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Abstract

This paper describes the application of high radix
redundant CORDIC algorithms to complex logarithmic
number system arithmetic. It shows that a CLNS addition
can be performed with approximately the same hardware
as a high-radix CORDIC operation. A design example
comparable to single precision floating point has been
designed and simulated.

1 Introduction

Logarithmic number system (LNS) representation has
been the subject of considerable theoretical interest since
its introduction [10], and a number of implementations
described, e.g. [7]. Arnold recently described arithmetic
transformations for efficient software implementations, as
well as pointing out the advantages of complex valued
LNS (CLNS) [11]. CLNS is potentially attractive in areas
such as FFTs, where the powers of unity have exact repre-
sentation, and complex multiplications can be easily per-
formed using fixed point additions. However, previous
VLSI implementations of LNS rely on interpolation of a
function of a single variable and do not extend to CLNS.
Compared to floating point representation, where a com-
plex multiply requires 4 FP multiplies and 2 FP adds, a
CLNS multiply requires only 2 fixed point adds. Conse-
quently, if the cost of a CLNS add can be reduced below 4
FP multiplies and 4 FP adds, the total cost of a CLNS mul-
tiply-add will be less than FP.

CORDIC algorithms have long been advocated for trig-
onometric functions as well as complex valued exponen-
tials and logs [1] [2] [3]. Most efforts in CORDIC have
focused on real numbers, and used low radix-2 or radix-4
algorithms. Recently, BKM, a low-radix redundant
CORDIC algorithm was described and used for trigono-
metric functions and complex arithmetic using a linear rep-
resentation [8]. BKM, as most other CORDIC algorithms
is a low radix method, and takes many steps to perform an
operation. The simplicity of the hardware implementation
of CORDIC is attractive, and a number of successful hard-

ware implementations of CORDIC have been also been
described [4] [5] [6] [9], however, these typically take a
large number of stages. A few high radix methods have
been described. Baker [12] described high radix CORDIC
based algorithms, later extended to carry-save representa-
tion by Antelo et al [15]. Ahmed [13] [14] introduced a
convergence method that generalized Chen’s [3], useful for
describing algorithms as transformations on numbers that
maintain some invariant. Ahmed described CORDIC algo-
rithms using a single high-radix step to begin, and also
using linear interpolation for the latter half of the algo-
rithm.

This paper is most closely related to Antelo’s et. al high-
radix CORDIC algorithm [15]. It applies to CLNS, and
modifies this algorithm, as well as introducing some opti-
mizations specific to CLNS that approximately halve the
cost of the algorithm. Some specific points of comparison
to [15] are: (1) this paper shows how optimizations specific
to CLNS can eliminate approximately half the CORDIC
stages (2) this paper advocates exact calculation of the
minimal usable radix, instead of using a fixed radix (3) this
paper extends the high-radix algorithms to include loga-
rithm algorithms, similar to CORDIC vectoring, which
requires more complex digit selection and a different
sequence of operations.

The remainder of this paper describes the number repre-
sentation assumed for CLNS, and the transformations that
can be performed on these numbers. Hardware structures
for high-radix operations are described for complex expo-
nentiation and logarithm, together with bounds on the val-
ues at each stage. An example processor has been designed
and verified down to the gate level, and its verification is
described.

2 Number Representation

A complex valued number  is repre-

sented in CLNS by its logarithm, , such

that , where  is the base of the system. Both 

and  are fixed point numbers and can be represented
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using 2’s complement binary numbers.
Given the representations , ,

and  of two numbers  and , it is trivial to find

the representation  of  as

 and .

CLNS addition is considerably more difficult. To com-

pute the representation of , it is necessary to

compute  and .

(1)

(2)

The functions  and  are implicitly defined in

terms of , as

(3)

(4)

(5)

We will assume that  so that the argument to 

and  lies in the right hand half plane. Subtraction is

accomplished by adding  to the appropriate oper-

and.

