A 32-Bit Logarithmic Arithmetic Unit and Its Performance Compared to Floating-
Point

J.N. Coleman and E.I. Chester
Department of Electrical & Electronic Engineering, The University, Newcastle upon Tyne, NE1 7RU,
United Kingdom.
j.n.coleman@ncl.ac.uk

Abstract range ofvalues, so an interpolation must be performed.
As an alternative to floating-point, several papers have The function is irrational anthereby subject to a half-bit
proposed the use of a logarithmic number system, infounding error, the interpolation procedure tends to
which a real number is represented as a fixed-pointintroduce additional errognd the entirgorocess is time-
logarithm. Multiplication and division therefore proceed consuming. Designs fotNS addition operations have
in_ minimal timewith no rounding error. However, the therefore so far tended to bwer or less accuratban
system can only offer an overall advantage if addition FLP, or to be restricted to short wordlengths. No designs
and subtraction can be performedith speed and o date appear toffer boththe speedand theaccuracy of
accuracy at least equal to that of floating-point, but FLP at 32-bits precision. _ _
these operations require the interpolation of a non-linear _ In this work we present such a design. Section 2
function which has hithertbeen either time-consuming describes twaoriginal algorithmsfor the evaluation of
or inaccurate. We present a procedure byhich addition andsubtraction with equivalent accuracy to
additions and subtractions can be performed rapidly and FLP. It is shown in section that aVLSI implementation
accurately, andshowthat these operations are thereby Of these algorithms will havepeed approximately equal
competitive with their floating-point equivalents. We 1o that of an equivaleiLP unit. As theLNS device also
then show that the average performance of the maintains the intrinsic advantagesL&fS multiplication
logarithmic system exceeds floating-point, in terms ofand division in terms of bothspeedand accuracy, the
both speed and accuracy. average performance diis unit is considerably better
than that of a32-bit FLP unit. The results ofsome
systematic larger-scale simulations designed to compare
1. Introduction the accuracy of the two systems are given in section 4.

As an alternative to floating-point, several papers have
proposedhe use of a logarithmic numbeystem for the
representation of real numbers. IS a numberx is
represented as the fixed-poimdlue i = logx, with a
special arrangement to indicate z&rand an additional
bit to showits sign. Fori = logx andj = logy, and
assuming without loss of generalitthat j <i, LNS
arithmetic involves the computations

log(x +y) =i +logy(1+27) (1)
logp(x—y) =i +log(1-27) 2
logp(x Oy) =i +j
logp(X/y)=i—]

By suitable choice of position fahe binary point, a
LNS can have similar rangand precision to a FLP
system of equal wordlength. The mostwaluable
advantage of theNS is that multiplication andlivision
can beperformed much more rapidithan in FLP, as
they requireonly one fixed-pointaddition time. These
operations sltralso infinitely more accurategturning an
exact result whereFLP has potentially a half-bit i -
rounding error. LNS addition andsubtraction could be Fig. 1.1. LNS add and subtract functions
performed with speedndaccuracy at least equivalent to 2

FLP, then theaverage performance of tHeNS would Arithmetic algorithms

significantly exceedhat of FLP, but unfortunately these J.N. Coleman
operations require the evaluation of a non-linear function . . . .
F = log(1 + 27), illustrated in fig. 1.1. For practical The use of 16-bit LNSarithmetic was originally

purposesthis canonly beheld in alookup tableand for ~ Proposed as an alternative to 16-bit fixed-point by
practical wordlengths it is nqtossible to storéhe entire  Kingsbury and Rayner in 1971 [1]. Simulated LNS



arithmetic demonstratetthat the greatedynamicrange of a FLP addition. We therefordaced two problems.
of this system yielded a vergignificant improvement in  First, we had thedifficulty, referred to above, of
the response of a digital filter. Attention turnedme interpolating the subtraction function in the region
yearslater to the better roundoff-error characteristics of -1 <r < 0. In 1995 we published an algorithm [10] for
the LNS when compared to FLP, and clear improvementsransforming such a subtraction into ofee which r <
in noise-to-signal ratievere demonstrated in a filt§2], -1, with little extra timedelay. The ®cond problem is
and FFT [3]. _ _ that, at 32-bit wordlengths, a first-order Taylor
Implementation work began with a 19p&per which  interpolationyields far too high an error tomeet the
suggested a 12-bit devidd], whilst a 1988 proposal desired accuracy without recourse to unreasoniaije
extendedthis to 20-bits [5]. Both designsvere direct  |ookup table sizes. A natural way to improve the accuracy
implementations of eqns and 2, with alookup table  would be to evaluatethe second orderterm, but
covering all possible values(omitting those which  unfortunatelythis would considerably extenthe delay
quantise to zero) df(r =j —i). It is of courseapparent  path. An alternative techniquier function evaluation
that as thavordlength increases, the table sizes increasewithout interpolation uses bipartite tables [1\djith this
exponentially, which limits the practical utility of this method, it is possible to replace a table aceeitis n
approach to about 20 bits. A 1991 design [6] extendedaddress bits wititwo simultaneous accessesch with
the wordlength to 28 bits by implementing tlwdkup  approximately 2/3n address bits. Fon = 28 bits as
table throughout only atintervals ofA, wherer = —nA required here,however, eventhis would vyield an
- &. Intervening valuesvere obtained bynterpolation unacceptably large table size.

