Complex Logarithmic Number System Arithmetic Using High-Radix
Redundant CORDIC Algorithms

David Lewis
Department of Electrical and Computer Engineering, University of Toronto
Toronto, Ontario, Canada M5S 3G4
lewis@eecg.toronto.edu

Abstract ware implementations of CORDIC have been also been
described [4] [5] [6] [9], however, these typically take a
This paper describes the application of high radix |arge number of stages. A few high radix methods have
redundant CORDIC algorithms to complex logarithmic been described. Baker [12] described high radix CORDIC
number system arithmetic. It shows that a CLNS addition based a|gorithms, later extended to carry-save representa-
can be performed with approximately the same hardwaretion by Anteloet al [15]. Ahmed [13] [14] introduced a
as a high-radix CORDIC operation. A design example convergence method that generalized Chen’s [3], useful for
comparable to single precision floating point has been describing algorithms as transformations on numbers that
designed and simulated. maintain some invariant. Ahmed described CORDIC algo-
rithms using a single high-radix step to begin, and also
. using linear interpolation for the latter half of the algo-
1 Introduction rithm.

o . This paper is most closely related to Antekt'salhigh-
Logarithmic number system (LNS) representation has ,qix cCORDIC algorithm [15]. It applies to CLNS, and

been the subject of considerable theoretical interest since,, qifies this algorithm, as well as introducing some opti-
its introduction [10], and a number of implementations mi;ations specific to CLNS that approximately halve the
described, e.g. [7]. Arnold recently described arithmetic ot of the algorithm. Some specific points of comparison
transformations for efficient software implementations, as [15] are: (1) this paper shows how optimizations specific

well as pointing out the advantages of complex valued, ¢ NS can eliminate approximately half the CORDIC
LNS (CLNS) [11]. CLNS is potentially attractive in areas giaqes (2) this paper advocates exact calculation of the

such as FFTs, where the powers of unity have exact reprenima| ysable radix, instead of using a fixed radix (3) this
sentation, and complex multiplications can be easily per- paper extends the high-radix algorithms to include loga-
formed using fixed point additions. However, previous fithm algorithms, similar to CORDIC vectoring, which
VLSI.impIemer)tations 9f LNS rely on interpolation of a requires more complex digit selection and a different
function of a smglg vanaple and do not. extend to CLNS. sequence of operations.

Compared to floating point representation, where a COM- g remainder of this paper describes the number repre-

plex multiply requires 4 FP multiplies and 2 FP adds, a gentation assumed for CLNS, and the transformations that

CLNS multiply requires only 2 fixed point adds. Conse- o he performed on these numbers. Hardware structures
quently, if the cost of a CLNS add can be reduced below 4 pigh radix operations are described for complex expo-

FP multiplies and 4 FP adds, the total cost of a CLNS mul-pgntiation and logarithm, together with bounds on the val-
tiply-add will be less than FP. ues at each stage. An example processor has been designed

CORDIC algorithms have long been advocated for trig- 5nq verified down to the gate level, and its verification is
onometric functions as well as complex valued exponen-yaqcribed.

tials and logs [1] [2] [3]. Most efforts in CORDIC have
focused on real numbers, and used low radix-2 or radix-42 Number Representation
algorithms. Recently, BKM, a low-radix redundant

CORDIC algorithm was described and used for trigono-
metric functions and complex arithmetic using a linear rep-
resentation [8]. BKM, as most other CORDIC algorithms sented in CLNS by its logarithmy = x +xg0 , such
is a low radix method, and takes many steps to perform an X .
operation. The simplicity of the hardware implementation that X = b", whereb is the base of the system. Bgth
of CORDIC is attractive, and a number of successful hard-

