
Area � Delay (A � T) Efficient Multiplier Based on an Intermediate Hybrid Signed–Digit
(HSD–1) Representation

Jeng-Jong J. Lue
Summit Systems, Inc.

22 Cortlandt St. 31st Fl
New York, NY 10007

Dhananjay S. Phatak
Electrical Engineering Department

State University of New York, Binghamton, NY 13902–6000
phatak@ee.binghamton.edu

Abstract

Intermediate Signed Digit (SD) representation can fa-
cilitate fast and compact VLSI implementations of partial
product accumulation trees. It achieves a reduction ratio
of 2:1 at every level and also leads to more regular lay-
outs. Its disadvantage is that the number of bit lines that
need to routed can be high. This can lead to a significant
area overhead especially at smaller feature sizes where the
wire/interconnect area and delay can be dominant.

A Hybrid Signed Digit (HSD) representation lets some
of the digits be unsigned bits, thereby reducing the num-
ber of bit lines. By arbitrarily varying the positions of and
distances between consecutive signed digits, this represen-
tation can trade off latency for area and offers a continuum
of choices between the two’s complement representation on
the one hand and fully Signed Digit (FSD or simply SD)
representation on the other.

In this paper, we illustrate anA � T (area� delay) effi-
cient multiplier based on the HSD–1 representation which
is one of the many possible HSD formats, wherein every al-
ternate digit is signed and the rest are unsigned (ordinary)
bits. It is seen that multipliers based on HSD–1 format re-
quire more transistors than those based on FSD format.
However, they require fewer bit lines to be routed, which
substantially reduces the interconnect area; thereby lead-
ing to a reduction in the total VLSI area and a lowerA � T
product. The design reaffirms that the interconnect area can
be siginficant especially at small feature sizes.

1. Introduction

To speed up multiplication, Partial Products (PPs) are ac-
cumulated in parallel in some kind of a tree structure (such
as a Wallace Tree [13]). Any carry propagation is deferred
until there are only 2 partial sums left to be added, at which
point a full carry propagation must occur. Traditionally, the
accumulation tree has been based on (3,2) counters or full
adders. This achieves a reduction ratio of 3:2 and requires
“diagonal” propagation of the carries making the VLSI lay-

out difficult. Other types of counters have been used as
well [1, 7, 4]. Fundamentally, however, these generalized
multi-input counters are still synthesized out of (3,2) coun-
ters.

Another approach to high speed partial product accumu-
lation is to employ an intermediate Signed Digit (SD) repre-
sentation [3, 5, 12]. In this representation, carry propagation
is limited to 1 digit position (hence, addition can be thought
to be “carry free” for all practical purposes). The SD repre-
sentation achieves a reduction ratio of 2:1 and leads to more
regular layouts, circumventing the need for diagonal sig-
nal propagation [5]. On the other hand, the number of bits
required to represent ann digit partial sum is2n because
each binary Signed-Digit can assume any of the 3 values
f�1, 0,1g, and requires two bits to represent it (note that
any carry-save type scheme that postpones full carry prop-
agation until the very end also needs 2 bits per position).
Hence, opting to generate the intermediate partial sums in
the SD format can lead to fast execution and a 2:1 reduction
ratio; but number of bit-lines that need to be routed can be
substantial. This can lead to a significant area overhead es-
pecially at smaller feature sizes where the wire/interconnect
delay and area can be dominant.

A Hybrid Signed Digit (HSD) representation was in-
troduced in [11]. It lets some of the digits remain un-
signed bits, thereby reducing the total number of bit lines.
The HSD representation is pictorially illustrated in Figure
1 (along with it’s relationship with the GSD representation
which was proposed in [10]). As seen in the Figure, in this
representation, the carry propagation chains can be confined
in between consecutive signed digits. In this format, the
number and positions of signed digits can be arbitrary and
hence can be selected to match desired application goals.
By varying the positions of and distances between signed
digits, this representation can trade off addition latency for
area and offers a continuum of choices between the two’s
complement representation on the one hand and full Signed
Digit (FSD or simply SD) representation on the other. Of
particular interest is the HSD-1 format wherein, every al-
ternate digit is signed and the remaining digits are unsigned