using the Taylor series Using a crude first-order approximation procedure, we
Hr) = F(-nA) + [D(-nA) / 11 8 now describe a new algorithm by which the errgrietds
+[D'(-nA) / 2] & + ... can besimultaneously evaluatethen @cumulated into

This designused onlythe first-order term, requiring the the result,thereby correctinghe error with adelay of
additional storage of a table of derivative§r), and  only oneextra carry-save stage. We wsthowthat a unit
introducing a multiplication into the criticapeedpath. designed to implement this algorithm will perfoB82-bit
The scheme also exposedfarther problemintrinsic to addition and subtraction operations with speed and
LNS arithmetic: thedifficulty of interpolating F(r) for accuracy roughly equal to that of a FLP unit.
subtractions in the regiofl <r < 0. Here, as is evident .

from fig. 1.1,D(r) -~ —». To maintainaccuracy in the 2.1.  Data format, range and precision

face ofthe rapidly changing derivative, it reecessary to ) ) )
implement a large number afuccessively smaller . |[EEE standardFLP representation uses sagn, 8-bit
intervals ag — 0. The largememorywith its irregular ~ biased exponent, and 23-bit significand. The latter has an
organisation iscumbersome to desigand complicates ~ implied binary point immediately to its lefind a hidden
the VLSI floor-planning. Although the accuracy achieved ‘1’ to the left of the point. Extreme exponemglues (0
by [6] was not reported, it would have been limited by the and 255) areused to represent special casimis this
rounding error in the function, plus any additional error format holds_values inthe range+(1.0 O 27 to

introduced by the interpolation procedure. (1.111...02"2% = +1.2E-38 to 3.4E38.
A separate proposal in 1994 [7] involvée use of a
higher-order polynomial interpolator, with aovel |S18-b Exponentt 23-b Mantissa |
scheme for interleavinthe storedvalues so as to reduce
the overallmemoryrequirement. A design for a 32-bit In the equivalenLNS representation used throughout

unit with a 287Kbit lookup table was presenteaind its this work, the integerand fractional parts form a

addition accuracy shown by simulation toveghin FLP coherenttwo’s complement fixed-point value in the

limits. A variant had a smalldable withlarger errors.  range= -128 to+128. The real numbers represented are

The criticalspeedpath included &OM, twomultipliers, in the ranger2 % to 2?8 = +2.9E-39 to 3.4E38. One

three barrel-shiftersand five carry-propagate adders / value, all ones, is used to represent the real number zero.

subtractors. Fabrication of thlwer-accuracyvariant

was done in 1998], with a latency of 158 ns in add / [§ 8-b Inteer | 23-b Fraction |

subtract operations, and 13 ns for multiply / divide.
Some novearithmetic transforms whicimay have the 2 2. Measurement of accuracy

potential to simplifythe addition andubtraction algebra

are given in [9]. Thiswork also includes a review of pefinitions In a FLP implementation withf-bit

recent practical applications bNS arithmetic from the  significand, assuming thatoth significands represent

U.S.A.and JapanAreas cited include image processing exact values, a resuld as returned by a practical

and DSP applicationsgraphics, and aircraftontrols.  jmplementation can be regarded as an approximation to

Fujitsu are makingsome use ofhe technique in their the corresponding exact resiit Each result is thus in

MICroprocessors. error bye = A — A. The errors throughout the range of

adder / subtractor witBpeedandaccuracy comparable to frl]ge ||_1c,cB S are generaly qu relat Welg

that of aFLP system. We took asur starting-point a X«
first-order Taylor-series approximatiotie criticaldelay e _max(A- A
path of whichcomprises a ROM, aultiplier, and two max rel o= f ’
carry-propagate adders, which is at the limit of what cangimilarly ey rel, |Elmax re €av reb [Elay rer

be implemented without significantly exceeding teéay In the equivalentNS (i.e. withf-bit fractional part), it




may be correspondingly assumétht both logarithms  implementation.
forming the inputs to an operation are exact. Each result Together with each value Bfr) is stored its derivative
| returned by the implementation is an approximation to D(r). The function of the interveningalue ofr is then

the corresponding exact logarithimand isthereby in
error byegg =1 -1. Thus

_max(-1) .
€max rel log = ZT J

Slml|€if|y €min rel log |e|max rel log ed\_/ rel log |e|av rel lo .

Since, howeverthe user is concerneo‘cl' not with the
logarithm per se but rather with thevalue that it
represents, it is also possible to quibtis error in a way
which allows direct comparison wittine error returned
by FLP. The error in thevalue represented ithen
expressed in terms dhe weight of theLSB of an
equivalent FLP operation, i.e.

2max(f—|) -1

€ max rel— 2—f )

Sim“a”y e'min rels |e'|max reb e'av reb |e'|av rek

Forf = 23, FLP arithmetic hamax ret = 0.5, €min rel =
0.5, &y re1 = 0, and|elay re = 0.1733, whilst logarithmic
addition and subtraction hagst-case values {@max rel iog
= 051 |e|avrel log = 0251 e'max rel = 034641 e'min rel =
-0.3464, €4 e = 0, and |€']ay rel = 0.1733. In LNS
multiplication and division all values are 0.
Theorem 1 If the operations defined in egns 1 and
2 yielderrors within a given gax rel 1og OVer all negative
values of j for i= 0, then they yield the samgagrei og
over all values of j for all values of i. An implementation
can thus be regarded as fully verified if it can be verified
over this subset.
Proof Letr=j-i.Thenl| =i+F()and

[ =i +F(r). Thus
maiilf(r)—F(r)|
2_f
Leti andj O {minlog .. O .. maxlop. By definitionj <1,

O r O{minlog .. @. Thenfor {(i = 0, = minlog) ..
(i=0,j=0), alsor O{minlog .. ¢.

