its results were rounded to the nearest.
Since, however, the objective was simply to determine
the delay, no attempt was made to refine this design for
strict IEEE compliance.
 A 32-bit fixed-point unit was also designed. Here, the
add / subtract path was almost identical to the LNS
multiply / divide unit, and the signed multiplier was
produced automatically with the vendor-supplied
macrocell generator. Since fixed-point multiplications
with fractional parts always require rescaling, a final
variable-length shift and round stage was included

following the multiplier. If rounding by truncation were
assumed, then the multiplication delay here would be
about 4 ns less. We did not design a FLP or FXP
divider, but a common rule-of-thumb is that division
takes about 3 times as long as multiplication

A S M D
FLP 28 28 22
FXP 4 4 32
LNS 28 28 / 42 4 4
Table 3.1. Delay times of VLSI devices (ns)

3.2. Discussion

 The times derived for FLP operations are broadly
comparable with commercial devices also designed in
0.7µ two-level-metal technology, e.g. the 30MHz
TMS320C44 [12]. Including its register and pipeline
overhead, this device has add and multiply times of 33ns.
 In code comprising a roughly equal proportion of adds
and multiplies, it would be expected that the LNS
implementation would perform in about 64% of the time
taken by FLP. However, a number of assumptions have to
be made in the interpretation of these results to allow for
practical operating conditions. Examination of large-
scale algorithms has suggested that the subtractor range
shifter is used, on average, in somewhat less than half of
subtractions. Assuming that a roughly equal number of
additions and subtractions be executed, this would raise
the average add / subtract time to about 31 ns. In the FLP
unit the add and multiply times are so close that in any
practical device they would be equalised to the larger one
in order to allow a constant cycle time. Finally, all these
times would be subject to a register and pipeline
overhead, and would then be increased if necessary to a
multiple of some clock period. These considerations
make an exact comparison difficult, but in approximate
terms the LNS unit would reach twice the speed of FLP
at an add / multiply ratio of about 40% / 60%.
 Since the FXP adder is the same as the LNS multiplier,
and the FXP multiplier has approximately the same delay
as the LNS adder, it may be inferred that in code
comprising a roughly equal proportion of adds and
multiplies the LNS and FXP implementations would
perform in about the same time.

4. Simulation of accuracy
J.N. Coleman

 The objective was to compare the error produced by the
32-bit FLP system with that from the low-accuracy
implementation of the LNS. A version of the simulator
used in section 2 was prepared in which operations were
represented as procedures, which could be called from a
mainline program executing an algorithm. Two further
copies of each algorithm were written to operate on the
intrinsic (Pentium) 32-bit and 80-bit FLP data types
respectively. In each trial, the 80-bit FLP algorithm was
regarded as yielding the standard result.
 Each algorithm performed the same operation on
consecutive items of input data taken from a large,
randomly-generated file of 80-bit data. Variates in the
file were allowed to range between set limits, and each
algorithm was evaluated with variations in this range.

The file was generated as follows. A random positive
fraction between 0 and 1, was obtained. This represented
the value of the variate. A second random positive
fraction was then taken, and multiplied by an odd integer
constant p representing the number of powers of 10 of
the permitted range. This represented the magnitude of
the variate; it was used to raise the value to a power of 10
centred at 0. E.g. for p = 5, the value would be multiplied
at random by any of 0.01, 0.1, 1, 10 or 100. The variate
v would thus lie in the range
 v = (0 .. 1) ∗ 10[−(p − 1) / 2 .. (p − 1) / 2]

In the results, plots are given for a range of permitted
magnitudes, varying from p = 1, v = (0 .. 1) ∗ 1 at the
left, to p = 65, v = (0 .. 1) ∗ 10±32 at the right. Some of
the algorithms were also run in signed form, in which
case v was also multiplied randomly by +1 or −1.
 Since 32-bit logarithmic and 32-bit FLP values do not
quantise identically, these effects were eliminated by
preceding each simulation with a quantisation phase.
This took the 80-bit random input, quantised it to the
nearest 32-bit logarithmic / single FLP value, and
converted the latter back to 80-bit FLP representation.
The LNS / 32-bit FLP value was used as input to the 32-
bit implementation under test, while the 80-bit value was
input to its 80-bit counterpart. In many cases, therefore,
the two systems were not taking identical input data, but
were taking the nearest available values to the original
data within their own representation. In each case the 80-
bit algorithm returned an accurate result for the
quantisation used, and from this the error yielded by the
32-bit system was calculated. Values of |e|av rel for FLP
and |e′|av rel for LNS were calculated over the entire result
file. The procedure is illustrated for LNS in fig. 4.1.

Fig. 4.1. Data flow in LNS simulations

 4.1. Results

 The algorithms evaluated are shown in fig. 4.2. The
number of random samples in each input file was taken
such as to yield 5000 separate evaluations of each
algorithm (e.g. SUM required 10,000 samples). This was
found to yield reasonably asymptotic behaviour of the
average error in every case except SIGNED MAC, where
20,000 evaluations (60,000 samples) were taken.
 It can be verified from the graph SUM that we have
achieved the objective of designing a logarithmic
addition algorithm with substantially the same error as