(ordinary) bits. The Least Significant Bit (LSB) is unsigned
and the Most Significant Bit (MSB) has to be a signed digit
(reasons for this and other details about HSD representa-
tions can be found in [11]). Note that the number of bits
required to represent a partial sum in the HSD–1 format
is only 3

4 th the corresponding number of bits required by
the FSD format (since alternate positions in the HSD–1 for-
mat are unsigned bits). Hence, the routing area required
for multipliers based on the HSD–1 format can be substan-
tially smaller than FSD based designs. This was pointed out
in [11], wherein, it was further argued that HSD–1 based
multipliers might potentially have a smaller total area, as
well as a lowerAT product than their FSD based counter-
parts.

In this paper, we illustrate such anAT efficient design
based on the HSD–1 format. The next section describes
the number representations and the arithmetic algorithms
involved; along with their effect on the overall architec-
tural issues. Section 3 briefly outlines the implementation
and measurements. Prototype16 � 16 multipliers based
on the HSD–1 and FSD formats were fully laid out in or-
der to obtain accurate area estimates for higher wordlengths
(32 and 64 bits). Delays were estimated from layouts and
SPICE simulations. Based on this data we illustrate theAT
comparisons in Section 3. Section 4 presents discussion and
conclusions. The analysis bears out that a proper mix of
HSD–1 and FSD formats can yield an improvement in the
AT performance measure.

We would like to point out that this paper does not at-
tempt to synthesize the fastest or the smallest multiplier,
neither does it look at all possible classes of multipliers.
It only compares theAT products of multipliers based on
FSD and HSD-1 formats. Hence, comparisons with other
recent 4:2 compressor based multipliers (such as [2, 9, 14],
which do not use intermediate SD representation but em-
ploy efficient 4:2 compressors to achieve fast execution) is
out of the scope of this paper.

2. Architectures

Forn bit long operands, radix 4 Booth recoding reduces
the number partial products todn=2e, (wheredxe = the
smallest integer� x). Let M be the multiplicand (being
an input, it is assumed to be in two’s complement format).
Then each of the primary partial products (i.e., those gen-
erated as a result of Booth recoding) is a two’s complement
number. At the first level of the PP accumulation tree, two
of these primary PPs are added to produce a signed-digit
result. This can be done very efficiently by rewriting the
additionA+B as a subtraction:
A+B = (A�B � 1) modulo 2n (1)

whereB is the one’s complement ofB which is obtained
simply by inverting all the bits ofB:
B = 2n � 1�B , wheren is the word-length (2)
The�1 in equation (1) can be taken care of by forcing a
carry (borrow)-inc0 = �1 and this correction is deferred
to the next levels of the PP accumulation tree. The modulo
operation simply amounts to discarding the outgoing bor-
row. Since each of the bits ofA andB can be 0 or 1, a
bit–wise subtraction directly leads to a signed-digit output
representing (A � B), where each digityi = ai � �bi is in
the rangef�1; 0; 1g. The bit–wise subtraction can be car-
ried out simultaneously (i.e., in parallel) for all the digit po-
sitions because there is no need to propagate signals from
one digit position to the next. Assuming the commonly
used encoding0 $ 00; 1 $ 01 and�1 $ 11 to repre-
sent a signed-digit, the bit-wise subtraction can be achieved
simply by one XOR and one NOR gate that operate in paral-
lel. Because this operation can be executed so fast and with
such little hardware it was simply “fused” with the partial
product generator cells in [5] so that after this stage only
n=4 partial products were generated (in FSD format). For
n = 64, the PP tree to sum the 16 fully SD partial prod-
ucts is illustrated in Figure 2 (which is further explained a
bit later below). Throughout the tree, extremely efficient
(fast and compact) Redundant Binary Adder (RBA) cells
presented in [5] are used to execute the additions. The crit-
ical path in their SD adder traverses 3 digit positions (i.e.,
3 RBA cells). Each RBA cell accepts 2 SD operands and
an incoming signed carry (for a total of 6 inputs bits) and
generates a signed-digit sum output and a signed outgoing
carry (i.e., a total of 4 output bits). Further details regarding
the design of this cell can be found in [5].