2.3.

€max rel log =

Conventional LNS addition and
subtraction

The functionF(r) was shown in figl.1. To minimise
its storageA is progressively increased #lse function
becomes more linear with decreasing, and an
intervening value of lying in thenth interval is thus
correctly expressed as

n-1

=3 {n=0; r=y(-8) ~5{n>p

0
In a typical systemthe range of will be partitioned at
each power of 2, arfé(r) implemented with a small table
of equal size in each segment; ewill be doubled at
each increasingower of 2.For clarity of explanation,
however thefollowing text will omit further reference to
the variation iM\, and abbreviate this expression to
r=-nA-29%

r

In the programmed simulations the correct treatment of128 to 4096. For 128-interval segmertsis 2

A will nevertheless be maintained, 8wt theirresults
may be regarded as realistic of a practical

obtained by interpolation

F(-nA - 8) = F(-nA) — dD(—n4)
A conventional implementation is shown outside the
dotted lines in fig2.1. Following the initial subtraction
to obtainr, the latter is partitionedsffectively dividing
by A. The high-order bits represent and areused to
accessthe F and Dtables, whilst thelow-order bits
represend. F(—n4) is then added to the produid(—nA)
to obtain the approximation te(r), which is added to
to yield the result.

Fig. 2.1. LNS implementation (new components
within dotted lines)

The interpolatioryields anerror, as shown in the inset
to fig. 1.1

g(n, &) = F(-nA) — dD(-nA) - F(-nA - 9)
For each, € increases witld to a maximum

En) = F(-nA) — AD(-nA) — F(-nA - A)
An example of the errors arising during additions using
this interpolation method ishown in the uppecurve of
fig. 2.2. These simulationsere based on a 40-bit LNS,
with 8-bit integerpart and32-bit fraction. The non-zero
range ofr was partitioned as describedbove,into 7
segments covering the sub-ranges-1..-1.-2, ...
-32.-64, each segment being divided into fiaed
number of intervals. Additionsvere simulated for all
values ofj for i = 0, and theresults compared with
accurate values obtained from 80-bit Fafthmetic. The
graphshowsthe maximum valueanywhere throughout
the range of, of [g] in terms of theLSB, i.e. |&maxrel iog:
From theorem 1, these results are applicable to all
combinations of operands. The simulatwas repeated,
varying the number of intervals in each sesqrmwltn

within

the first segment at tHeHS of F(r), anddoubles at each
power of 2. It is evidenthat the maximum erraeduces



by a factor of 4 with each doubling thfe table sizethis obtained for anyn, &) as

becausesach timeA is halved, theaccuracy of bothi(r) g(n, 8) = E(n)P(d)

andD(r) improves by one bit. This is added to the result of the interpolatitmereby
correcting the error.

Thisscheméhas the major practical advantapat the
lookups ofE(n) andP(d) can beperformed at thesame
time as those df(n) andD(n), and theirproduct can be
evaluated simultaneously with the multiplication in the
interpolation. Since the interpolation already requires a
final addition, this can beombined withthe addition of
€ by using a carry-save stag&he entire correction
procedurecan therefore bgerformed withonly a few
extra gatedelays.The extra hardware is shown within
the dotted lines in fig. 2.1.

The erroreq in the finalcorrected result (assumiriy
calculated ah = 0) is

8og = E(N)P(0, d) — E(N)P(n, ), which can be written

8og = 0(N, 0)g(n, 8) where

a(n,d) = m -1
P(n, d)
The value a(n, d) represents théactor of the final gu
arising because ofthe approximation ofP(n, d) as
P(0, 9). It is difficult to derive an analytical expression
for the bounds ofag, andsuch an exercise would be of
little benefit because apractical implementation will
include a furthersource oferror to bedescribed in the
next paragraph.However this can be determined
numerically,and we shalpresent such a computational
verification below. Wefirst illustrate with an example
the behaviour oft ande. Their maximum magnitudes (
is shown relative to theSB) within individual intervals
of nA = 1 areplotted againsh in fig. 2.3.Plotsaregiven
for two values of3, at a smalloffsety= 2" LSB from
each extreme &, i.e.d =y, andd = A —y. Thevalue of
A has been increased asuccessive powers of 2
. throughoutr (resulting in discontinuities) with 512-word
Fig.2.3. aand evs nand tables in each segmentThe remaining small
discontinuities appeabecausealthough the terms are
fairly evenly distributed across zerothe maximum
magnitude is plotted. It is evidethat with respect to
both controlling variablesy and 9, the two sources of
errora ande are anticorrelated. AsnA | o 1 bute |.
Asdt a | ande 1. Thusey = ae is held at aelatively
low value throughout.

