
1 of 10

Abstract

This paper describes the application of high radix
redundant CORDIC algorithms to complex logarithmic
number system arithmetic. It shows that a CLNS addition
can be performed with approximately the same hardware
as a high-radix CORDIC operation. A design example
comparable to single precision floating point has been
designed and simulated.

1 Introduction

Logarithmic number system (LNS) representation has
been the subject of considerable theoretical interest since
its introduction [10], and a number of implementations
described, e.g. [7]. Arnold recently described arithmetic
transformations for efficient software implementations, as
well as pointing out the advantages of complex valued
LNS (CLNS) [11]. CLNS is potentially attractive in areas
such as FFTs, where the powers of unity have exact repre-
sentation, and complex multiplications can be easily per-
formed using fixed point additions. However, previous
VLSI implementations of LNS rely on interpolation of a
function of a single variable and do not extend to CLNS.
Compared to floating point representation, where a com-
plex multiply requires 4 FP multiplies and 2 FP adds, a
CLNS multiply requires only 2 fixed point adds. Conse-
quently, if the cost of a CLNS add can be reduced below 4
FP multiplies and 4 FP adds, the total cost of a CLNS mul-
tiply-add will be less than FP.

CORDIC algorithms have long been advocated for trig-
onometric functions as well as complex valued exponen-
tials and logs [1] [2] [3]. Most efforts in CORDIC have
focused on real numbers, and used low radix-2 or radix-4
algorithms. Recently, BKM, a low-radix redundant
CORDIC algorithm was described and used for trigono-
metric functions and complex arithmetic using a linear rep-
resentation [8]. BKM, as most other CORDIC algorithms
is a low radix method, and takes many steps to perform an
operation. The simplicity of the hardware implementation
of CORDIC is attractive, and a number of successful hard-

ware implementations of CORDIC have been also been
described [4] [5] [6] [9], however, these typically take a
large number of stages. A few high radix methods have
been described. Baker [12] described high radix CORDIC
based algorithms, later extended to carry-save representa-
tion by Antelo et al [15]. Ahmed [13] [14] introduced a
convergence method that generalized Chen’s [3], useful for
describing algorithms as transformations on numbers that
maintain some invariant. Ahmed described CORDIC algo-
rithms using a single high-radix step to begin, and also
using linear interpolation for the latter half of the algo-
rithm.

This paper is most closely related to Antelo’s et. al high-
radix CORDIC algorithm [15]. It applies to CLNS, and
modifies this algorithm, as well as introducing some opti-
mizations specific to CLNS that approximately halve the
cost of the algorithm. Some specific points of comparison
to [15] are: (1) this paper shows how optimizations specific
to CLNS can eliminate approximately half the CORDIC
stages (2) this paper advocates exact calculation of the
minimal usable radix, instead of using a fixed radix (3) this
paper extends the high-radix algorithms to include loga-
rithm algorithms, similar to CORDIC vectoring, which
requires more complex digit selection and a different
sequence of operations.

The remainder of this paper describes the number repre-
sentation assumed for CLNS, and the transformations that
can be performed on these numbers. Hardware structures
for high-radix operations are described for complex expo-
nentiation and logarithm, together with bounds on the val-
ues at each stage. An example processor has been designed
and verified down to the gate level, and its verification is
described.

2 Number Representation

A complex valued number is repre-

sented in CLNS by its logarithm, , such

that , where is the base of the system. Both

and are fixed point numbers and can be represented

X XR XI i⋅+=

x xL xθ i⋅+=

X b
x

= b xl

xθ

Complex Logarithmic Number System Arithmetic Using High-Radix
Redundant CORDIC Algorithms

David Lewis
Department of Electrical and Computer Engineering, University of Toronto

Toronto, Ontario, Canada M5S 3G4
lewis@eecg.toronto.edu

2 of 10

using 2’s complement binary numbers.
Given the representations , ,

and of two numbers and , it is trivial to find

the representation of as

 and .

CLNS addition is considerably more difficult. To com-

pute the representation of , it is necessary to

compute and .

(1)

(2)

The functions and are implicitly defined in

terms of , as

(3)

(4)

(5)

We will assume that so that the argument to

and lies in the right hand half plane. Subtraction is

accomplished by adding to the appropriate oper-

and.