Suppose Booth-recoding generates adjacent partial prod-
ucts�M and
M with �;
 2 f0;�1;�2g, then the first
level of the PP accumulation tree will have to perform
�M +4
M = �M +�M . In general both� and� can as-
sume positive or negative signs. The operations performed
in all these cases are summarized in Table 1 below (on the
next page). Note that if the signs of� and� are op-
posite, then a true subtraction is called for and in this case
there is no need to “re-write” it. As seen in the table, true
subtraction directly leads to the correct signed digit result
which does not require the LSD correction, and does not
generate the carry-out. Addition of the magnitudes, how-
ever leads to a SD result that needs the LSD correction and
carry-out suppression. The LSD correction is “deferred” to
the next level of PP accumulation tree and has significant
consequences on the overall architecture as explained next.

At the second level, the two adjacent partial products to
be added are shifted with respect to each other by 4 digit
positions and are in full SD format. More important, each
of the sums is generated as per Table 1, so that in the worst

Possible Cases Operation Least Significant Digit Weight of Carry Out

(any of the two below) (LSD) Correction

+j�M j+ j�M j +j�M j � j�M j �j�M j+ j�M j �1 = �ulp �2n

+j�M j � j�M j +j�M j � j�M j �j�M j+ j�M j 0 0

�j�M j+ j�M j �j�M j+ j�M j +j�M j � j�M j 0 0

�j�M j � j�M j +j�M j � j�M j �j�M j+ jj�M j 1 = ulp 2n

Table 1 : Operation of the Subtracter at the First Level.ulp indicates adding one, i.e., a “unit in the least significant position”

����
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�PP1

PP2

digit position01234

ulp

ulp

h

l

Illustration 1: Corrections required at the second level.

case, each of the two operands (being summed at the 2nd
level) could need the LSD correction as shown in Illustra-
tion 1 below (on the next page). The LSD correction as-
sociated with the higher order partial product is denoted by
ulph and the one required by lower order PP is denoted by
ulpl . It can be shown that in general, it is not possible to
make bothulph andulpl corrections simultaneously at the
second level (because it can lead to digit-value overflow at
digit position 4 shown in Illustration 1). The natural ques-
tion is which one should be corrected and which one should
be deferred. Ifulph is not corrected, it ultimately leads to
a situation where one extra level needs to be added to the
tree, just to add the�1 values in the correct positions. This
is costly in terms of both execution delay as well as cir-
cuit area. Hence,ulph must be corrected andulpl must
be deferred to the next level. This is shown in Figure 2 by
the letter “c” (corrected) near the arrow originating at the
higher significant operand and the letter “d”(deferred) near
the arrow originating at the lower significant operand, in
every pair that gets added. This way, at the very end the
correction required is aulpl which can be accomplished
by setting carry-in = (value of the uncorrectedulpl). This
can be easily done in the SD adder since each adder cell in
a SD RBA accepts a carry-in which can assume any one of
the three valuesf�1, 0, 1g.

Next we consider the HSD–1 (also abbreviated as HSD)
PP accumulation tree(s). At the top level of the HSD tree,
two PPs (which are generated by Booth recoding and are
in two’s complement format) are added to generate HSD–1
format output. The top cells used for this purpose are
illustrated in Figure 3. From level 2 onwards the RBA cells

shown in Figure 4 are utilized to add HSD format
operands and generate an HSD format output. The figure
shows an array of 4 cells along with the critical path which
traverses 4 digit positions in this case. Alternate cells are
for unsigned digit positions and accept two bits (labeledak
andbk in Figure 3), and a signed carry (bitsuk andvk in
the Figure),i.e., a total of 4 inputs and produce one output
bit (denotedek) and outgoing signed carry, i.e., a total of 3
bits.