2.1 Transformations on Complex Number Repre-
sentations

In order to compute  as defined in (5), CORDIC-
based algorithms can be applied to the computation of the
complex exponential and logarithm functions. As in previ-
ous descriptions of convergence methods, we define a
function that maintains a constant value through each stage
in the transformation. Our 4-tuple contains a Cartesian rep-

resentation of a point using the pair of real values  and

, and a polar logarithmic representation using the two

real values  and . The value represented is

. Two transformations, scal-

ing and rotation, are define such that the value of  is

kept constant.
The scale transformation performs a linear scaling of

the Cartesian value by a factor of , and compensat-

ing reduction in the logarithmic value of :

(6)

(7)

(8)

(9)

(10)

The rotation transformation performs a rotation of the

Cartesian values based on some value  and compensat-

ing change in the angle of the polar logarithmic representa-
tion:

(11)

(12)

(13)

(14)

(15)

(16)

The angle of the rotation is given by . The rotation

lengthens the vector by a factor of , and the corre-

sponding change in the polar logarithm magnitude is given

by . Both the scale transformation and the rotation

transformation preserve the invariant .

Complex exponentiation and complex logarithm are
implemented using a sequence of rotation and scaling
transformations. In each, a series of  stages are cascaded,
each of which may be a rotation or scaling transformation
according to the design of the algorithm. The inputs are

, , , and , and the outputs are , , , and

. In each algorithm, some of the inputs and outputs are

constrained to be constants. Thus, the difference in the

operation of the algorithms is the way that the values 

and  are determined as a function of the inputs.

2.2 Complex Exponentiation Algorithm

In complex exponentiation, the values of  and  are

set to constants, such as 1 and 0 respectively, while  and

 are bounded by some intervals. A series of transforma-

tions is performed such that  and  are constants

regardless of the inputs  and . From the invariance of
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, we then have

(17)

Without loss of generality, assume that  and

. Each transformation stage must examine one of

the values of  and  to determine the values of  and

. Since the goal is to bring  and , this

is achieved in a series of stages each of which attempts to

satisfy  and  to an increasing degree

of precision in successive stages. Substituting these goals
into (8) and (14) leads to the digit selection functions:

(18)

(19)

2.3 Complex Logarithm Algorithm

In complex logarithm, the values of  and  are con-

stants, the values of  and  are inputs, and the series of

transformations is performed such that  and  are

constants. The invariance of  leads to eqn. (20).

(20)

A useful choice is , , , and

. As with the exponentiation algorithm, there is no

loss in generality in assuming  and .

To insure that  and  are constants, the transforma-

tion stages must examine  and  to determine  and

. In this case, the goals are  and . The

digit selection functions are potentially more complex,

since both scaling and rotation affect both  and . To

reduce the complexity of digit selection, each function
depends only on one of  and . For the particular case

described above, we require that  depend on  alone,

and  depend on  alone. By setting  in (6),

and  into (12), we have the digit selection func-

tions:

(21)

(22)

 depends on two variables, so a constant approxima-

tion to  will be introduced later to simplify the function

to a single argument.

2.4 CORDIC for CLNS Addition

The CLNS addition function can be constructed using a
CORDIC exponentiation, adding one, followed by a
CORDIC log, as illustrated in the left side of Fig. 1. Given

 as input, a series of exponential stages, with input

 produces output . An adder

then produces  and  and performs a

logarithm operation on , producing the final

result.
An optimization is possible by considering an interme-

diate value in the exponential stage, say , where  is rep-

resented by . For sufficiently small

 and , apply a Taylor series approximation to

 producing

(23)

(24)

(25)

For the case that , the multiply disappears,

and circuit uses , ,

, and  as inputs to the logarithm stages.

This provides a strong incentive to using a base of .
Similar improvements apply to the logarithm stage.

Consider some stage , and the Taylor series approxima-

tion for  and 
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Approximately half the stages can be eliminated for
both exponential and logarithm, as shown in the right side
of Fig. 1. Consequently, a CLNS addition can be per-
formed with cost comparable to approximately one
CORDIC operation.