2.1 Transformations on Complex Number Repre-
sentations

In order to compute as defined in (5), CORDIC-
based algorithms can be applied to the computation of the
complex exponential and logarithm functions. As in previ-
ous descriptions of convergence methods, we define a
function that maintains a constant value through each stage
in the transformation. Our 4-tuple contains a Cartesian rep-

resentation of a point using the pair of real values and

, and a polar logarithmic representation using the two

real values and . The value represented is

. Two transformations, scal-

ing and rotation, are define such that the value of is

kept constant.
The scale transformation performs a linear scaling of

the Cartesian value by a factor of , and compensat-

ing reduction in the logarithmic value of :

(6)

(7)

(8)

(9)

(10)

The rotation transformation performs a rotation of the

Cartesian values based on some value and compensat-

ing change in the angle of the polar logarithmic representa-
tion:

(11)

(12)

(13)

(14)

(15)

(16)

The angle of the rotation is given by . The rotation

lengthens the vector by a factor of , and the corre-

sponding change in the polar logarithm magnitude is given

by . Both the scale transformation and the rotation

transformation preserve the invariant .

Complex exponentiation and complex logarithm are
implemented using a sequence of rotation and scaling
transformations. In each, a series of stages are cascaded,
each of which may be a rotation or scaling transformation
according to the design of the algorithm. The inputs are

, , , and , and the outputs are , , , and

. In each algorithm, some of the inputs and outputs are

constrained to be constants. Thus, the difference in the

operation of the algorithms is the way that the values

and are determined as a function of the inputs.

2.2 Complex Exponentiation Algorithm

In complex exponentiation, the values of and are

set to constants, such as 1 and 0 respectively, while and

 are bounded by some intervals. A series of transforma-

tions is performed such that and are constants

regardless of the inputs and . From the invariance of

xL xθ,〈 〉 x xL xθ i⋅+=

yL yθ,〈 〉 X Y

zL zθ,〈 〉 Z X Y×=

zL xL yL+= zθ xθ yθ+=

Z X Y+=

zl zθ

zl xL fL xL yL– xθ yθ–,()+=

zθ xθ fθ xL yL– xθ yθ–,()+=

fL fθ

r

r x y– xL yL– xθ yθ–() i⋅+= =

f r() fL r() fθ r() i⋅+=

f r() logb 1 b+
r()=

xL yL≥ fL

fθ

logb 1–()

f r()

uj

vj

r j aj

Tj uj vj i⋅+() b
rj aj i⋅+

×=

Tj

1 sj+()

logb 1 sj+()

uj 1+ uj 1 sj+()×=

vj 1+ vj 1 sj+()×=

r j 1+ r j l j+=

aj 1+ aj=

l j logb 1 sj+()–=

qj

uj 1+ uj qj vj×+=

vj 1+ vj qj uj×–=

r j 1+ r j mj+=

aj 1+ aj cj+=

mj logb 1 qj
2

+()–=

cj

qj()atan–

b()ln
-----------------------=

cj–

1 qj
2

+

mj

Tj 1+ Tj=

N

u0 v0 r0 a0 uN vN rN

aN

sj

qj

u0 v0

r0

a0

rN aN

r0 a0

3 of 10

, we then have

(17)

Without loss of generality, assume that and

. Each transformation stage must examine one of

the values of and to determine the values of and

. Since the goal is to bring and , this

is achieved in a series of stages each of which attempts to

satisfy and to an increasing degree

of precision in successive stages. Substituting these goals
into (8) and (14) leads to the digit selection functions:

(18)

(19)

2.3 Complex Logarithm Algorithm

In complex logarithm, the values of and are con-

stants, the values of and are inputs, and the series of

transformations is performed such that and are

constants. The invariance of leads to eqn. (20).

(20)

A useful choice is , , , and

. As with the exponentiation algorithm, there is no

loss in generality in assuming and .

To insure that and are constants, the transforma-

tion stages must examine and to determine and

. In this case, the goals are and . The

digit selection functions are potentially more complex,

since both scaling and rotation affect both and . To

reduce the complexity of digit selection, each function
depends only on one of and . For the particular case

described above, we require that depend on alone,

and depend on alone. By setting in (6),

and into (12), we have the digit selection func-

tions:

(21)

(22)

 depends on two variables, so a constant approxima-

tion to will be introduced later to simplify the function

to a single argument.

2.4 CORDIC for CLNS Addition

The CLNS addition function can be constructed using a
CORDIC exponentiation, adding one, followed by a
CORDIC log, as illustrated in the left side of Fig. 1. Given

 as input, a series of exponential stages, with input

 produces output . An adder

then produces and and performs a

logarithm operation on , producing the final

result.
An optimization is possible by considering an interme-

diate value in the exponential stage, say , where is rep-

resented by . For sufficiently small

 and , apply a Taylor series approximation to

 producing

(23)

(24)

(25)

For the case that , the multiply disappears,

and circuit uses , ,

, and as inputs to the logarithm stages.