A complex valued numbeX = Xg+ X, [is repre-

and xg are fixed point numbers and can be represented

10of 10

using 2's complement binary numbers. Vieg = VX 1+ Sj) (7
Given the representationsk , xgll X = x +xg0 | ®)
r. =r.+.
o L . j+1 ;o)
and [y, ygUl of two numberX and , itis trivial to find ©
a. = a
the representation [, zg0l of Z=XxY as J+1 !
Ij = —log,(1+ sj) (20)

z, = X +y_ andzg = Xg+VYg -

CLNS addition is considerably more difficult. To com- The rotation transformation performs a rotation of the

pute the representation & = X+ Y , it is necessary to Cartesian values based on some vaj}Je and compensat-
computez, andy . i%gnf:hange in the angle of the polar logarithmic representa-
zp = x (X =Y X9~ Ye) 1) Uj,q = U+ XV, (11)
29 = Xo * To(XL =Y1s %o~ ¥p) 2) Vi1 = V-0 Xy, (12)
The functions f, andfy are implicitly defined in ey =1+ (13)
terms ofr , as B, =a+c (14)
r=x=y=x -y +(Xg-Yg) O 3) 5
(1) = 1(0) +1g(r) 0 @ ™ = %) ()
f(r) = logy(1+b") (5) G = %ﬁj) (16)
We will assume thax, >y, so that the argument;to The angle of the rotation is given by; . The rotation

and f; lies in the right hand half plane. Subtraction is
0 g P lengthens the vector by a factor gﬂl + qu , and the corre-

accomplished by addingg,(~1) to the appropriate oper- sponding change in the polar logarithm magnitude is given

and. by m . Both the scale transformation and the rotation
2.1 Transformations on Complex Number Repre- transformation preserve the invariaff, ; = T,
sentations Complex exponentiation and complex logarithm are

. . implemented using a sequence of rotation and scaling
In order t.O computef(r) ?‘S defined in (3), CQRDIC' transformations. In each, a seriedbf stages are cascaded,
based algorithms can be applied to the computation of theeach of which may be a rotation or scaling transformation

complex e>_(p(_)nent|al and logarithm functions. As in previ- according to the design of the algorithm. The inputs are
ous descriptions of convergence methods, we define a
Vg, g, anday , andthe outputs aug vy, ry, ,and

function that maintains a constant value through each stageuO’
in the transformation. Our 4-tuple contains a Cartesian rep-ay . In each algorithm, some of the inputs and outputs are

resentation of a point using the pair of real values andconstrained to be constants. Thus, the difference in the
vj, and a polar logarithmic representation using the two operation of the algorithms is the way that the valges

real values r; anda . The value represented is andgq; are determined as a function of the inputs.
URE . . .
T, = (u+v;O)xb . Two transformations, scal- 2.2 Complex Exponentiation Algorithm
ing and rotation, are define such that the valueTof is e
g P In complex exponentiation, the valueswgf apd are

kept constant. }]
The scale transformation performs a linear scaling of S€t to constants, such as 1 and 0 respectively, while and

the Cartesian value by a factor(df+s;)) , and compensat-a, are bounded by some intervals. A series of transforma-
ing reduction in the logarithmic value &g, (1+s) tions is performed such that, aral, are constants
Ujyq = UjX (1+ Sj) (6) regardless of the inputsy, amag . From the invariance of

2 0of 10

Tj , we then have Vi—Vn
9%=70
(ro+ay0-ry—ay0) 17 J
+ = + . .
U+ VO = (Ug+vpH) b (17) q; depends on two variables, so a constant approxima-

Without loss of generality, assume thgg = 0 and {ion to u; will be introduced later to simplify the function

ay = 0. Each transformation stage must examine one oftg a single argument.

(22)

the values ofrj an(;iij to determine the valuesjof andzl4 CORDIC for CLNS Addition

q; - Since the goal is to bring] - Iy amii - ay this

is achieved in a series of stages each of which attempts tg The CLNS addmgn _funct|on (?an be constructed using a
st _ d _ ¢ . ina d CORDIC exponentiation, adding one, followed by a
salsly Ty, =Ty anda ., =ay foanincreasing degree coppic log, as illustrated in the left side of Fig. 1. Given

of precision in successive stages. Substituting these goalqjo, ayJas input, a series of exponential stages, with input
into (8) and (14) leads to the digit selection functions:
1, 0,rg, agll produces outputu,, v, 1, 00 . An adder

n n
ri—ry
§= b' T-1 (18) then produces/y = u,+1 and, = v, and performs a
q; = tan(In(b) x (aj —ay)) (29) logarithm operation oriif, V5, 0, 001 , producing the final
result.