3 Hardware Implementation

To understand the calculation of the values of  and

, as well as the bounds on the values and precision in

each stage of the computation it is useful at this point to
introduce the redundant computation in terms of the hard-
ware implementation.

The algorithms allow redundant representation using of
all the quantities involved in the computation; however, the

multiplications of  and  eliminate any advantage to

using a redundant representation of these quantities.
Instead, only  and  are represented using a carry-save

form, and the non-redundant value is calculated to the
accuracy required.

Truncation is explicitly represented in the hardware

designs shown below with a truncation operator , and a
separate symbol for the truncated value. The precision of
any variable in the algorithm, for example some variable

, will be expressed as . The precision of a variable
is the negative of the position in the binary representation
of the least significant bit, i.e., if

. , then .

There are four related hardware blocks, corresponding

to the scaling and rotation stages for both the exponentia-
tion and logarithm algorithms. For both algorithms, the
values , , , and  are assumed to have  bits pre-

cision. Internally, each value is represented with an addi-

tional  guard bits, for a total of  bits. In carry-save

form,  and  are represented by the pairs  and ,

and by  and  respectively, all of which have preci-

sion .
In the exponential scaling stage, shown in Figure 2, a

reduced precision approximation of  is calculated by

truncating  and , which are added to calculate the

non-redundant, but lower accuracy approximation ,

which is input to the digit calculation block. The purpose
of this lower precision approximation is to reduce the
amount of hardware required for the adder, but more
importantly, to reduce the number of bits that the digit
selection block must examine, and consequently reduce its
associated hardware and increase its speed.

All stages described here contain digit selection blocks.
Before describing the specific functions implemented in
them, a brief description of their logic structure is useful. A
digit selection block implements some monotonic function
of a single input, and is a piecewise constant approxima-
tion to some continuous function. Using the specific exam-
ple of a digit selection block with  as an input and  as

output, with  for some , the function can

be expressed in the form (27), where the digit is  and

 is the piecewise constant approximation to the

function over some interval . 

, 

(27)

(28)

The value of  may take any value in the range  to

, where the bounds are chosen to include the entire

range of inputs to the function. The number of distinct val-
ues that can be produced is  and is referred

to as the radix of the value . Expressing the function at

this level of detail explicitly provides the range over which
each input value produces some output value, and makes it
straightforward to bound the result of a calculation. The

Figure 1 CLNS Addition Using Interpolation. Right half
shows truncation of iterations using Taylor series approxima-
tion.
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hardware implementation of this will be discussed later,
but it is clear that the two primary factors involved are the
number of bits in the input value which need to be exam-
ined, and the number of distinct output values that can be
produced, or equivalently, the radix.

The digit selection block in the scaling exponentiation
stage produces  and . Assuming that

the goal is , we desire that  to the precision

possible given the fixed number of bits in the representa-

tion of . Note that  is expressed to the full precision of

the datapath, while it is the limited number of bits in 

that restrict the set of possible values of . This is due to

the desire to reduce the size of the digit estimation logic for
.

The values of  and  are also truncated to a lower

precision forming  and , and a pair of multiply-

adders is used to calculate the results specified in Eqns. (6)
and (7). The multiplier output is left in carry-save form,
which avoids a carry-propagate addition inside it. This is
advantageous as the result of the multiplier is later added
using a CSA and CPA. The multiplier result is also trun-

cated to the precision of  and . Eqn (8) is calculated

using a CSA because of the redundant representation of

.

Figure 3 illustrates the hardware for the rotation stage
for exponentiation. A reduced precision approximation to

 is calculated and input to the digit calculation block.

This produces  and is used, together with reduced preci-

sion values of  and  to perform the calculation in

Eqns. (11) through (14). As before, calculations involving
 and  are preformed with CSAs.