This provides a strong incentive to using a base of .
Similar improvements apply to the logarithm stage.

Consider some stage , and the Taylor series approxima-

tion for and

(26)

Tj

uN vN i⋅+ u0 v0 i⋅+() b
r0 a0 i r N– aN– i⋅⋅+()

×=

rN 0=

aN 0=

r j aj sj

qj r j rN→ aj aN→

r j 1+ rN≈ aj 1+ aN≈

sj b
rj rN–

1–≈

qj b() aj aN–()×ln()tan≈

r0 a0

u0 v0

uN vN

Tj

rN aN i⋅+ logb

u0 v0 i⋅+

uN vN i⋅+
------------------------- 

  r0 a0 i⋅+ +=

uN 1= vN 0= r0 0=

a0 0=

uN 0≠ vN 0=

uN vN

uj vj sj

qj uj uN≈ vj vN≈

uj vj

uj vj

sj uj

qj vj uj 1+ uN≈

vj 1+ vN≈

sj

uN

uj
------ 1–≈

qj

vj vN–

uj
-------------≈

qj

uj

r0 a0,〈 〉

1 0 r0 a0, , ,〈 〉 un vn 1 0, , ,〈 〉

u'0 un 1+= v'0 vn=

u'0 v'0 0 0, , ,〈 〉

j b
r

uj vj i⋅+() b
rj aj i⋅+

×

r j aj

logb 1 b
r

+()

logb 1 b
r

+() logb 1 uj vj i⋅+() b
r j aj i⋅+

×+ 
 =

logb 1 b
r

+() logb b
rj aj i⋅+()–

uj vj i⋅+ + 
 

r j aj i⋅+ +

=

logb 1 b
r

+() logb 1 b()ln r j aj i⋅+()

u+ j vj i⋅+

×–(

) r j aj i⋅+ +

≈

b()ln 1=

r'0 1 r j– uj+= v'0 aj vj+=

r'0 r j= a'0 aj=

e

j

u′j 1≈ v′j 0≈

logb u'j v'j i⋅+() b
r 'j a'j i⋅+

× 
 

1
b()ln

------------- u'j 1– v'j i⋅+()× r 'j a'j i⋅+ +

≈

4 of 10

Approximately half the stages can be eliminated for
both exponential and logarithm, as shown in the right side
of Fig. 1. Consequently, a CLNS addition can be per-
formed with cost comparable to approximately one
CORDIC operation.

3 Hardware Implementation

To understand the calculation of the values of and

, as well as the bounds on the values and precision in

each stage of the computation it is useful at this point to
introduce the redundant computation in terms of the hard-
ware implementation.

The algorithms allow redundant representation using of
all the quantities involved in the computation; however, the

multiplications of and eliminate any advantage to

using a redundant representation of these quantities.
Instead, only and are represented using a carry-save

form, and the non-redundant value is calculated to the
accuracy required.

Truncation is explicitly represented in the hardware

designs shown below with a truncation operator , and a
separate symbol for the truncated value. The precision of
any variable in the algorithm, for example some variable

, will be expressed as . The precision of a variable
is the negative of the position in the binary representation
of the least significant bit, i.e., if

. , then .

There are four related hardware blocks, corresponding

to the scaling and rotation stages for both the exponentia-
tion and logarithm algorithms. For both algorithms, the
values , , , and are assumed to have bits pre-

cision. Internally, each value is represented with an addi-

tional guard bits, for a total of bits. In carry-save

form, and are represented by the pairs and ,

and by and respectively, all of which have preci-

sion .
In the exponential scaling stage, shown in Figure 2, a

reduced precision approximation of is calculated by

truncating and , which are added to calculate the

non-redundant, but lower accuracy approximation ,

which is input to the digit calculation block. The purpose
of this lower precision approximation is to reduce the
amount of hardware required for the adder, but more
importantly, to reduce the number of bits that the digit
selection block must examine, and consequently reduce its
associated hardware and increase its speed.

All stages described here contain digit selection blocks.
Before describing the specific functions implemented in
them, a brief description of their logic structure is useful. A
digit selection block implements some monotonic function
of a single input, and is a piecewise constant approxima-
tion to some continuous function. Using the specific exam-
ple of a digit selection block with as an input and as

output, with for some , the function can

be expressed in the form (27), where the digit is and

 is the piecewise constant approximation to the

function over some interval .