2.3 Complex Logarithm Algorithm An optimization is possible by considering an interme-

. . . . I .
In complex logarithm, the values of aag are con- diate value in the exponential stage, fay , wihere is rep-

stants, the values af, amng are inputs, and the series ofesented by(u; +v;) x brj "3 . For sufficiently small

transformations is performed such thag ang are , and a apply a Taylor series approximation to
constants. The invariance G’E leads to eqgn. (20). logy(1+ br) producing
ot Vol

rytayd = log,m—m—
NN bLUy, + vy, OO

+ro+agd 20 rj+e
fo™ % (20) l0gp(1+b') = log, S+ (u +v, D) xb! T 0 (23)

A useful choice isuy =1 ,vy=0 r,=0 , and 2 0)

N - r 0
ap = 0. As with the exponentiation algorithm, there is no log,(1+b7) = IOgbB) Ut DD (24)
loss in generality in assumingy#0 amg =0 . 1 +a

J
To insure thauy, and,, are constants, the transforma-

;
tion stages must examing awg to determspe and 10gy(1+b7) = logy(L—In(b) (r; + &) (25)

I
+u+v. O)+r. +a O
g; . In this case, the goals ate=uy ands vy . The RVEDRRIRE
digit selection functions are potentially more complex, For the case than(b) = 1 , the multiply disappears,

since both scaling and rotation affect bath ~ and . To and circuit uses r'y = 1-rj+u , Vo= aty

reduce the complexity of digit selection, each function 'y = f;, andaj, = a; as inputs to the logarithm stages.

depends only on one of, and . For the particular caserhjs provides a strong incentive to using a base of

described above, we require thgt dependupn alone, Similar improvements apply to the logarithm stage.
Consider some stage , and the Taylor series approxima-

and q depend o, alone. By setting, 1 = Uy in (6), ion for U'j 1 andv'j -0

and Vi41= VN into (12), we have the digit selection func-

tions: . SRS
Iogbguj+vj O)xb 0= (26)

s=—-1 (22)

1 . ' '

30f10

Approximately half the stages can be eliminated for to the scaling and rotation stages for both the exponentia-
both exponential and logarithm, as shown in the right sidetion and logarithm algorithms. For both algorithms, the

of Fig. 1. Consequently, a CLNS addition can be per- yaluesu. ,v. T ,andaj are assumed to hBve bits pre-

. . J
formed with C.OSt comparable to approximately one cision. Internally, each value is represented with an addi-
CORDIC operation.

tional G guard bits, for a total df + G bits. In carry-save

form, r. anda. are represented by the pat esd ,
10 ry a 10 "o % i] P y the pags]
Yv vy YV VYV and byac, andas respectively, all of which have preci-
SionF +G .
In the exponential scaling stage, shown in Figure 2, a
reduced precision approximation 0]‘ is calculated by

truncatingrctj and’stj , Which are added to calculate the

<—H~r
- O

non-redundant, but lower accuracy approximatiot} .

which is input to the digit calculation block. The purpose
of this lower precision approximation is to reduce the
amount of hardware required for the adder, but more
R A importantly, to reduce the number of bits that the digit

Straightforward Use of Taylor series select!on block must examine, and.consequently reduce its

Implementation associated hardware and increase its speed.

Figure 1 CLNS Addition Using Interpolation. Right half All stages q§scribed here. gontain ,0”9“ §electi0n bIOCIfs'
shows truncation of iterations using Taylor series approxima- Before describing the specific functions implemented in
tion. them, a brief description of their logic structure is useful. A
digit selection block implements some monotonic function

of a single input, and is a piecewise constant approxima-

3 Hardware Implementation tion to some continuous function. Using the specific exam-

ple of a digit selection block Withtj as an input as]ld as

To understand the calculation of the valuessof and . .
P output, with § = f(rtj) for somef() , the function can

g; , as well as the bounds on the values and precision in) o
! o)) be expressed in the form (27), where the digikis and
each stage of the computation it is useful at this point to

introduce the redundant computation in terms of the hard- | x Z_P %) is the piecewise constant approximation to the
ware implementation.