A more substantial source @fror arises from théact
thatfor practical values oA\ it is notfeasible to stord
for all values ofd. Instead, the P table is implemented at
subintervals withim\, with only the high-order bits od
being used to fornthe address to P. The simulations
described in sectio2.3, to which theorem 1 applies,
were now repeatedsing the correction algorithm with a
P table of varying size. The resultse shown in the
lower set of curves in fig2.2, which indicate that, for
small numbers of intervals per segment, the maximum
. i in sizeWith
In this paper we present a meansaarect the erroe. 51510 515 Eichiosa b tablo of 4 Kwords wil
It is based on thebservatiorthat, for a givend, the ratio reducele] ' | 1og Dy OVer 3 orders ofagnitude,from
P = g(n, 8) / E(n) is roughly constant forll n. It is  5455'1573'9 j.e. it willeave twobits in error.However,
therefore possible to store for one table P of the error e 5ig0rithm is unable to make an exact correction, and
at successivepoints throughoutA, expressed as a gyen with alarge number of segments per interval, a
proportion of the maximum erroE attained in that  gmall error of about 2 still remains.
interval. It is alsmecessary to store, together whtrand Thenew Pand Etables increasthe overall storage
D for eaCh|nterVa|, its Value OE The errore I1s then requirement_ For the range m'UGS Shown in f|922,

Fig. 2.2. Error in 40-b add operations

Fig. 2.4. Storage requirement

2.4.  Error correction algorithm



theseeffectsare illustrated in fig. 2.4. For thmurpose of

that r2 < -1. It therefore falls in thdinear region of

this calculation, the F, D andtBbles have been assumed F(r2), and can beobtained by interpolation from the

to comprise 32-bit wordsind the Bables 16-bit words,
except inthe 128-interval configuration where trerger

errorswould require a 32-bit E table. For the example

illustrated above (512 intervals per segment, 4K), the

small remaining F and D tables covering this region.
Thus
rl=(((-1)DIVAY -1)0ALl=j+kl-i
ki=i-j+rl=—(((—-i) MOD A1) + Al)

total storage requirement is roughly doubled, from 7168 The subtraction becomes

words (229,376 bits) fothe F and Dtables only, to
14,848 words (417,792 bits) ftwe F, D, E and Rables.

In practice, these values would be reduced somewhat

becausehe tables would be implementesiith only the
maximumnecessary number of biper segment, which
would gradually reducehrough the range of. This
would have to be calculated detail for each individual
implementation, after the table sizesdbeen fixed. The
exact sizes of ROM fawo possiblemplementations are
given later in this section.

A number of simplifications areossible, which
substantially reducthe complexityanddelaytime of an
implementation. In the add / subtraahit, the two
multipliers would be realised agarallel arrays. Irboth
cases, both operands have fractiopalts, and their
results therefore have twicthe required number of
fractional bits. Rathethanrounding the results, tHew-
order bitsmay betruncated. This has megligible effect
on accuracy, but does allow madtrean50% reduction in
the number of multiplier cellsSecond,the final carry-
propagate stage within both multipliecan be omitted,
and separate sunand carry vectorsare passed to an
enlarged tree of carry-save addefBhis saves the
majority of the carry-propagate addition time. The

2 = 2 = 2R _ (D which generates an index
r2=j-i+Fkd-Fr1

=] =i +log[(1- 27" /(1-27)

Thevalue ofr2 can beconsidered in three regions,
depending on the original operandandj. Forj —i <
-1, r2 is taken directly ag — i, andwill lie in the linear
region of F from which F(r) can be obtained by
interpolation. For-1 < j — i < -Al, r2 is derived as
shown aboveand has a maximum aipproximately
—(1 + Al). Thus it also lies in thénear region of~, and
F(r) is similarly obtained by interpolation. For thisird
region, -A1<j-i<0, the derived value ofr2 rises
above-1. Howeverthis range icovered bythe F2 table,
andF(r) is therefore already available && Appropriate
multiplexing pathdor the three regions can be arranged
either explicitly or by zeroing one dhe inputs to an
arithmetic element.

Themodified values of andi, known ag2 andi2, are
then subtracted, yielding a new value @ which is
guaranteed to fall in the linear region k) below-1.
Together withi2, this ispassed tahe adder / subtractor
for completion of the outer subtraction.

It is shown in [10] that the combined size of the F1 and

simulations in section 2.6 will take these optimisations F2 tables is about one-seventhtbét of the F and D

into account.

tablesthat would berequired toyield aninterpolation of

Finally, in order to avoid having signed multipliers, the Similar accuracy. Inthe current work, Fland F2 are

algebra can be rearranged such that the D, E aabI€&s
carry only positive valued he values ofr, andtherefore
0, are similarly always positive.

2.5.  Subtractor range shifter

From [10], with acknowledgement to the IEE

The range shifter (fig. 2.5implifies the subtraction
operation by obviating the interpolation in the regidn
<r < 0, eliminating table Cand reducingsubstantially
the sizeand complexity of table Fusing instead two
much smaller andegularly organised tables. At and
belowr = -1, the F and Dxablesare implemented as
before, but inthis region are small. It relies on the
replacement of subtraction 2 2 with two successive
subtractions ,

2 -2 =(2 - 2" - 2*2 where

21+ 2=1,i.ek2=logy(1 - 29

Factor ¥ is individually chosen for each combination
of operands suchthat the indexrl for the inner
subtraction falls on the nearestoduloAl boundary
beneathj — i, whereAl is now fixed at darge value.