Figures 4 and 5 illustrate the rotation and scaling stages
for the logarithm algorithm. These are similar to the previ-

ous two, except that  and  are used for determining 

and  respectively. This complicates the analysis of the

bounds on the intermediate results, as each digit selection
block can only access part of the problem state.

4 Bounds on Intermediate Results

Antelo et al advocate high-radix CORDIC using a max-
imally redundant digit set. They suggest choosing a radix,
and show that the algorithm will converge using the maxi-
mally redundant digit set. In this paper, we suggest explicit
calculation of the minimal possible redundant digit set, and
exact digit selection based on the truncated data for two
reasons First, explicitly calculating the radix means that the
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tables need only be large enough to accommodate the
actual number of values, which can be smaller than the
radix implied by the maximally redundant digit set. Sec-
ond, the size of the multipliers can potentially be reduced if
the set of values to be multiplied is bounded by a smaller
range than the representation allows. The latter of these

depends on the observation that the core of an -bit modi-
fied Booth multiplier value can be used to multiply values

in the range . This range would

conventionally require an  bit multiplier. For exam-

ple, multiplication by integers in  can be per-
formed with a 6-bit multiplier, but would conventionally
require an 8-bit multiplier.

The approach in this section is constructive. We define
the bounds of the operands at each stage, and determine the
relationship between the bound on the input and output for

each type of transformation. For each possible digit , the
range of inputs that use the digit are specified, and the
resulting bound on the output is determined. Given the
overall bound on the range of inputs, and the precision of

the digits  and , it is possible to determine the set of

values  required to span the entire input range. and conse-
quently determine the radix of the digit set. By computing
the union of all output bounds for every possible digit in a
stage, an overall bound on the output of a stage can be cal-
culated. It is also necessary to specify the precision of the
truncated quantities input to the digit selection logic.

It will be useful to have a concise notation for the trun-
cation or rounding of quantities to various fixed point pre-

cisions. We use  to mean the value of  truncated

down to  bits precision, so the definition is given as:

(29)

Similar notation for rounding up, and round to nearest
are also used:

(30)

(31)
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(35)

Note that in these equations the rounding of  to

 precision is not specified; however, whatever
method is used must be applied consistently across all of
these equations to obtain correct results.

Bounds on  are calculated by first noting that 

is bounded by (33) due to the truncation of the carry and

sum components from  precision before their addi-

tion. For each such value of  that is required, it is possible

to use (33) to determine the bounds on   

(36)
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the exact form of equation must be used for computing
bounds.
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maximum possible values of  from the bounds on ,

(44)

(45)

Because  may be signed, it is not possible to express

these in a form only using one of  or  in each

equation.

4.3 Scaling Stage for Logarithm

The logarithm stages are more complicated to under-

stand as both scaling and rotation affect both  and

, but each stage must perform a transformation based

on only one value. Fig. 6 illustrates the scaling transforma-
tion. The vertical dashed lines represent the bounds

between values of  that lead to distinct values of .

Each such bound leads to an interval in  and  that is a

rectangular interval subject to scaling by the same value of

. The arrows show the linear scaling by  for

the upper left point in two of the rectangles. Although the

range of  is reduced compared to the range of , the

range of  is increased compared to .

Recall that we desire . In the piecewise con-

stant form, this can be achieved by

,

(46)

This establishes following bound on . Although

 will give the largest range, the calculation

should be performed to determine the union of all ranges

for all values of  using exactly the same rounding as the
hardware in order to obtain precise bounds.