The algorithms allow redundant representation using of
all the quantities involved in the computation; however, the

function over some intervdgthresh, thresh, , ;)

-P
multiplications of u; andv; eliminate any advantage to 5 = kx2 ol thresh <rt; <thresh , ,,
using a redundant representation of these quantitiesk . <ks<k, .. (27)
Instead, onlyrj an(;iij are represented using a carry-save
; -P

form, and the non-redundant value is calculated to the thresh, = f‘l%_lgxg (%)E (28)
accuracy required. 2

Truncation is explicitly represented in the hardware The value ofk may take any value in the rahge. to
designs shown below with a truncation operatdr ,and a . .

k where the bounds are chosen to include the entire

separate symbol for the truncated value. The precision of max’
any variable in the algorithm, for example some variable range of inputs to the function. The number of distinct val-

w, will be expressed aB(w) . The precision of a variable ues that can be producedks,,— ki, +1 andis referred
is the negative of the position in the binary representationy, 45 the radix of the valugt; . Expressing the function at
of the least significant bit, ie.,

this level of detail licitl ides th hich
W = W Wo Wy W, thenP(w) = F . is level of detail explicitly provides the range over whic

each input value produces some output value, and makes it
There are four related hardware blocks, correspondingstraightforward to bound the result of a calculation. The

4 of 10

hardware implementation of this will be discussed later, Eqns. (11) through (14). As before, calculations involving
but it is clear that the two primary factors involved are the . anda are preformed with CSAs.
number of bits in the input value which need to be exam- :
ined, and the number of distinct output values that can be
produced, or equivalently, the radix.

The digit selection block in the scaling exponentiation

stage produces. arigi = —log, (1 + sj) . Assuming that

errSj acj a%

]
the goal isry, = 0 , we desire thdat: | to the precision Ci
possible given the fixed number of bits in the representa- VCVSV W"
tion of S - Note thaﬂj is expressed to the full precision of
the datapath, while it is the limited number of bitssjn
that restrict the set of possible valuesljof . This is due to
rSJ +a11 +1 % *

the desire to reduce the size of the digit estimation logic for

S . . . s
] Figure 3 Rotation Stage for Exponentiation

The values ofuj and/j are also truncated to a lower

precision formingut, andvt; , and a pair of multiply- Figures 4 and 5 illustrate the rotation and scaling stages
adders is used to calculate the results specified in Eqgns. (6for the logarithm algorithm. These are similar to the previ-
and (7). The multiplier output is left in carry-save form, ous two, except tha] anq are used for determisjing
which avoids a carry-propagate addition inside it. This is
advantageous as the result of the multiplier is later adde
using a CSA and CPA. The multiplier result is also trun- bounds on the intermediate results, as each digit selection

cated to the precision uij anq . Eqn (8) is calculated block can only access part of the problem state.

OIand g respectively. This complicates the analysis of the

using a CSA because of the redundant representation of

. re;rs; acjﬁlﬁ
Vi reirs; acas
b5
r .

% vy

¥ It CSA
vy
CS

Yy
re; .. rs; a6 a3+1
vy
G4+ 11Sj+ £6 485 +1 Figure 4 Scaling Stage for Logarithm
Figure 2 Scaling Stage for Exponentiation 4 Bounds on Intermediate Results

Antelo et al advocate high-radix CORDIC using a max-

Figure 3 illustrates the hardware for the rotation stageimally redundant digit set. They suggest choosing a radix,

for exponentiation. A reduced precision approximation to and show that the algorithm will converge using the maxi-
a, is calculated and input to the digit calculation block. Mally redundant digit set. In this paper, we suggest explicit

J _ . _ _calculation of the minimal possible redundant digit set, and
This producesy; and is used, together with reduced preciexact digit selection based on the truncated data for two

sion values ofu; ands; to perform the calculation in '€@sOns First, explicitly calculating the radix means that the
J J

50f 10

[xJp = [xx27]x2™ (29)