The adjacent cell adds 2 signed digits along with an in-
coming carry (a total of 6 inputs) and produces a signed
digit output and a signed carry (i.e., a total of 4 outputs).
Within every group of two adjacent cells, the higher signif-
icant cell handles signed digits while the lower significant
cell handles the unsigned bits. This group is arrayedn=2
times to implement an adder of wordlengthn. The transis-
tor count and area required by this group turns out to be
smaller than that required by a cascade of two SD RBA
cells used in [5]. More important, for every 4 bits in the
FSD design there are only 3 bits in the HSD design, so that
interconnect area (required for routing the bit lines; for bus
bendings when the operands are brought together at the next
level, etc.) can be expected to be significantly less for the
HSD design. Further details about these cells can be found
in [11].

Note that the top level cells in the HSD tree shown in
Figure 3 are far more complex than those used in [5]. Also,
in a tree, the number of leaf nodes equals (1 + number of
internal nodes). Thus, more than half of the adders are re-
quired at the top level. Hence, if pure HSD–1 format out-
puts are generated right from the first level of the tree, then
the total number of transistors required is much larger than
that for a tree based on full SD format, despite the fact that
the adder cells required handle HSD–1 format inputs and
outputs (shown in Figure 4) are smaller than adder cells
that add two FSD numbers to generate an FSD output. So,
at the top level of the PP adder tree, FSD format outputs
should be generated and if possible from the second level
onwards, HSD–1 format outputs should be produced; but,
such a switch from FSD to HSD–1 format could lead to
some extra delay and hardware.

Fortunately, however, the HSD format is flexible and it is
possible to add a full SD and an HSD–1 format number to
generate an HSD–1 format output in the same time it takes
to add two HSD–1 format numbers. As a result, at the first
level, some PPs can be generated in the FSD format and
the rest in the HSD–1 format. These can then be combined
appropriately at the subsequent levels. Consequently, there
are various ways of “mixing” the FSD and HSD–1 formats
as illustrated in Figure 5. Note that irrespective of the mix,
theulph always needs to be corrected andulpl needs to be
deferred to the next level.

Unlike FSD, the addition of two’s complement primary
PPs into HSD–1 format output does not go though an in-
termediate subtraction. Hence, the operations carried out
are like normal addition and are summarized in Table 2 be-
low. Since no subtraction is performed in the HSD design,
there is no “�1” in Table 2. The “+2” in the last case can
not be corrected on the same level. Therefore, it is split as
(ulp + ulp) and one of the “ulp ”s is corrected at the first
level, leaving a+1 to be corrected at latter levels. Note that
unlike the FSD design, the first level HSD partial product
adder can accept a carry-in (indicated by inputci�1 in Fig-
ure 3) which makes a correction possible right at the first
level. Thus, when the first level outputs are in HSD–1 for-
mat, only one value is needed for the LSD correction at all
subsequent levels of the tree in all cases: viz.,+1 = ulp .

Possible Operation LSD Carry

Cases correction Out

+j�M j+ j�M j +j�M j+ j�M j 0 0

+j�M j � j�M j +j�M j+ j�M j 1 2n

�j�M j+ j�M j +j�M j+ j�M j 1 2n

�j�M j � j�M j +j�M j+ j�M j 2 2n+1

Table 2: Operation of the HSD Adder at the First Addition
Level

The sign of the LSD corrections is important when
adding an SD PP and an HSD–1 PP together to gener-
ate HSD–1 format output. In fact, a consideration of the
sign of the LSD correction (together with other constraints)
dictates that the HSD number has to be the lower significant
one and the SD number has to be the higher significant one
whenever they are added together. The reason for this can
be understood with the aid of Illustration 2 which shows a
lower significant FSD PP being added to a higher signif-
icant HSD–1 PP to generate HSD–1 format output at the
2nd level of the tree (where the relative shift is 4 digits).
Zeroes are padded in the last 4 digit positions of the HSD
PP. Despite being added to zeroes, the last 4 “FFFF” digits
of the FSD PP cannot be simply passed on as the output
digits: they must be converted into HSHS (signed unsigned