,

(27)

(28)

The value of may take any value in the range to

, where the bounds are chosen to include the entire

range of inputs to the function. The number of distinct val-
ues that can be produced is and is referred

to as the radix of the value . Expressing the function at

this level of detail explicitly provides the range over which
each input value produces some output value, and makes it
straightforward to bound the result of a calculation. The

Figure 1 CLNS Addition Using Interpolation. Right half
shows truncation of iterations using Taylor series approxima-
tion.

1 0 r0 a0

1 0+1

1 0

+1

-
-

+
+

 r0 a0

-1

Straightforward Use of Taylor series
Implementation

sj

qj

uj vj

r j aj

w P w()

w wI 1– …w0= w 1– …w F– P w() F=

uj vj r j aj F

G F G+

r j aj rcj rsj

acj asj

F G+

r j

rctj rstj

rt j

rt j sj

sj f rt j()= f)(

k

k 2
P sj()–

×
threshk threshk 1+,[)

sj k 2
P sj()–

×= threshk rt j≤ threshk 1+<
kmin k kmax≤ ≤

threshk f
1–

k
1
2
---– 

  2
P sj()–

× 
 =

k kmin

kmax

kmax kmin– 1+

rt j

5 of 10

hardware implementation of this will be discussed later,
but it is clear that the two primary factors involved are the
number of bits in the input value which need to be exam-
ined, and the number of distinct output values that can be
produced, or equivalently, the radix.

The digit selection block in the scaling exponentiation
stage produces and . Assuming that

the goal is , we desire that to the precision

possible given the fixed number of bits in the representa-

tion of . Note that is expressed to the full precision of

the datapath, while it is the limited number of bits in

that restrict the set of possible values of . This is due to

the desire to reduce the size of the digit estimation logic for
.

The values of and are also truncated to a lower

precision forming and , and a pair of multiply-

adders is used to calculate the results specified in Eqns. (6)
and (7). The multiplier output is left in carry-save form,
which avoids a carry-propagate addition inside it. This is
advantageous as the result of the multiplier is later added
using a CSA and CPA. The multiplier result is also trun-

cated to the precision of and . Eqn (8) is calculated

using a CSA because of the redundant representation of

.

Figure 3 illustrates the hardware for the rotation stage
for exponentiation. A reduced precision approximation to

 is calculated and input to the digit calculation block.

This produces and is used, together with reduced preci-

sion values of and to perform the calculation in

Eqns. (11) through (14). As before, calculations involving
 and are preformed with CSAs.

Figures 4 and 5 illustrate the rotation and scaling stages
for the logarithm algorithm. These are similar to the previ-

ous two, except that and are used for determining

and respectively. This complicates the analysis of the

bounds on the intermediate results, as each digit selection
block can only access part of the problem state.

4 Bounds on Intermediate Results

Antelo et al advocate high-radix CORDIC using a max-
imally redundant digit set. They suggest choosing a radix,
and show that the algorithm will converge using the maxi-
mally redundant digit set. In this paper, we suggest explicit
calculation of the minimal possible redundant digit set, and
exact digit selection based on the truncated data for two
reasons First, explicitly calculating the radix means that the

sj l j logb 1 sj+()–=

rN 0= l j r– j≈

sj l j

sj

l j

sj

uj vj

utj vtj

uj vj

r j

Figure 2 Scaling Stage for Exponentiation

×


+

+

×

+

uj vj
rcjrsj asjacj

CSA

digit sel.

rctj rstj
rt j

sj l j

uj 1+



 



vj 1+
rcj 1+ rsj 1+ acj 1+asj 1+

aj

qj

uj vj

r j aj

Figure 3 Rotation Stage for Exponentiation

×


+

+

×

+

uj vj

CSA

digit sel.

 



-

uj 1+ vj 1+ rcj +
rsj 1+acj 1+

asj 1+

rcjrsj asjacj

qj mj CSA

astj
atj

actj

cj

uj vj sj

qj

Figure 4 Scaling Stage for Logarithm

×



+

×

+

uj vj rcjrsj asjacj

CSA

digit sel.

utj

sj l j

dj 1+







vj 1+ acj +
asj 1+

uN×

rcj 1+ rsj +

6 of 10

tables need only be large enough to accommodate the
actual number of values, which can be smaller than the
radix implied by the maximally redundant digit set. Sec-
ond, the size of the multipliers can potentially be reduced if
the set of values to be multiplied is bounded by a smaller
range than the representation allows. The latter of these

depends on the observation that the core of an -bit modi-
fied Booth multiplier value can be used to multiply values

in the range . This range would

conventionally require an bit multiplier. For exam-

ple, multiplication by integers in can be per-
formed with a 6-bit multiplier, but would conventionally
require an 8-bit multiplier.