Similar notation for rounding up, and round to nearest
are also used:

u. V. rcjrs; acas

[X]p = [xx27]x2F (30)
C:
J
Iy VY [Xlp = Lxx2P+2P_le2_P (31)
CSA [Cs
It is also necessary to bound the variables at each stage.
We introducemin andnax subscripts such that any vari-
able is bounded by itsmin andmax as in
<u; < -
j+1 j+1 rej+ J+ﬂlC- a3+1 Umin, j = 1 < Umax |

Figure 5 Rotation Stage for Logarithm 4.1 Scaling Stage for Exponential

As mentioned, it is desirable thd}zr- , or equiva-
tables need only be large enough to accommodate the !
actual number of values, which can be smaller than thejently, s =b"—1. Ideally, the digit selection function
radix implied by the maximally redundant digit set. Sec- !
ond, the size of the multipliers can potentially be reduced if
the set of values to be multiplied is bounded by a smaller L
range than the representation allows. The latter of these [b }P(ﬁ)

depends on the observation that the core afian -bit modi- Transforming this into the piecewise-constant expres-
fied Booth multiplier value can be used to multiply values sion leads to the exact computation of the digit

would implement

in the range[—?1r x 2"t ?1 x 2" 1} . This range would 5 = kx Z_P(Sj)
conventionally require am+2 bit multiplier. For exam- |Ong11[+ H(x 2 P(SJ)D_ <rt,
ple, multiplication by integers if—40, 39 can be per- 20 PD
formed with a 6-bit multiplier, but would conventionally < '0913%1““ HH %Ex o (%)E

require an 8-bit multiplier.
The approach in this section is constructive. We define

the bounds of the operands at each stage, and determine the Kmin< K< Knax

relationship between the bound on the input and output for

each type of transformation. For each possible digit , the

range of inputs that use the digit are specified, and the

resulting bound on the output is determined. Given theinterval. The truncation of the carry save value rof
overall bound on the range of inputs, and the precision of

the digits S andqj , it is possible to determine the set of

(32)

The range of values df is required to be sufficiently
large that all possible values ofj will fall in one such

bounds onrtj

. L _ 1-P(rty) _F-—
valuesk requwgd to span .the entire !n!out range. and cqnse [_o i l=F=G_ (33)
quently determine the radix of the digit set. By computing ! 1=

the union of all output bounds for every possible digitin a Substituting (33) into produces constraints fqf;,
stage, an overall bound on the output of a stage can be caI

culated. It is also necessary to specify the precision of the? Nd kipay, Which can be further simplified into explicit
truncated quantities input to the digit selection logic. requirements for these two boundslon
It will be useful to have a concise notation for the trun- p(s)
cation or rounding of quantities to various fixed point pre- g
gorq point p Iog%l %mm—- x2 ' (34)

cisions. We usd x|, to mean the valueof truncated
1- P(rtj) 1-F-G
down toP bits precision, so the definition is given as: +2 -2 = min, j

6 of 10

10, -P(s) 0. 4.2 Rotation Stage for Exponentiation
Iog%l E(max 2 0= Fmax (35)
A similar approach can be taken for the rotation stage,
Note that in these equations the roundindamj,() to with the notable difference that the rotation is computed as

, but affects both;

1 amd,, . Inthe

F+G precision is not specified; however, whatever & function ofg
method is used must be applied consistently across all ofotation stage, we desweql = [tan(In(b) x aj)]P(|
these equations to obtain correct results. 5

are calculated by first noting thiag The piecewise constant approximation is given as

Bounds onr;

j*1 -P(q)
is bounded by (33) due to the truncation of the carry and g = 2
sum components frofk + G precision before their addi- 1D P(qJ)D
: : o . atar%(
tion. For each such value kf that is required, it is possible
< .
to use (33) to determine the boundsr9n In(b) B aT]
10 P(qJ)EI
1-P(rt) e atar‘%u x 2
rtosrosrt +2 1 _pl-F-C (36) <
1= J In(b)
The definition ofsj is then substituted into (8) and (10)
I(mins k< kmax (40)

to produce bounds for each given valuekof

) Exact bounds ork can be determined by the previous
Iogb%l H(x 2 D (37) approach and will not be presented.