��
��
��
��

�
�
�
�

��

�
�
�
�
��
��
��
��

����

����
��
��
��

����

digit position01234

PP1 SD format

HSD-1 formatPP2

F F F F

signed digit input lines of these
cells are occupied by F inputs so they
cannot accept additional --1 if it is
required for the LSD correction

result HSD-1 format

Illustration 2: HSD–1 format operand has to be the lower
significant one when adding it to an FSD format operand.

signed unsigned) digits to conform to the HSD–1 format
at the output. This can be achieved simply by extending
the row of adder cells all the way to the LSD. In this case,
note that the cells in position 0 and 2 will add a signed digit
“F” (supplied by PP1) and an unsigned bit (which can be
supplied by PP2 which is in HSD–1 format; or it can be a
“padding” bit). In other words, these cells accept only 3 in-
put operand bits. If a +ulp correction is, required, the oper-
ation in the last 4 digits is (“FFFF” + “1111” + carry-in=1)
and this can be handled by the adder cells being used. How-
ever, if a�ulp correction is required, then the operation
is (“FFFF” + “�1� 1� 1� 1” + carry-in=�1) and this is
not feasible since there is no way to input the additional
�1 value in digit positions 0 and 2 because the only signed
digit input lines in these cells are occupied by digits “F”
from PP1.

We would like to point out that this restriction is not im-
posed by the specific VLSI cell design, rather, it is funda-
mentally dictated by the underlying HSD–1 format. In Illus-
tration 2, if the positions of HSD and FSD PPs is switched,
then both�ulp corrections can be taken care of because
the “signed digit” input lines are now free and they can be
padded with any of the 3 values 0, 1 or�1. In summary,
whenever HSD and FSD PPs are added, the FSD PP must
occupy higher significant half. That’s why organizations
like “HFFF” or “HFHF” are not beneficial (and hence are
not shown in Figure 5).

3. Implementation and Measurements

The main objective of this work is a “relative” compar-
ison of theAT products of the FSD and HSD–1 designs.
Hence, as long as the same circuit techniques, optimiza-
tions, etc. are uniformly applied to both designs, therelative
comparison can yield meaningful results. The point being
absolute raw nanoseconds and�m2 values are less critical,
rather it is theratio of theAT products of the two designs
that is more important.

The multipliers were synthesized from five main mod-
ules, viz., radix-4 Booth recoder, partial product generator
(PPG), the redundant binary number adder (RBA),

SD HSD–1 (FFFH) HSD–1 (FHFH)

Area 1:44673104� 108 �2 1:19244980� 108 �2 114706400� 108 �2

(82.4% of FSD) (79.3% of FSD)

Transistor counts 33552 53186 51082

Delay Time 5.973ns 6.895ns 6.895ns

(115% of FSD)

A � T Product 8:64132450192� 108 �2 � ns 8:221941371� 108 �2 � ns 7:90900628� 108 �2 � ns

% Improvement inAT 4.9% 8.5%

Table 3 : Area, delay andA � T Product estimates for64 � 64 bit multipliers (excluding the final carry propagate addition)
based on intermediate SD and HSD–1 format operands.

the sign correction circuits and the LSD correction circuits.
Most of these building blocks were described in the previ-
ous section, along with the overall architectures of the mul-
tipliers (further details can be found in [6]). These mod-
ules were first verified with “CGATES”, which is a pub-
lic domain hierarchical gate-level logic-simulator [8]. The
modules were then layed out, optimized as best as possible
and verified via IRSIM and SPICE simulations (for these
simulations, 0.5 micron technology files were used). Note
that once the cells for these building blocks are finalized,
they can be used in all the different architectures based
on various FSD and/or HSD–1 mixes. Hence, there is no
need to explicitly make a separate layout for every possible
FSD/HSD–1 mix: accurate area estimates can be obtained
from the cell dimensions and routing area information for
one prototype layout. We layed out one FSD and two HSD–
1 based multipliers (“FFFH” and “FHFH” schemes shown
in Figure 5. The reasons for selecting these two architec-
tures were briefly outlined toward the very end of Section
2. Further details can be found in [6]). Straightforward “V-
tree” structure was adopted in all the designs.