The approach in this section is constructive. We define
the bounds of the operands at each stage, and determine the
relationship between the bound on the input and output for

each type of transformation. For each possible digit , the
range of inputs that use the digit are specified, and the
resulting bound on the output is determined. Given the
overall bound on the range of inputs, and the precision of

the digits and , it is possible to determine the set of

values required to span the entire input range. and conse-
quently determine the radix of the digit set. By computing
the union of all output bounds for every possible digit in a
stage, an overall bound on the output of a stage can be cal-
culated. It is also necessary to specify the precision of the
truncated quantities input to the digit selection logic.

It will be useful to have a concise notation for the trun-
cation or rounding of quantities to various fixed point pre-

cisions. We use to mean the value of truncated

down to bits precision, so the definition is given as:

(29)

Similar notation for rounding up, and round to nearest
are also used:

(30)

(31)

It is also necessary to bound the variables at each stage.
We introduce and subscripts such that any vari-

able is bounded by its and as in

.

4.1 Scaling Stage for Exponential

As mentioned, it is desirable that , or equiva-

lently, . Ideally, the digit selection function

would implement

Transforming this into the piecewise-constant expres-
sion leads to the exact computation of the digit :

(32)

The range of values of is required to be sufficiently

large that all possible values of will fall in one such

interval. The truncation of the carry save value of

bounds on :

(33)

Substituting (33) into produces constraints for

and , which can be further simplified into explicit

requirements for these two bounds on :

(34)

Figure 5 Rotation Stage for Logarithm

×



+

×

+

uj vj

CSA

digit sel.





-

uj 1+ vj 1+ rcj +
rsj 1+acj +

asj 1+

rcjrsj asjacj

qj CSAmj

vtj

cj

n

5
4
--- 2

n 1–×–
5
4
--- 2

n 1–×, 1–

n 2+

40 39,–[]

k

sj qj

k

x P x

P

x P x 2
P× 2

P–×=

x P x 2
P× 2

P–×=

x[]P x 2
P× 2

P 1–
+ 2

P–×=

min max

min max

umin j, uj umax j,<≤

l j r j≈

sj b
r

1–≈

sj b
rt j

1– P sj()=

sj

sj k 2
P– sj()

×=

logb 1 k
1
2
---– 

  2
P sj()–

×+ 
  rt j≤

logb 1 k
1
2
---+ 

  2
P sj()–

×+ 
 <

kmin k kmax≤ ≤

k

rt j

r j

rt j

r j 2
1 P rtj()–

– 2
1 F– G–

+ rt j r j≤ ≤

kmin

kmax

k

1 kmin
1
2
---– 

  2
P sj()–

×+ 
 

2
1 P rtj()–

2
1 F– G–

–+

log

rmin j,≤

7 of 10

(35)

Note that in these equations the rounding of to

 precision is not specified; however, whatever
method is used must be applied consistently across all of
these equations to obtain correct results.

Bounds on are calculated by first noting that

is bounded by (33) due to the truncation of the carry and

sum components from precision before their addi-

tion. For each such value of that is required, it is possible

to use (33) to determine the bounds on

(36)

The definition of is then substituted into (8) and (10)

to produce bounds for each given value of :

(37)

(38)

It is possible to attempt to construct an explicit bound

for all possible by substituting in the appropriate

and , but it is difficult to guarantee an exact bound in

the presence of multiple roundings to various precisions.
Instead, we simply iterate across all values, taking the min-
imum and maximum of these bounds to determine overall

bounds on

It is useful to ignore the redundancy and take a first
order Taylor series approximation to (37) and (38) into
obtain insight into the operation of the algorithm, although
the exact form of equation must be used for computing
bounds.

(39)

Eqn (39) shows that each stage reduces the magnitude
of to roughly one-half ULP in the digit’s representa-

tion.

4.2 Rotation Stage for Exponentiation

A similar approach can be taken for the rotation stage,
with the notable difference that the rotation is computed as
a function of , but affects both and . In the

rotation stage, we desire .