P(s) Bounds ona ., can be found by a similar approach to
|09b%1+ kx2 E< fi+1 the scaling stage. This leads to the following bounds on
. .1, Where the union of all such bounds must be taken
i+l
10 (S]) 1—P(rtj)
1< '091:»%11 H‘ *50% 2 + 2 (38) for the entire range d
1-F-G -P(g) P()
-2 —log,1+kx2 r‘%(qJI:I
ata
It is possible to attempt to construct an explicit bound In(b) (41)
for all possiblek by substituting in the appropridg; , atarH<x 2—P(qj)|:|
- : O
andk, .., butitis difficult to guarantee an exact bound in - W <@,
the presence of multiple roundings to various precisions. b
Instead, we simply iterate across all values, taking the min- atar%(+ 10,57 %)g
imum and maximum of these bounds to determine overall 20 0
bounds onr, , ; I+1 In(b) (42)
. . _P(qj)|:|
It is useful to ignore the redundancy and take a first atarH(xz 0 1-P@) _1-r-c

order Taylor series approximation to (37) and (38) into
obtain insight into the operation of the algorithm, although
the exact form of equation must be used for computing For smalla; , ignoring redundancy and taking a first-
bounds.

order Taylor series approximation shows tha}tJrl is
|Fj +1] < In(b) x g (39) bounded by approximately half an ULP qf
Egn (39) shows that each stage reduces the magnitude -1-P(q)

of r;,; to roughly one-half ULP in the digit's representa- (43)

3+ <=y

tion.
The choice oqu is independent oJf , S0 the bound on

r,q can only be given by subtracting the minimum and

7 of 10

maximum possible values oﬁj from the boundsrpn , Uy Uy

sutj<

—P
+1'|:|x2 (%)+1

10, ,7P(s) '
2 ~2xP(at) _104- ‘1
Knin< K< K, (46)
. 2 —2><P(a5)|:|:| min ax
M+15THax j—mkln HOgbg/l+k X 2 28 (45)

This establishes following bound on,q, . Although
Becausek may be signed, it is not possible to express _ k.
- in

will give the largest range, the calculation
these in a form only using one &f,;,, &, in each

should be performed to determine the union of all ranges
for all values ofk using exactly the same rounding as the
hardware in order to obtain precise bounds.

equation.

4.3 Scaling Stage for Logarithm

-P(s)
The logarithm stages are more complicated to under- Uy X kx2 L +1 . U, (47)
] - +
stand as both scaling and rotation affect boffy ; and E(“L EEX) P(s) ‘1 i
2
Vg1 but each stage must perform a transformation based
on only one value. Fig. 6 illustrates the scaling transforma- E u
tion. The vertical dashed lines represent the bounds Uj 41 <0G NP(Sj) (48)
.. 1D —!

between values oﬂj that lead to distinct values%of . %_me 2 +1

Each such bound leads to an intervahjn apd thatis a
rectangular interval subject to scaling by the same value of Zl‘P(”E‘) _21—F—GEX H(% Z‘P(ﬁ) +10

1+ S - The arrows show the linear scaling - S for ad U

O
the upper left point in two of the rectangles. Although the

range ofuj +1 Isreduced compared to the range; of ,the The value ofvj is scaled by the same factor,\/js;_)l

range ofv; , ; is increased comparedvjo . can be bounded by the union of the intervals for all values
of k
4 Vmax j+1
-P(s)
Vmin,jxa(x2 Sj +1E5Vj+1 (49)
Y [P(%)
max | W <V 'XB(XZ_ +10
L | max | O
1 1 1 | ..’
v L N 4.4 Rotation Stage for Logarithm
min, j [
Umin, j U, bX | The rotation stage for logarithm presents the most diffi-
Vi V: .
I min, j+1 culty, as the goatj, = 2 depends on two values. We sim-
Umin, j+1Ymax j+1 Y
plify this to a function of a single value by using the bound
Figure 6 Operation of Scaling Stage in Logarithm Algo- on u; and taking the midpoint of this range as an approxi-
rithm
: : . Vi
u mation. This results ing; = | ————t—— as
Recall that we desirej =N_1 .Inthe piecewise con- min, j " Ymax]
Y O 2 P(4)
stant form, this can be achieved by an approximate goal fog; . This operation of this stage is
-P
s = kx2) shown graphically in Fig. 7. The horizontal dashed lines

represent the thresholds for valuesv?f that result in dis-

8 of 10

tinct values oqu , and that apply to a rectangular region in
Y
two of these regions, illustrating the center point of each,
together with the bounding box for the rotated and
stretched rectangle. Because each of the intervals is
rotated, the tightest possible bounds of the resulting values