(47)

(48)

The value of  is scaled by the same factor, so 

can be bounded by the union of the intervals for all values
of 

(49)

4.4 Rotation Stage for Logarithm

The rotation stage for logarithm presents the most diffi-

culty, as the goal  depends on two values. We sim-

plify this to a function of a single value by using the bound
on  and taking the midpoint of this range as an approxi-

mation. This results in  as

an approximate goal for . This operation of this stage is

shown graphically in Fig. 7. The horizontal dashed lines

represent the thresholds for values of  that result in dis-
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Figure 6 Operation of Scaling Stage in Logarithm Algo-
rithm
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tinct values of , and that apply to a rectangular region in

 and . The figure shows the rotation and stretching of

two of these regions, illustrating the center point of each,
together with the bounding box for the rotated and
stretched rectangle. Because each of the intervals is
rotated, the tightest possible bounds of the resulting values

 and  does not form a rectangle; however, for

simplicity of analysis, it is considered to be the smallest
rectangle that encloses all of the rotated and stretched
intervals, and is illustrated with the dotted rectangle in the
Fig. 7. The figure is not to scale, and typically the rectangle
bounding the would be much smaller than the input
bounds.

The exact definition of  is 

(50)

This leads to the following bounds on  and ,

where, as usual, all values of  must be considered:

(51)

(52)

(53)

(54)

5 Example for 32-bit Complex Numbers

The exponential stages calculate both digits based on a
single operand, but the value of  affects the value of

 as well. It is optional whether to interleave rotation

and scaling stages, or to perform all of the scaling at the

end, as in [9]. In the logarithm stage, both  and 

depend on  and . It is necessary to alternate scaling

and rotation stages in order to tighten bounds on both
simultaneously.

As a demonstration of the feasibility of this approach,
we have designed a high-radix multiply-add CLNS arith-
metic unit with precision comparable to IEEE-754 single
precision. The unit performs complex multiplication using
two fixed point adders, and uses high-radix exponentiation
and logarithm to perform complex addition using the func-

tion  defined in (4). The design uses  and

, and some other minor changes to the constants
assumed in the derivation above. The number representa-
tion uses a mixed base for the representation of the num-
bers to simplify range reduction. A number X is

represented by its complex logarithm ,

where  is a 32-bit 2’s complement fixed point number,

and  is a 27-bit unsigned fixed point number, both of

which have 24 fractional bits.
The details of the algorithm were designed with the

assistance of a program that has as input an architecture
description file containing all of the precisions of each
variable, and performs exact bit-level modeling of the
architecture.

Our design uses a total of 10 stages to perform an expo-
nentiation and a logarithm as required by the logarithmic
addition function. Datapath widths were based on 6 bit dig-
its requiring two stages of each of rotation and scaling for
exponentiation, and three of each for logarithm. Antelo et
al [9] would require 8 stages using 7-bit multipliers to per-
form a rotation to the same precision; thus, our architecture
requires little more hardware to perform a CLNS addition.
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Beyond this, only two more fixed point adders are required
to perform a CLNS multiply-add. Table 1 shows the key
parameters of the design. The digit precision refers to the

digit generated, either  or , and the digit selection

precision refers to the input to the digit selection block,

such as  or other values.

Fig. 8 illustrates the simulator’s real and imaginary error

histogram in ULPs for  pseudo-random tests. A bias is
clear, and is due to the use of truncation rather than round-
ing in the datapath. Mean error and bias are each less than
0.4 ULP, but worst case error is 1.5 ULP.

6 Conclusions

This paper has demonstrated high-radix CORDIC algo-
rithms adapted for CLNS addition. A design example pro-
ducing six bits per stage as an illustration shows that a
CLNS addition can be performed for approximately the
same cost as a conventional high-radix CORDIC rotation.
Since a CLNS multiply is inexpensive, this allows a CLNS
multiply-accumulate to be performed for the cost of a sin-

gle CORDIC operation. 
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Table 1: Hardware Parameters of Example CLNS ALU

Stage 
Type

Digit 
Precision

Digit 
Selection 
Precision

Radix

Exponential Algorithm

R 6 10 65

S 6 10 118

R 12 16 74

S 12 16 77

Logarithm Algorithm

S 6 10 65

R 6 10 65

S 6 10 67

R 12 16 82

S 12 16 69

R 18 22 110

sj pj

atj

Figure 8 Frequency Count of Error of CLNS ALU Exam-
ple: Solid line: real; Dashed: Imaginary. Bin width is .01

Count
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