The piecewise constant approximation is given as

(40)

Exact bounds on can be determined by the previous
approach and will not be presented.

Bounds on can be found by a similar approach to

the scaling stage. This leads to the following bounds on
, where the union of all such bounds must be taken

for the entire range of

(41)

(42)

For small , ignoring redundancy and taking a first-

order Taylor series approximation shows that is

bounded by approximately half an ULP of .

(43)

The choice of is independent of , so the bound on

 can only be given by subtracting the minimum and

1 kmax
1
2
---+ 

  2
P sj()–

×+ 
 log rmax j,≥

logb()

F G+

r j 1+ rt j

F G+

k

r j

rt j r j rt j≤ ≤ 2
1 P rtj()–

2
1 F– G–

–+

sj

k

logb 1 k
1
2
---– 

  2
P sj()–

×+ 
 

logb 1 k 2
P sj()–

×+ 
 – r j 1+≤

r j 1+ logb 1 k
1
2
---+ 

  2
P sj()–

×+ 
  2

1 P rtj()–

2
1 F– G–

– logb1 k 2
P sj()–

×+–

+<

k kmin

kmax

r j 1+

r j 1+ b()ln 2
1– P sj()–

×≤

r j 1+

aj aj 1+ r j 1+

qj b() aj×ln()tan[]
P qj()=

qj k 2
P qj()–

×=

k
1
2
---– 

  2
P qj()–

× 
 atan

b()ln
-- atj≤

k
1
2
---+ 

  2
P qj()–

× 
 atan

b()ln
---<

kmin k kmax≤ ≤

k

aj 1+

aj 1+

k

k
1
2
---– 

  2
P qj()–

× 
 atan

b()ln
--

k 2
P qj()–

× 
 atan

b()ln
--– aj 1+≤

aj 1+

k
1
2
---+ 

  2
P qj()–

× 
 atan

b()ln

k 2
P qj()–

× 
 atan

b()ln
--– 2

1 P atj()–
2

1 F– G–
–+

<

aj

aj 1+

qj

aj 1+
2

1– P qj()–

b()ln
------------------------<

qj r j

r j 1+

8 of 10

maximum possible values of from the bounds on ,

(44)

(45)

Because may be signed, it is not possible to express

these in a form only using one of or in each

equation.

4.3 Scaling Stage for Logarithm

The logarithm stages are more complicated to under-

stand as both scaling and rotation affect both and

, but each stage must perform a transformation based

on only one value. Fig. 6 illustrates the scaling transforma-
tion. The vertical dashed lines represent the bounds

between values of that lead to distinct values of .

Each such bound leads to an interval in and that is a

rectangular interval subject to scaling by the same value of

. The arrows show the linear scaling by for

the upper left point in two of the rectangles. Although the

range of is reduced compared to the range of , the

range of is increased compared to .

Recall that we desire . In the piecewise con-

stant form, this can be achieved by

,

(46)

This establishes following bound on . Although

 will give the largest range, the calculation

should be performed to determine the union of all ranges

for all values of using exactly the same rounding as the
hardware in order to obtain precise bounds.

(47)

(48)

The value of is scaled by the same factor, so

can be bounded by the union of the intervals for all values
of

(49)

4.4 Rotation Stage for Logarithm

The rotation stage for logarithm presents the most diffi-

culty, as the goal depends on two values. We sim-

plify this to a function of a single value by using the bound
on and taking the midpoint of this range as an approxi-

mation. This results in as

an approximate goal for . This operation of this stage is

shown graphically in Fig. 7. The horizontal dashed lines

represent the thresholds for values of that result in dis-

mj r j

rmin j, max
k

logb 1 k
2

2
2 P atj()×–

×+ 
 

 
 – r j 1+≤

r j 1+ r≤
max j, min

k
logb 1 k

2
2

2 P atj()×–
×+ 

 
 