F(rl) can therefore be obtained directly from lookup table

F1, which containg=(r) for -1 <r <-Al at moduloAl
intervals. Factokl is constrained to lie in the rangAl
<kl<0, and cantherefore be used to indeanother
lookup table F2¢ontainingF(r) for all possible values of
r between-Al <r <0, to obtairk2. Since #*= 1, k2is a
large negative valu&.his has theffect ofincreasing the
magnitude of the indefor the outer subtractiom?, such

2048 and 4096 words respectively.

Fig. 2.5. Subtractor range shifter

A number of simplifications arepossible in an
implementation of thischeme. In the calculation &i
andrl, the subtractiop — i is notnecessary becauigs

term is already available as Operation DIVreturns a



truncated result, ansinceAl is a power of Zhe DIV, difficult when -1 <r <0, we have usethe algorithm
MOD and O operations involve onlypit-partitioning and  described in [10] to avoid interpolationstims region. It
concatenation of zeroes. Thus tlenly arithmetic must be notedhat when this algorithm isnvoked, the
operations required in these calculations are the additiorsubtraction is not done in accordance with eqn 2, since
or subtraction of the single-bit constamd and 1. the operands andj are transformed intoew values. As
However, itwill be notedthat there is adeterministic ~ a consequence, theoremdbes not apply within this
relationshipbetweenthe bit-partitionedvalues ofr and restricted range. To have simulated a subtradtorall
the functionsk1 andrl which form the indices to the F1 combinations ofi andj yielding -1<r <0 would have
and F2tables. The additioandsubtraction catherefore beenimpractical, so here the operatiatas simulated for
be avoided completely byearranging the mapping of all values ofj over alimited subset of, includingvalues
addresses to function values in these tables. Calculatiomround eaclpower of 2and randonvalues in-between.
of the modulal and coefficienkl can thus be done with Results are also given in table 2.1.
no time overhead al. Finally, the subtraction tobtain The storage requiremeifdr this variant hasheen
r2 can be rearranged in order usethe precalculated calculated by taking the maximum numbeibit$ for the
value ofr, and touse cumulative additions instead of an largest value held in each F, &d Etable segment
addition and ssubtraction. The entire unit can thus be individually. The segment sizes therefarduce with
implemented with a worst-case delay of one ROM accessgecreasing. This optimisedsalue isthussomewhat less
a carry-propagate adder, and a carry-save stage. than theestimate presented in fig. 2.4. Total storage is
34,304 words or 856,064 bits, a sitat caneasily be
accommodated in asmall area with contemporary
fabrication.

In the low-accuracy variant, we have made a number of

2.6.  Adder / subtractor design and evaluation

Ourobjective was to produce3®-bit design with 8-bit e 10) ; \ !
integer part23-bit fractionand sign, having theame or ~ Simplifications to reducethe ROM size, whilst still
lesserror thanFLP. To accomplisthis, we have made a Keeping a maximum error bettdran FLP. The number

the maximunpossible accuracgndone forthe smallest ~ the size of all the tables commensurately. The Bn® E
ROM size. These are referred to as thigh and low  fables are reduced to 256 words per segment, and P tables

accuracy designs. to 1024 words. Atthis reduced level of precision, the

For the high-accuracy variant we hawsedthe 40-bit ~ final segment<{32 ..-64) is not required, so the number
design describedbove taking F, D and E a512words ~ Of segments is also reduced by one. @beuracy othis
and P at 4Kwords. The incoming 32-bit Operands are variant Is pre_sented |_n thewer row of table2._1. Its
expanded to 40 bits by concatenating zeraed, the 40-  storage requirement is 563&ords (108,032 bits) for
bit result rounded back to 32 bits with a rounder addition andl1,088 words (289,280 bits) for subtraction,
incorporated into the final adder. Essentially, the 9 extra@ total of 34,304 words (397,312 bitd)his total is a
internal bits are used agyuard bits. After rounding, the ~substantial reduction fronthat of the high-accuracy
|Elmaxrel log Of = 4 Observed ithe 40-bit implementation is ~ variant, and is comparable with that used in [7].
vastly reduced. Followingimulation in accordance with It is thelow-accuracyvariant which hadeen chosen
theorem 1, the errofsundare given in the uppeow of for further considerationThe hardware design and
table 2.1. simulations presented in subsequent sections of this

The same algorithiwas also used to correttte error  Paper are all based on this low-accuracy variant.
in the subtraction operation. Since interpolation is

Variant Q:)eration |e|max rel lay |e av rel lay e'max rel e'min rel e'av rel |e' |Lre|

High acc. Add 0.5046 0.2509 0.3489 |-0.3498 +0.0066 0.1739
Subtract 0.5074 0.2509 0.3517 |-0.3493 -0.0067 0.1739

Low acc. Add 0.6556 0.2563 0.4544 —0.4233 +0.0447 0.1776
Subtract 0.7193 0.2563 0.4414  |-0.4986 —0.0456 0.1777