U, andy;,, does not form a rectangle; however, for

and vj - The figure shows the rotation and stretching of

simplicity of analysis, it is considered to be the smallest
rectangle that encloses all of the rotated and stretched
intervals, and is illustrated with the dotted rectangle in the

10, 5, P@ Hmin j* Ymax
Vig<pksgx2 UxgmeTEE (52)
1-P(vt) _E_ -P(q;)
+2 Pil=F=C_yx2 unmin‘j
-P(a)
Unin, j* K% 2 ! XViin i< Uis1 (53)
-P(q;)
Uj+1<umaxj+kx2 J ><Vmaxj (54)

Fig. 7. The figure is not to scale, and typically the rectangle5 Example for 32-bit Complex Numbers

bounding the would be much smaller than the input
bounds.

overall bounds of result
Viax | ~ /
T Ty T Vimin, j+1
Vmin,j ‘
umil,j Umay |
u. . Umax j+1
min, j+1

igure 7 Operation of Rotation Stage in Logarithm Algorithm

The exact definition ohj is
-P(q)
g =kx2
10, @ Hmin " Ymax 1
a2 Vg vy

1. 7P - Hmin j T Umax
<H(+§Dx2 xD—2 0

I(minSkS kmax (50)

This leads to the following bounds an, ,

and;

where, as usual, all valueslbf must be considered:

—P(q: -
10 fimin (1)

+ Umax i
20

2 O
—P(Qj)

—-kx2 xu

max jSVj+l

9 0of 10

The exponential stages calculate both digits based on a
single operand, but the value e{ affects the value of

r+, as well. It is optional whether to interleave rotation

and scaling stages, or to perform all of the scaling at the
end, as in [9]. In the logarithm stage, bmﬁhr 1 avpgl

depend onu; and; . It is necessary to alternate scaling

J J
and rotation stages in order to tighten bounds on both
simultaneously.

As a demonstration of the feasibility of this approach,
we have designed a high-radix multiply-add CLNS arith-
metic unit with precision comparable to IEEE-754 single
precision. The unit performs complex multiplication using
two fixed point adders, and uses high-radix exponentiation
and logarithm to perform complex addition using the func-

tion f(r) defined in (4). The design usés= 24 and

G = 4, and some other minor changes to the constants
assumed in the derivation above. The number representa-
tion uses a mixed base for the representation of the num-
bers to simplify range reduction. A number X is

represented by its complex logarithm = x +xg 0 ,
wherex is a 32-bit 2's complement fixed point number,

and xg is a 27-bit unsigned fixed point number, both of

which have 24 fractional bits.

The details of the algorithm were designed with the
assistance of a program that has as input an architecture
description file containing all of the precisions of each
variable, and performs exact bit-level modeling of the
architecture.

Our design uses a total of 10 stages to perform an expo-
nentiation and a logarithm as required by the logarithmic
addition function. Datapath widths were based on 6 bit dig-
its requiring two stages of each of rotation and scaling for
exponentiation, and three of each for logarithm. Antgtlo
al [9] would require 8 stages using 7-bit multipliers to per-
form a rotation to the same precision; thus, our architecture
requires little more hardware to perform a CLNS addition.

Beyond this, only two more fixed point adders are required gle CORDIC operation.

to perform a CLNS multiply-add. Table 1 shows the key

parameters of the design. The digit precision refers to the/

Table 1: Hardware Parameters of Example CLNS ALU

. Digit

?’;ap%e Przlcgigion Sele?:t?on Radix

Precision

Exponential Algorithm
R 6 10 65
S 6 10 118
R 12 16 74
S 12 16 7

Logarithm Algorithm
S 6 10 65
R 6 10 65
S 6 10 67
R 12 16 82
S 12 16 69
R 18 22 110

digit generated, eithersj op and the digit selection

precision refers to the input to the digit selection block,
such asat; or other values.