 –

k

kmin kmax

uj 1+

vj 1+

uj sj

uj vj

1 sj+ 1 sj+

uj 1+ uj

vj 1+ vj

uN

umin j, umax j,

umin j 1+, umax j 1+,

vmax j,

vmin j,

vmax j 1+,

vmin j 1+,

Figure 6 Operation of Scaling Stage in Logarithm Algo-
rithm

sj

uN

uj
------ 1–≈

sj k 2
P sj()–

×=

uN

k
1
2
---+ 

  2
P sj()–

× 1+

--- utj
uN

k
1
2
---– 

  2
P sj()–

× 1+

---<≤

kmin k kmax≤ ≤

uj 1+

k kmin=

k

uN
k 2

P sj()–
× 1+

k
1
2
---+ 

  2
P sj()–

× 1+

---× uj 1+≤

uj 1+

uN

k
1
2
---– 

  2
P sj()–

× 1+

2
1 P utj()–

2
1 F– G–

–+





















k 2
P sj()–

× 1+ 
 ×

<

vj vj 1+

k

vmin j, k 2
P sj()–

× 1+ 
 × vj 1+

vmax j, k 2
P sj()–

× 1+ 
 ×<

≤

qj

vj

uj
----≈

uj

qj

vj

umin j, umax j,+

2
------------------------------------- 

 
--

P qj()

=

qj

vj

9 of 10

tinct values of , and that apply to a rectangular region in

 and . The figure shows the rotation and stretching of

two of these regions, illustrating the center point of each,
together with the bounding box for the rotated and
stretched rectangle. Because each of the intervals is
rotated, the tightest possible bounds of the resulting values

 and does not form a rectangle; however, for

simplicity of analysis, it is considered to be the smallest
rectangle that encloses all of the rotated and stretched
intervals, and is illustrated with the dotted rectangle in the
Fig. 7. The figure is not to scale, and typically the rectangle
bounding the would be much smaller than the input
bounds.

The exact definition of is

(50)

This leads to the following bounds on and ,

where, as usual, all values of must be considered:

(51)

(52)

(53)

(54)

5 Example for 32-bit Complex Numbers

The exponential stages calculate both digits based on a
single operand, but the value of affects the value of

 as well. It is optional whether to interleave rotation

and scaling stages, or to perform all of the scaling at the

end, as in [9]. In the logarithm stage, both and

depend on and . It is necessary to alternate scaling

and rotation stages in order to tighten bounds on both
simultaneously.

As a demonstration of the feasibility of this approach,
we have designed a high-radix multiply-add CLNS arith-
metic unit with precision comparable to IEEE-754 single
precision. The unit performs complex multiplication using
two fixed point adders, and uses high-radix exponentiation
and logarithm to perform complex addition using the func-

tion defined in (4). The design uses and

, and some other minor changes to the constants
assumed in the derivation above. The number representa-
tion uses a mixed base for the representation of the num-
bers to simplify range reduction. A number X is

represented by its complex logarithm ,

where is a 32-bit 2’s complement fixed point number,

and is a 27-bit unsigned fixed point number, both of

which have 24 fractional bits.
The details of the algorithm were designed with the

assistance of a program that has as input an architecture
description file containing all of the precisions of each
variable, and performs exact bit-level modeling of the
architecture.

Our design uses a total of 10 stages to perform an expo-
nentiation and a logarithm as required by the logarithmic
addition function. Datapath widths were based on 6 bit dig-
its requiring two stages of each of rotation and scaling for
exponentiation, and three of each for logarithm. Antelo et
al [9] would require 8 stages using 7-bit multipliers to per-
form a rotation to the same precision; thus, our architecture
requires little more hardware to perform a CLNS addition.

qj

uj vj

uj 1+ vj 1+

vmax j 1+,

vmin j 1+,

umax j 1+,umin j 1+,

umin j,
umax j,

vmin j,

vmax j,

Figure 7 Operation of Rotation Stage in Logarithm Algorithm

overall bounds of result

qj

qj k 2
P qj()–

×=

k
1
2
---– 

  2
P qj()– umin j, umax j,+

2
------------------------------------- 

 ×× vtj

k
1
2
---+ 

  2
P qj()– umin j, umax j,+

2
------------------------------------- 

 ××<

≤

kmin k kmax≤ ≤

uj 1+ vj 1+

k

k
1
2
---– 

  2
P qj()–

×
umin j, umax j,+

2
------------------------------------- 

 ×

k 2
P qj()–

umax j,××– vj 1+≤

vj 1+ k
1
2
---+ 

  2
P qj()– umin j, umax j,+

2
------------------------------------- 

 ××

2
1 P vtj()–

2
1 F– G–

k 2
P qj()–

umin j,××–+ +

<

umin j, k 2
P qj()–

× vmin j,×+ uj 1+≤

uj 1+ umax j, k 2
P qj()–

× vmax j,×+<

aj

r j 1+

uj 1+ vj 1+

uj vj

f r() F 24=

G 4=

x xL xθ i⋅+=

xL

xθ

10 of 10

Beyond this, only two more fixed point adders are required
to perform a CLNS multiply-add. Table 1 shows the key
parameters of the design. The digit precision refers to the

digit generated, either or , and the digit selection

precision refers to the input to the digit selection block,

such as or other values.