Table 2.1. Errors in 32-bit LNS addition and subtraction operations

stage.
~ Typically this scheme will reducethe maximum
Apparently we have identified a useful property of the interpolation error byseveral thousand times. It thus
logarithmic "addition andsubtraction functions. After Yields accuracy equivalent tthat which would be
performing a Taylor interpolationthe shapes of the obtained by increasing the size of tharkd Dtables by
curves of the errors within each interval remain some 64 - 128 timesiowever, it does swith only about
sufficiently similar throughout the range to permg@d @ twofold increase ovetthe F and Dtable size. The
approximation to the curve for any interval to be made bycorrection algorithmdoes not yield an exactresult;
scaling from a template obtained from another interval.typically it is inaccurate by &w times theLSB, butthis
This approximation technique has the major practicalcan beovercome atminimal cost by performing the
advantagehat thecalculation of the interpolation error arithmetic to more placabanrequired and rounding the
can beperformed at the same time as the interpolationresult. _ _ _
itself. The error carthen becorrected by accumulating We have illustratedwo examples in detail. In the
this term, incurring alelay of only oneextracarry-save  high-accuracy varianigmaxrel 1og for additions in a 40-bit

2.7. Discussion



LNS was reduced bthree orders of magnitude by using
a 4 Kword P tableThis 40-bitsystem washenused as
the basis for a 32-bit implementation, whigfielded
|€'|max ret Of 0.3517, an increase in accuramser FLP of
more than half a bit. Values of|€., e Were also
comparable to FLP, although a small bias did persist
which is not present in FLP, seenthe non-zerovalues
of €. e+ However this bias is equabnd opposite in add
and subtract operationgnd so is eliminated isigned
arithmetic or incodeusing add andubtract in roughly
equal proportionsROM size forthis variantwas 856
Kbits.

In the low accuracyvariant, theROM sizeswere
reduced as far gsossible, whilst keepin{g [nax rel Within
the FLP limit of 0.5. Onceagain, therevas a more-or-
less equabndopposite bias in addmdsubtracts, so the
system would be unbiased mormal use. The total ROM
was now 397 Kbits.

A LNS multiply / divide systemeturns|€'|max rel Of O,
whereas the correspondingplue for FLP is0.5. A
realistic computation will involve both addition and
multiplication operationsand theaccuracy of such a
computation will therefore lidbetween these extremes,
probably approximating to the average.

3. Physical design and speed

This is an implementation of thew-accuracyvariant
defined in section 2. It offeraddition, subtraction,
multiplication anddivision operations on LNS format

operands. There are two data paths, for add / subtract and

multiply / divide, as shown in fig. 3.1.

Thetwo operands ar@assed directly to three units:
magnitude comparisomand difference; zero,sign and
control; and multiply / divide.

The magnitude comparator retuing andr, andalso

Fig. 3.1. LNS ALU
3.1.  VLSI Implementation

A devicehasbeen designed to implemettte circuits
described inthis section, taking operands of the format

detects equality. It passes its results regarding the relativgiven in sectior2.1. ltwas designed in a Quawo-level-
magnitude of thewo Operands to the zero, Sign and metal Standard-ce”system, within the CADENCE

control unit.

framework. In order to make the design as realistic as

Following the comparator, add / subtract operations are?0ssible, the designer had teeway to uséhe system in

completed in two specialised blocks dfircuitry.
Additions arepassed directly tohe add / subtraatnit,
which interpolates the result using thaylor expansion
with the correction algorithndescribed in section 2. In
the case of subtractions, howevéhe data willfollow
one oftwo paths. If -1<r <0, the operands will be
processed byhe range shifter, which wilnodify their
values suchthat this is no longer thecase. After
modification, or if r < -1 initially in which case the
range shifter idypassedihe operands arrwarded to
the adder / subtractor where the operation is completed.
The zero, sign and control logic can detect zero operan
values, and is supplied with information about the

relative magnitude of the operands by the magnitude

comparator. In cases involving one or more zero
operands, or in cases whehe two operands are equal,
the resultmay either follow one of the operands, or be
zero itself. Thetwo operandsand a ‘hotzero’ are
therefore available to the final multiplexor, the setting of
which is determined by the control logic. Meanwhile the
signlogic determineshe sign of the result iaccordance
with the normal procedures for sign-and-magnitude
arithmetic, and the sighit is appended as the result
leaves the ALU.

i

the most appropriat&vay, which meantthat in some
cases halid not follow the circuitsexactly as they are
presented above. Iparticular, as in all standardell
systems, better results could sometimes be obtained by
synthesisingolocks of logicthan bydesigning byhand.
Typical delaysthrough theworst-case speeplathswere
measured with the timing simulatand theresults are
given in table 3.1Two valuesareshown for subtraction,
depending on whether the range shifter is used.

For comparison, a 32-bit FLihit was designed in the
sameway, and like the LNS unit was optimised for
peed. As far apossible, blocks were re-used from the
NS design. This unit took operands of the format shown
in section 2.1, and its results were rounded to the nearest.
Since, howeverthe objective was simply taletermine
the delay, no attempivas made to refinénis design for
strict IEEE compliance.