After the double length multiplication output is gener-
ated in FSD or HSD–1 format, a conversion into two’s
complement format is required at the very end. This can
be achieved by an adder-like circuit which essentially per-
forms some sort of a carry/borrow propagation. This circuit
is almost identical for both the FSD and HSD schemes and
takes much smaller area (compared with the rest of the mul-
tiplier). It does increase the total execution delay (latency)
by a noticeable amount, but the delay of this conversion is
thesameirrespective of whether the final result is in HSD–1
or FSD format, i.e., it increases the delays of either scheme
by the same amount. Hence, excluding the converter actu-
ally gives a more pessimistic (worst case) result as far as the
HSD scheme is concerned. This happens because the ratio
of areas does not change much (with or without the final
converter) but the ratio of delays of HSD and FSD based

schemes is higher when the final converter is excluded.
16� 16 multipliers based on intermediate FSD as well

as two of the HSD–1 formats mentioned above were de-
signed. They were first simulated using CGATES where
some peculiar cases such as0 � 0; 0 � 1; +MAX �
+MAX; �MAX ��MAX , etc., were hand picked and
simulated. In addition 10,000 randomly generated operand
pairs were also simulated and verified. Then, the multipli-
ers were layed out using Magic 6.4.5 and simulated using
IRSIM and SPICE.

The wire bendings (required to bring the operands to-
gether to be added at the next level of the tree) accounts for
about 50 percent of the area for each design. Since there is
a 25 percent reduction in the number of wires in the HSD
scheme compared to the FSD scheme, an approximate 25
percent reduction in area is expected. However, depending
on how the16 � 16 HSD multiplier is arranged, the area
that is saved may be different. The16 � 16 FSD multi-
plier has an area of8:373018 � 106 �2 while the area of
the HSD–1 multiplier is7:778810� 106 �2. There is only
about seven percent improvement in the area. However, for
higher wordlengths (for example, 64 bits) the interconnect
area is even more dominant and at these wordlengths the
area of the HSD–1 design is roughly 21% smaller than that
of the FSD design.

The ultimate goal was to compare theAT products for
64� 64 designs. The area for this worldlength can be accu-
rately estimated from the16� 16 design because the same
cells are used and the tree topology is the same. This makes
it possible to precisely calculate the total width as well as
height of the design, thus yielding the total area required.
The area estimates of the 3 designs are indicated in Table 3
above.

To estimate the delay of the 64 bit designs (excluding the
final conversion into two’s complement format), the critical
path was first identified along with it’s “equivalent capac-
itance” for all the designs. This is done by counting the

number of transistorsassociatedwith the critical path. This
includes transistors traversed by the critical path, as well
as transistors whose inputs (i.e., gates) are connected to the
critical path, weighed according to their sizing (so that a
double sized transistor adds twice the load of a normal tran-
sistor to the critical path). This accounts (at least partially)
for fanin and fanout loads. The critical path of the64� 64
FSD multiplier has 42 transistors “associated” with it, while
the 64 � 64 HSD multipliers have 51. An approximate
SPICE simulation for time delay estimation uses an inverter
with the standard width for the P-type and N-type transis-
tors (P-type 8� wide and N-type 4� wide in our designs) to
drive a larger inverter. The total capacitance of these two
inverters is made equal to the capacitance associated with
the critical path. For example, for the FSD multiplier, the
simulation used a regular inverter to drive a larger inverter
that has a capacitance of 41 P-type transistors and 41 N-type
transistors. The same was done for the HSD designs. The
delays obtained are also shown in Table 3. This is not the
best way of measuring the delay, but it was deemed accept-
able for arelativecomparison of the designs as long asthe
samemethodology was uniformly applied to all of them.