Fig. 8 illustrates the simulator’s real and imaginary error

histogram in ULPs for pseudo-random tests. A bias is
clear, and is due to the use of truncation rather than round-
ing in the datapath. Mean error and bias are each less than
0.4 ULP, but worst case error is 1.5 ULP.

6 Conclusions

This paper has demonstrated high-radix CORDIC algo-
rithms adapted for CLNS addition. A design example pro-
ducing six bits per stage as an illustration shows that a
CLNS addition can be performed for approximately the
same cost as a conventional high-radix CORDIC rotation.
Since a CLNS multiply is inexpensive, this allows a CLNS
multiply-accumulate to be performed for the cost of a sin-

gle CORDIC operation.

7 References

[1] J. Volder, “The CORDIC Computing Technique”, IRE
Trans. Comput., Sept. 1959, pp. 330-334

[2] J. Walther, “A Unified Algorithm for Elementary Func-
tions”, Spring Joint Comp. Conf., 1971, pp 379-385

[3] T. Chen, “Automatic Computation of Exponentials, Loga-
rithms, Ratios, and Square Roots”, IBM J. Res. Dev, 1972,
pp 380-388

[4] A. Madisetti, A. Kwentus, and A. Willson, “A Sine/Cosine
Direct Digital Frequency Synthesizer Using an Angle Rota-
tion Algorithm”, ISSCC-95, pp. 262-263

[5] A. Skaf, J.-M. Mullar, and A. Guyot, “On-line Hardware
Implementation for Complex Exponential and Logarithm”,
Twentieth European Solid-State Circ. Conf., 1994, pp 252-
255

[6] D. Timmermannm B. Rix, H. Hahn, and B. Hosticka, “A
CMOS Floating-Point Vector Arithmetic Unit”, IEEE J.
Solid State Circuits, May 1994, pp 634-639

[7] D. Lewis,“A 114 MFLOPS Logarithmic Number System
Arithmetic Unit for DSP Applications”, IEEE J. Solid-State
Circuits, Dec 1995, pp 1547-1553

[8] J.-C. Bajard, S. Kla, and J.-M. Muller, “BKM: A New Hard-
ware Algorithm for Complex Elementary Functions”, IEEE
Trans. Comput, Aug 1994, pp 955-964

[9] E. Antelo, J. Villalba, J. Bruguera, and E. Zapata, “High
Performance Rotation Architectures Based on the Radix-4
CORDIC Algorithm”, IEEE Trans. Comput., Aug 1997, pp
855-870.

[10] E. Swartzlander and A. Alexopolous, “The Sign/Logarithm
Number System”, IEEE Trans. Comput.,Dec 1975, pp.
1238-1242

[11] M. Arnold, T. Bailey, J. Cowles, and M. Winkel, “Arith-
metic Co-Transformation in the Real and Complex Loga-
rithmic Number Systems”, IEEE. Trans. Comput., July
1998, pp 777-786

[12] P. Baker, “Parallel Multiplicative Algorithms for Some Ele-
mentary Functions”, IEEE Trans. Comput., March 1975, pp
322-325

[13] H. Ahmed, Signal Processing Algorithms and Architectures,
PhD Thesis, Stanford University, 1982

[14] H. Ahmed, Efficient Elementary Function Generation with
Multipliers, Proc. 9th Symp. Comp. Arith, 1989, pp 52-59

[15] E. Antelo, J. Brugerea, T. Lang, J. Villalba, and E. Zapata,
“High Radix Cordic Rotation based on Selection by Round-
ing”, Intl. European Conf. on Parallel Proc., Euro-Par 96,
pp 155-164

Table 1: Hardware Parameters of Example CLNS ALU

Stage
Type

Digit
Precision

Digit
Selection
Precision

Radix

Exponential Algorithm

R 6 10 65

S 6 10 118

R 12 16 74

S 12 16 77

Logarithm Algorithm

S 6 10 65

R 6 10 65

S 6 10 67

R 12 16 82

S 12 16 69

R 18 22 110

sj pj

atj

Figure 8 Frequency Count of Error of CLNS ALU Exam-
ple: Solid line: real; Dashed: Imaginary. Bin width is .01

Count

 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
 0

1e+05

2e+05

3e+05

4e+05

5e+05

Error (ULP)

10
7