A 32-bit fixed-pointunit was also designed. Here, the
add / subtractpath was almostidentical to the LNS
multiply / divide unit, and thesigned multiplier was
produced automatically withthe vendor-supplied
macrocell generator. Since fixed-point multiplications
with fractional partsalways require rescaling, a final
variable-length shiftand round stage was included



following the multiplier. If rounding by truncatiowere The file was generated a®llows. A random positive
assumedthen the multiplicationdelay here would be fractionbetween (and 1,was obtainedThis represented
about 4 ns less. Wdid not design &LP or FXP  the value of the variate. A scond random positive
divider, but a common rule-of-thumb that division fraction was then takemndmultiplied by an odd integer

takes about 3 times as long as multiplication constantp representing the number pbwers of 10 of

the permitted range. This represented the magnitude of

A S M D the variate; it was used to raise the value to a power of 10

FLP 28 28 22 centred at 0. E.g. fgr =5, thevalue would be multiplied
FXP 4 4 32 at random by any of 0.01, 0.1, 1, 10 or 100. The variate
LNS 28 28/42 4 4 v would thus lie in the range
Table 3.1. Delay times of VLSI devices (ns) v=(0..1) 01g P~/ G702

In the results, plotare givenfor a range of permitted
3.2. Discussion magnitudes, varying frop=1,v=(0.. 1) 01 at the

left, top = 65,v = (0 .. 1) 1102 at the right. Some of
The timesderived for FLP operationsre broadly  the algorithmswere alsorun in signed form, in which
comparable with commercialevices also designed in casevwas also multiplied randomly byl or-1.
0.7u4 two-level-metal technology, e.gthe 30MHz Since 32-bit logarithmiand 32-bit FLP values do not
TMS320C44 [12]. Including its registeand pipeline  quantise identically, theseffects wereeliminated by
overhead, this device has add and multiply times of 33nspreceding each simulation with a quantisation phase.
In codecomprising a roughly equal proportion of adds This took the 80-bit random input, quantised it to the
and multiplies, it would be ‘expectedhat the LNS  nearest 32-bit logarithmic / singl€éLP value, and
implementatiorwould perform in abou4% of the time  convertedthe latterback to 80-bit FLPrepresentation.
taken by FLP. However, a number of assumptions have torhe LNS / 32-bit FLP value was used iaput to the 32-
be made in the interpretation of these resultsliaw for ~ bit implementation under test, while the 80\mlue was
practical operating conditions. Examination of large- input to its 80-bit counterpart. In mawgses, therefore,
scale algorithm$iassuggestedthat thesubtractor range  thetwo systems weraot taking identical input data, but
shifter is used, on average, in somewhat teashalf of ~ weretaking the nearest availabl@lues tothe original
subtractions. Assuminthat aroughly equal number of data within their own representation. In each case the 80-
additionsand subtractions be executettys would raise ~ bit algorithm returned an accurate resutr the
the average add / subtract time to aboub81in the FLP ~ quantisation usedindfrom this the errolyielded by the
unit the add andnultiply times are salosethat in any  32-bit system wagalculated. Values Ol i for FLP
practical device they would be equalisedtte larger one  and|€'}, e for LNS were calculated ovéne entire result
in order to allow a constaeycletime. Finally, allthese  file. The procedure is illustrated for LNS in fig. 4.1.
times would be subject to aegister and pipeline
overheadand would then beincreased if necessary to a
multiple of some clock period. These considerations
make an exact comparison difficult, but in approximate
terms theLNS unit would reachtwice the speed of FLP
at an add / multiply ratio of about 40% / 60%.
Since the FXP adder is the same ad 8 multiplier,
and the FXP multiplier has approximately the saielay
as theLNS adder, it may be inferred that incode
comprising a roughly equal proportion of adds and
multiplies the LNS and FXP implementationswould
perform in about the same time.

4. Simulation of accuracy
J.N. Coleman

The objective was to compatee errorproduced by the . . . .

32-bit FLP systemwith that from the low-accuracy Fig. 4.1. Data flow in LNS simulations

implementation of the.NS. A version ofthe simulator

used in section 2 wawzepared in which operationgere ~ 4.1.  Resullts

represented as procedures, which could be called from a . o

mainline program executing an algorithffwo further The algorithms evaluateate shown in fig. 4.2. The

copies of eackalgorithm were written to operate on the humber of random samples in each infilet was taken

intrinsic (Pentium) 32-bitand 80-bit FLP data types  such as to yield 5000 separate evaluations of each

respectively. In eactrial, the 80-bit FLPalgorithm was  algorithm (e.g.SUM required 10,000 samples). This was

regarded as yielding the standard result. found to yield reasonably asymptotic behaviour of the
Each algorithm performed the same operation onadverage error ievery case exce@IGNED MAC, where

consecutive items ofnput data takenfrom a large, 20,000 evaluations (60,000 samples) were taken.

randomly-generated file of 80-bitata. Variates in the It can beverified fromthe graphSUM that wehave

file were allowed torangebetween selimits, andeach ~ achieved the objective of designing a logarithmic

algorithm was evaluatedvith variations in this range. addition algorithm with substantially the same error as



FLP. Results for DIFFERENCE showthat the
logarithmic subtraction algorithm is also comparable to
FLP, except wherdhe operands arelosely matched
where there is a discrepancy. As thBIS add and
subtract curvesire almost identical, it iprobablethat
this derives from aparticular strength ofFLP in this
region, ratherthan aweakness in LNSThis effect is

the design of &LP unit involves separate consideration
of the adder, multiplier and divider.

Algorithmic complexity is exploding in almost all
areas of advanced computatioand a greatmany
applications arenow becoming bounded bghe limits
currently imposed by FLP execution. Examples include
real-time applications such as the large clasfRIob-

much less significant when randomly signed operandsbasedalgorithms andsub-space methods which will be

are used, as IrBIGNED SUM, which exercises the
addition and subtraction operations equally.