Table 3 indicates that HSD–1 format multipliers have
a lowerAT product and corroborate the projections made
in [11]. The more the number of PPs in FSD format at the
top, the higher is the wire bending area. This is clearly seen
in Table 3: the FHFH design requires lesser area than the
FFFH design (both designs are shown in Figure 5). The
critical path delay is the same for both because in the FFFH
scheme, even though FSD additions happen faster, the result
has to ultimately wait for the slightly slower HSD branch to
complete it’s part.

4. Conclusions and Discussion

As VLSI device feature sizes continue to shrink, the in-
terconnect area becomes significant. Hence, to reduce the
overall area, it is worthwhile to reduce the interconnect area
(even though it might lead to an increase in the number
of transistors). In this paper we showed that adopting the
HSD–1 format instead of the FSD format for intermediate
results in a multiplier can lead to a significant reduction in
the interconnect area; which in turn leads to a reduction the
total VLSI area. This reduction occurs despite the fact that
the HSD–1 designs require more transistors than their FSD
counterparts. The delay overhead of the HSD–1 based de-
signs was shown to be moderate. TheAT product of64�64
multipliers based on the HSD–1 format was shown to be
smaller than that of multipliers based on intermediate full
sign digit format. More important, the HSD representation
is seen to be highly flexible, allowing the designer a large
number of choices to trade off area for delay and match the

desired performance goals.
We used 3 metal layers in the layouts. Despite that,

the “wire/bus bending” penalty could not be avoided. It
is possible that by using more metal layers, wire bending
area could perhaps be substantially reduced. Possible fu-
ture work could address this issue.

References

[1] L. Dadda. Some Schemes for Parallel Multipliers.Alta
Freq., 34:349–356, 1965.

[2] Hanawa M., et. al. A 4.3ns 0.3�m CMOS 54�54b Multi-
plier Using Precharged Pass-Transistor Logic. Inin ISSCC
Digest of Technical Papers, pages 364–365, 1996.

[3] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and
N. Takagi. A high-Speed multiplier using a redundant bi-
nary adder tree.IEEE Journal of Solid-State Circuits, SC-
22:28–34, Feb. 1987.

[4] I. Koren. Computer Arithmetic Algorithms. Brookside Court
Publishers, Amherst, Massachusetts, 1998.

[5] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and
N. Takagi. Design of high speed MOS multiplier and divider
using redundant binary representation.Proc. of the 8th Sym-
posium on Computer Arithmetic, pages 80–86, 1987.

[6] J.-J. J. Lue. Area� Delay (A � T) Efficient Multipliers
Based on an Intermediate Hybrid Signed–Digit Representa-
tion. Master’s thesis, Electrical Engineering Dept. State Uni-
versity of New York, Binghamton, NY 13902–6000, 1997.

[7] M. Mehta, V. Parmar, and E. Swartzlander. High-speed Mul-
tiplier Design Using Multi-Input Counter and Compressor
Circuits. InProc. of the 10th Symp. on Computer Arithmetic,
pages 43–50, 1991.

[8] R. M. Meyer. CGATES logic simulator.
Canisius College, Buffalo, NY, http://www-
cs.canisius.edu/˜meyer/SOFTWARE/software.html.

[9] N. Ohkubo and Suzuki, M., et. al. A 4.4-ns CMOS 54�
54-b Multiplier Using Pass-Transistor Multiplexor.IEEE
Journal of Solid-State Circuits, 30(3):251–256, Mar. 1995.

[10] B. Parhami. Generalized signed-digit number systems: a
unifying framework for redundant number representations.
IEEE Transactions on Computers, C-39:89–98, Jan. 1990.

[11] D. S. Phatak and I. Koren. Hybrid Signed–Digit Num-
ber Systems: A Unified Framework for Redundant Number
Representations with Bounded Carry Propagation Chains.
IEEE Trans. on Computers, Special issue on Computer
Arithmetic, TC–43(8):880–891, Aug. 1994. (An
unabridged version is available on the web via the URL
http://www.ee.binghamton.edu/faculty/phatak).