5e+05

4e+05 |
3e+05 |

2e+05 | 1 1 i \

Count **% + ¢ \

,

2 \

0 . N
215 -I 05 0 5 T 5 2

Error (ULP)
Figure 8 Frequency Count of Error of CLNS ALU Exam-
ple: Solid line: real; Dashed: Imaginary. Bin width is .01

Fig. 8 illustrates the simulator’s real and imaginary error

histogram in ULPs for0’ pseudo-random tests. A bias is

clear, and is due to the use of truncation rather than round-

(1]
(2]
(3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

ing in the datapath. Mean error and bias are each less thans]

0.4 ULP, but worst case error is 1.5 ULP.
6 Conclusions

This paper has demonstrated high-radix CORDIC algo-
rithms adapted for CLNS addition. A design example pro-
ducing six bits per stage as an illustration shows that a
CLNS addition can be performed for approximately the
same cost as a conventional high-radix CORDIC rotation.
Since a CLNS multiply is inexpensive, this allows a CLNS
multiply-accumulate to be performed for the cost of a sin-

10 of 10

References

J. Volder, “The CORDIC Computing TechniquelRE
Trans. Comput.Sept. 1959, pp. 330-334

J. Walther, “A Unified Algorithm for Elementary Func-
tions”, Spring Joint Comp. Confl971, pp 379-385

T. Chen, “Automatic Computation of Exponentials, Loga-
rithms, Ratios, and Square RootlBBM J. Res. Dev1972,

pp 380-388

A. Madisetti, A. Kwentus, and A. Willson, “A Sine/Cosine
Direct Digital Frequency Synthesizer Using an Angle Rota-
tion Algorithm”, ISSCC-95pp. 262-263

A. Skaf, J.-M. Mullar, and A. Guyot, “On-line Hardware
Implementation for Complex Exponential and Logarithm”,
Twentieth European Solid-State Circ. CotP94, pp 252-
255

D. Timmermannm B. Rix, H. Hahn, and B. Hosticka, “A
CMOS Floating-Point Vector Arithmetic Unit"lEEE J.
Solid State Circuitdlay 1994, pp 634-639

D. Lewis,"A 114 MFLOPS Logarithmic Number System
Arithmetic Unit for DSP Applications”|EEE J. Solid-State
Circuits, Dec 1995, pp 1547-1553

J.-C. Bajard, S. Kla, and J.-M. Muller, “BKM: A New Hard-
ware Algorithm for Complex Elementary FunctionE2EE
Trans. ComputAug 1994, pp 955-964

E. Antelo, J. Villalba, J. Bruguera, and E. Zapata, “High
Performance Rotation Architectures Based on the Radix-4
CORDIC Algorithm”, IEEE Trans. ComputAug 1997, pp
855-870.

E. Swartzlander and A. Alexopolous, “The Sign/Logarithm
Number System”|EEE Trans. CompubDec 1975, pp.
1238-1242

M. Arnold, T. Bailey, J. Cowles, and M. Winkel, “Arith-
metic Co-Transformation in the Real and Complex Loga-
rithmic Number Systems”]JEEE. Trans. Comput.July
1998, pp 777-786

P. Baker, “Parallel Multiplicative Algorithms for Some Ele-
mentary Functions"EEE Trans. ComputMarch 1975, pp
322-325

H. Ahmed,Signal Processing Algorithms and Architectures,
PhD Thesis, Stanford University, 1982

H. Ahmed,Efficient Elementary Function Generation with
Multipliers, Proc. 9th Symp. Comp. Arith, 1989, pp 52-59
E. Antelo, J. Brugerea, T. Lang, J. Villalba, and E. Zapata,
“High Radix Cordic Rotation based on Selection by Round-
ing”, Intl. European Conf. on Parallel Proc., Euro-Par 96,
pp 155-164