The addition and multiplication algorithms gotly
exercised in MAGINdSOP. Inall caseshe LNS error is
lessthan that ofFLP, particularly wherghe operands
have a wide dynamiange, when th&NS errorreduces
to between @alf and a quarter of thaielded by FLP.
Even more striking are the results for SIGNED MAC and
SIGNED SOP, where¢he erroryielded bythe LNS is
around a quarter of that &LP for operands a$imilar
magnitude. The instability in the behaviour of the FLP
error in signed MAC around a dynanmiange of 16 is
puzzling. It ispossiblethat thiseffect isrelated to the
factthat at this range thmost significant exponent bit is
just coming into useand that the quantisatidntervals
are therefore reachingheir maximum. The LNS
implementation does not exhibit this behaviour.

required in broadcastingnd cellulartelephony;Kalman
filtering and Riccati-like equations used in advanced
real-time control; and graphicssystems. Ways are
urgently being sought tdoypass this limitation by
improving the speed at whichthe basic arithmetic
operations can be performed. The results have
presented here suggélat a logarithmic arithmetic unit
will offer a valuablemeans by which to achievthis
objective.

Acknowledgement

This work is supported e ESPRIT Long-Term Research
programme, grant nos 23544 and 33544.aMegrateful to Dr
Jiri Kadlec of theCzech Academy oBciences, Prague, for his
many helpful comments on the first draft of this work.

References
1] N.G. Kingsbury and?.J.W. Rayner, Digital Filtering Using

: . |
The final graph, Gauss-Jordan, is a larger numeric_ogarithmic Arithmetic,Electronics Letters/ol. 7 (1971) 56-

kernel taken from [13]and dominated by a roughly
equal proportion of subtraaeind multiply instructions. It
was run using a randomly generated matrix of
coefficients in the rangg(0 .. 1)001, for (NON), (NO1)
matrices. The average errowver 100 trials for each
matrix size is shownEvidently the LNS offers aclear
improvement in accuracy over FLP; ihe examples
studied it yielded, on average, 66% of the FLP error.
4.2. Discussion

These results suggeabat theLNS will offer a broadly
twofold improvement in accuracy over FLRhich is
consistent with what would be expected from the tiaat
in a roughly equal mixture of addmd multiplies the
adds will still have a half-bit rounding error whereas the
multiplies will be infinitely accurate. Thenefits to be
gained by usingNS will vary, depending on the ratio of
add / subtract to multiply / divide operatiorend the
sign and range of the operands.
5. Conclusion
Hitherto, LNSarithmetic deviceshad offered either
better speed or better accuratyan FLP butnot both.
Alternatively they had been restricted to short
wordlengths. We have now demonstratdht it is
possible to design a 32-bit LN&ithmetic unitwhich
will perform with substantially better speaddaccuracy
thanFLP. The exactspeed improvement depends on the
ratio of adds to multiplies, but &bout twofold a#0% to
60%. The improvement iaccuracy isharder to predict,
as it depends also on thange of the operandbut is
generally around twofold in simulated arithmetic kernels.

A further advantage ihat aLNS ALU requires the

58.

[2] T. Kurokawa, J.A. Paynand S.C. Lee, ErrofAnalysis of
Recursive Digital Filters Implemented with Logarithmic
Number SystemsEEE Trans. AcousticsSpeech and Signal
Processingvol. ASSP-28 (1980) 706-715.

[3] E.E. Swartzlander, D.V.S. Chandra, H.T. Nagle &nA.
Starks, Sign Logarithm Arithmetic for FFT Implementation,
IEEE Trans. Computergol. C-32 (1983) 526-534.

[4] E.E. Swartzlander and A.GAlexopoulos, The Sign /
Logarithm Number System, |[EEE Trans. Computers
(December 1975) 1238 -1242.

[5] F.J.Taylor, R.Gill, J. Joseph and J. Radke, A 20 Bit
Logarithmic Number System ProcessolEEE Trans.
Computersvol. 37 (1988) 190-200.

[6] L.K. Yu and D.M. Lewis, A 30-b Integrateldogarithmic
Number System ProcessdEEE J. Solid-State Circuit¥ol.
26 (1991) 1433-1440.

[7] D.M. Lewis, InterleavedViemory Function Interpolators
with Application to anAccurate LNSArithmetic Unit, IEEE
Trans. Computer¥ol. 43 (1994) 974-982.

[8] D.M. Lewis, 114MFLOPS Logarithmic Number System
Arithmetic Unit for DSP Applications|EEE J. Solid-State
Circuits Vol. 30 (1995) 1547-1553.

[9] M.G. Thomas, T.A. Bailey].R.Cowles and M.D. Winkel,
Arithmetic Co-Transformations inthe Real andComplex
Logarithmic Number SystemH;EE Trans. Computergol. 47
(1998) 777 - 786.

[10] J.N. Coleman, Simplification of table structure in
logarithmic arithmetic,Electronics Letters Vol. 31 (1995)
1905-1906, and erratum (1996) 2103.

[11] M.J. Schulte and J.E. Stin&ymmetricBipartite Tables
for Accurate Function ApproximatiomRroc. 13th Symposium
on Computer ArithmetidEEE, 1997.

[12] Texas Instruments, TMS320C44 Digital Signal Processor,
1994,

[13] W.H. Press et al, Numerical Recipies in Pascal,
Cambridge, 1989.

design of only one substantial piece of hardware, whereas



Fig. 4.2. Error in simulated arithmetic kernels