[12] N. Takagi, H. Yasuura, and S. Yajima. High-speed VLSI
multiplication algorithm with a redundant binary addition
tree.IEEE Transactions on Computers, C-34:789–796, Sep.
1985.

[13] C. S. Wallace. A Suggestion for a Fast Multiplier.IRE
Transactions on Electronic Computers, EC-13:14–17, 1964.

[14] R. Yu and G. Zyner. 167 MHz Radix-4 Floating Point Mul-
tiplier. In Proc. of the 12th Symp. on Computer Arithmetic,
Bath, England, pages 149–154, 1995.

rectangle represents
signed digit

circle represents
unsigned digit

�
�
�
�
��
��
��
��

��
��
��
��

����������

HSD with non uniform
distance between signed digits

��
��
��
��
��
��
��
��

�
�
�
�

HSD-1

HSD-2

Carries propagate IN PARALLEL
between consecutive signed digits

Illustration of HSD formats(a)

HSD with uniform distance between signed digits
corresponds to GSD representations

GSD representation HSD representation

HSD with non-uniform distance between signed digits

Relationship between HSD and GSD number representations (b)

critical paths

Figure 1 : HSD formats and relationship between HSD [11] and GSD [10] number representations.
(a) Different HSD formats: HSD-k denotes a representation withk unsigned digits between every pair of consecutive signed
digits. Last drawing illustrates a format with non uniform distance between signed digits.
(b) Relationship between HSD and GSD number representations.

))))))))))))))))

))))))))

))))

)

)

)

F
G

F F F F F F F F GGG

G

G

GGGF F F

FF

F

GGGGG

G

Figure 2 : Schematic of the FSD Partial Product accumulation tree for wordlengthn = 64. Here,n=4 = 16 fully SD
format PPs (indicated by “F” inside each box) are generated after Booth recoding and the first level addition performed by
the “subtracter” as summarized in Table 1 in Section 2.

c i c i−1

a b

e
i−1

i−1i−1

z
i
s

a
i

b
i

z
i
a

c i
c i+1

(b)(a)

Figure 3 : Cells used to generate HSD–1 format output from the addition of 2 numbers in the Two’s-Complement format.
This pair of cells (left one at signed and the right one at unsigned digit position) is replicatedn=2 times in an adder of
wordlengthn. These cells are used at the top level of the HSD PP accumulation tree to add Booth-recoded PPs in two’s
complement format to generate HSD�1 format output.

H
L��

D
L��

E
L��

zi+2
a

vi+2

Z
L��

Z
L��

T
L��

zi+2
s

vi+1

[
L

D \
L

D[
L

V \
L

V

V
L��

D

H
L��

D
L��

E
L��

Z
L��

Y
L��

zi
a

vi

Z
L

Z
L��

T
L

zi
s

vi-1

[
L

D \
L

D[
L

V \
L

V

V
L

D

critical path

Figure 4 : RBA cells used to add two HSD�1 format operands to generate an HSD�1 format output. The figure shows an
array of 4 cells along with the critical path (marked by the dashed line) which traverses 4 digit positions in this case.

+ + + + + + + + + + + + + + + +

+ + + + + + + +

+ + + +

+

+

+

F G

F F F F F F F F GGG

G

G

GGGF F F

FF

F

GGGGG

G

))) +))) +))) +))) +

) +) +) +) +

+ + + +

+

+

+

F G

F F F F F F F F GGG

G

G

GGGF F F

FF

F

GGGGG

G

) +) +) +) +) +) +) +) +

+ + + + + + + +

+ + + +

+

+

+

F
G

F F F F F F F F GGG

G

G

GGGF F F

FF

F

GGGGG

G

Figure 5 : Some of the many feasible architectures for partial product accumulation trees that use the HSD�1 format for
wordlengthn = 64. Each PP within the tree is indicated by a rectangular box. As in Figure 2, the letter “F” inside a box
indicates a PP which is in the Fully Signed-Digit format, while the letter “H” indicates a PP that is in HSD�1 format.