FLP. Results for DIFFERENCE show that the
logarithmic subtraction algorithm is also comparable to
FLP, except where the operands are closely matched
where there is a discrepancy. As the LNS add and
subtract curves are almost identical, it is probable that
this derives from a particular strength of FLP in this
region, rather than a weakness in LNS. This effect is
much less significant when randomly signed operands
are used, as in SIGNED SUM, which exercises the
addition and subtraction operations equally.
 The addition and multiplication algorithms are jointly
exercised in MAC and SOP. In all cases the LNS error is
less than that of FLP, particularly where the operands
have a wide dynamic range, when the LNS error reduces
to between a half and a quarter of that yielded by FLP.
Even more striking are the results for SIGNED MAC and
SIGNED SOP, where the error yielded by the LNS is
around a quarter of that of FLP for operands of similar
magnitude. The instability in the behaviour of the FLP
error in signed MAC around a dynamic range of 1016 is
puzzling. It is possible that this effect is related to the
fact that at this range the most significant exponent bit is
just coming into use, and that the quantisation intervals
are therefore reaching their maximum. The LNS
implementation does not exhibit this behaviour.
 The final graph, Gauss-Jordan, is a larger numeric
kernel taken from [13], and dominated by a roughly
equal proportion of subtract and multiply instructions. It
was run using a randomly generated matrix of
coefficients in the range ±(0 .. 1) ∗ 1, for (N ∗ N), (N ∗ 1)
matrices. The average error over 100 trials for each
matrix size is shown. Evidently the LNS offers a clear
improvement in accuracy over FLP; in the examples
studied it yielded, on average, 66% of the FLP error.

4.2. Discussion

 These results suggest that the LNS will offer a broadly
twofold improvement in accuracy over FLP, which is
consistent with what would be expected from the fact that
in a roughly equal mixture of adds and multiplies the
adds will still have a half-bit rounding error whereas the
multiplies will be infinitely accurate. The benefits to be
gained by using LNS will vary, depending on the ratio of
add / subtract to multiply / divide operations, and the
sign and range of the operands.

5. Conclusion

 Hitherto, LNS arithmetic devices had offered either
better speed or better accuracy than FLP but not both.
Alternatively they had been restricted to short
wordlengths. We have now demonstrated that it is
possible to design a 32-bit LNS arithmetic unit which
will perform with substantially better speed and accuracy
than FLP. The exact speed improvement depends on the
ratio of adds to multiplies, but is about twofold at 40% to
60%. The improvement in accuracy is harder to predict,
as it depends also on the range of the operands, but is
generally around twofold in simulated arithmetic kernels.
 A further advantage is that a LNS ALU requires the
design of only one substantial piece of hardware, whereas

the design of a FLP unit involves separate consideration
of the adder, multiplier and divider.
 Algorithmic complexity is exploding in almost all
areas of advanced computation, and a great many
applications are now becoming bounded by the limits
currently imposed by FLP execution. Examples include
real-time applications such as the large class of RLS-
based algorithms and sub-space methods which will be
required in broadcasting and cellular telephony; Kalman
filtering and Riccati-like equations used in advanced
real-time control; and graphics systems. Ways are
urgently being sought to bypass this limitation by
improving the speed at which the basic arithmetic
operations can be performed. The results we have
presented here suggest that a logarithmic arithmetic unit
will offer a valuable means by which to achieve this
objective.

Acknowledgement
 This work is supported by the ESPRIT Long-Term Research
programme, grant nos 23544 and 33544. We are grateful to Dr
Jiri Kadlec of the Czech Academy of Sciences, Prague, for his
many helpful comments on the first draft of this work.

References
[1] N.G. Kingsbury and P.J.W. Rayner, Digital Filtering Using
Logarithmic Arithmetic, Electronics Letters Vol. 7 (1971) 56-
58.
[2] T. Kurokawa, J.A. Payne and S.C. Lee, Error Analysis of
Recursive Digital Filters Implemented with Logarithmic
Number Systems, IEEE Trans. Acoustics, Speech and Signal
Processing Vol. ASSP-28 (1980) 706-715.
[3] E.E. Swartzlander, D.V.S. Chandra, H.T. Nagle and S.A.
Starks, Sign / Logarithm Arithmetic for FFT Implementation,
IEEE Trans. Computers Vol. C-32 (1983) 526-534.
[4] E.E. Swartzlander and A.G. Alexopoulos, The Sign /
Logarithm Number System, IEEE Trans. Computers
(December 1975) 1238 -1242.
[5] F.J. Taylor, R. Gill, J. Joseph and J. Radke, A 20 Bit
Logarithmic Number System Processor, IEEE Trans.
Computers Vol. 37 (1988) 190-200.
[6] L.K. Yu and D.M. Lewis, A 30-b Integrated Logarithmic
Number System Processor, IEEE J. Solid-State Circuits Vol.
26 (1991) 1433-1440.
[7] D.M. Lewis, Interleaved Memory Function Interpolators
with Application to an Accurate LNS Arithmetic Unit, IEEE
Trans. Computers Vol. 43 (1994) 974-982.
[8] D.M. Lewis, 114 MFLOPS Logarithmic Number System
Arithmetic Unit for DSP Applications, IEEE J. Solid-State
Circuits Vol. 30 (1995) 1547-1553.
[9] M.G. Thomas, T.A. Bailey, J.R. Cowles and M.D. Winkel,
Arithmetic Co-Transformations in the Real and Complex
Logarithmic Number Systems, IEEE Trans. Computers Vol. 47
(1998) 777 - 786.
[10] J.N. Coleman, Simplification of table structure in
logarithmic arithmetic, Electronics Letters, Vol. 31 (1995)
1905-1906, and erratum (1996) 2103.
[11] M.J. Schulte and J.E. Stine, Symmetric Bipartite Tables
for Accurate Function Approximation, Proc. 13th Symposium
on Computer Arithmetic, IEEE, 1997.
[12] Texas Instruments, TMS320C44 Digital Signal Processor,
1994.
[13] W.H. Press et al, Numerical Recipies in Pascal,
Cambridge, 1989.

Fig. 4.2. Error in simulated arithmetic kernels

