
High-Performance Left-to-Right Array Multiplier Design

Zhijun Huang and Miloš D. Ercegovac

Computer Science Department

University of California Los Angeles

Los Angeles, CA 90095

{zjhuang, milos}@cs.ucla.edu

Abstract

We propose a split array multiplier organized in a
left-to-right leapfrog (LRLF) structure with reduced de-
lay compared to conventional array multipliers. More-
over, the proposed design shows equivalent perfor-
mance as tree multipliers for n ≤ 32. An efficient
radix-4 recoding logic generates the partial products in
a left-to-right order. The partial products are split into
upper and lower groups. Each group is reduced us-
ing [3:2] adders with optimized signal flows and the
carry-save results from two groups are combined using
a [4:2] adder. The final product is obtained with a pre-
fix adder optimized to match the non-uniform arrival
profile of the inputs. Layout experiments indicate that
upper/lower split multipliers have slightly less area and
power than optimized tree multipliers while keeping the
same delay for n ≤ 32.

1. Introduction

The three steps of parallel multiplication are de-
noted as recoding and partial product (PP) gener-
ation (PPG), PP reduction (PPR), and final carry-
propagate addition (CPA). Based on the approaches
to PPR, multipliers are usually classified into: (i) lin-
ear array multipliers with logic delay proportional to
n, and (ii) tree multipliers with delay proportional
to log(n) [12]. The tree reduction treats PP bits ei-
ther in rows or in columns. Although tree multipli-
ers have the shortest logic delay in the PPR step,
they have irregular layout with complicated intercon-
nects. On the other hand, array multipliers have larger
delay but offer regular layout and simpler intercon-
nects. As interconnects become important in deep sub-
micron design [22], architectures with regular layout
and simple interconnects are desirable. Irregular lay-
outs with complicated interconnects not only demand
more physical design effort but also introduce signifi-

cant interconnect delay and make noise a problem due
to several types of wiring capacitance [1, 22].

Modern multiplier designs use [4:2] adders [14] to
reduce the PPR logic delay and regularize the layout.
To improve regularity and compact layout, regularly
structured tree (RST) with recurring blocks [6] and
rectangular-styled tree by folding [8] were proposed,
at the expense of more complicated interconnects.
In [15], three dimensional minimization (TDM) algo-
rithm was developed to design adders of the maximal
possible size with optimized signal connections, which
further shortened the PPR path by 1 ∼ 2 XOR de-
lays. However, the resulting structure has more com-
plex layout than a [4:2]-adder based tree. In [10], mul-
tiplication was divided recursively into smaller multi-
plications to increase layout regularity and scalability,
which essentially resulted in a hierarchical tree struc-
ture.

In linear array multiplier design, the even/odd split
structure [9] was proposed to reduce both delay and
power of conventional right-to-left (R-L) linear array
structures. In [13], a leapfrog structure was proposed
to take advantage of the delay imbalances in adders.
in [4], a left-to-right (L-R) carry-free (LRCF) array
multiplier was proposed where the final CPA step to
produce the MS bits of the product was avoided by
using on-the-fly conversion in parallel with the linear
reduction. In [2], this LRCF approach was extended
to produce 2n-bit product. It was also discovered that
glitches in L-R reduction arrays were smaller than in
the conventional R-L arrays, especially for data with
large dynamic range [5, 20, 7].

To further reduce the delay of array multipliers
while maintaining their regular layout and simple
interconnect, this paper proposes split array LRLF
(SALRLF) multipliers that combine the advantages
of splitting, L-R computation, and leapfrog structure.
Two types of splitting are considered: even/odd and
upper/lower. Each step of SALRLF is optimized with
the primary objective of delay reduction and the sec-

ondary objective of power reduction. Logic-level anal-
ysis as well as physical layout with guided floorplan-
ning are conducted to compare SALRLF with tree
multipliers.

In the following, the multiplicand X =
−xn−12

n−1 +
∑n−2

j=0 xj2
j and the multiplier

Y = −yn−12
n−1 +

∑n−2
i=0 yi2

i are integers in the
two’s-complement form with n being even to simplify
description. For logic-level analysis, the delay of a
2-input XOR2 gate, TXOR2, is used as the unit delay.
The delay of two-level a complex gate such as AOI22
(AND2-NOR2) is equivalent to TXOR2.

2. Partial Product Generation

Radix-4 recoding is used to reduce the number of
PPs to half. After comparing common recoders, we de-
veloped a version neg/two/one-nf (“nf” for neg-first)
shown in Fig. 1. The negation operation is done be-
fore the selection between 1X and 2X so that twoi and
onei set PPi to zero regardless of negi for “−0”. To
generate additional ‘1’ for negative PPi, a correction
bit ci = y2i+1(y2iy2i−1)

′ is used.

xj

nxj-1

PPi,j

y2i+1 negi

one’i

two’i

y2i
y2i-1
y2i+1
y2i
y2i-1

two’i

negi

one’i
nxj

Figure 1: neg/two/one-nf generator.

Due to shifting, each PP has a 0 between PPi+1,0

and ci. To have a more regular LSB part of each
PP, PPi,0 is added with ci bit in advance [18]. The

PP
(new)
i,0 and c

(new)
i are described as:

PP
(new)
i,0 = x0 · (y2i ⊕ y2i−1) (1)

c
(new)
i = y2i+1y

′

2iy
′

2i−1 + y2i+1x
′

0(y2i ⊕ y2i−1) (2)

Both c
(new)
i and P

(new)
i,0 are obtained no later than

other PP bits. The generated PP bit-array is ar-
ranged in MSB-first or L-R manner as shown in Fig. 2.

The grey circles are PP
(new)
i,0 and the white circles are

c
(new)
i .

3. Partial Product Reduction

The delay gap between tree multipliers and array
multipliers is mainly due to the linear PPR structure in

1 1 1 1 1 1 1

PP0

PP1

PP2

PP3

PP4

PP5

PP6Extra

Figure 2: MSB-first radix-4 PP bit array (n=12).

conventional array multipliers. To improve the speed
of array multipliers, parallelism is introduced in PPR.
In addition, different adder types and the signal flow
between them also have impact on delay, area, and
power.

3.1. L-R leapfrog (LRLF) structure

To exploit the delay difference between carry
and sum signals in adders, the sum signals in the
leapfrog [13] structure for R-L array multipliers skip
over alternate rows. Because all the carry signals prop-
agate through the entire array, the MSBs of final PPR
vectors arrive at the same (latest) time. This unfor-
tunately prevents optimization of the final CPA that
is possible in tree multipliers. To allow final CPA op-
timization in linear array multipliers, we combine L-
R computation and leapfrog structure resulting in a
new L-R leapfrog (LRLF) array multiplier scheme. A
LRLF multiplier for PP array of Fig. 2 is shown in
Fig. 3. The dashed lines are carries and solid lines are
sum signals. Each adder symbol represents either a
FA if all three inputs are variables or a HA if one of
three inputs is constant.

The power and delay characteristics of LRLF mul-
tiplier have been reported in [7]. Here we optimize
the [4:2] adder design according to input arrival pro-
files. The basic [4:2] adder module, M42, is shown in
Fig. 4. The delay from any input A, B, C, and D to
output Sum or Cout is 3TXOR2. Each M42 actually
has five inputs because there is one intermediate sig-
nal T in. In the (n − 3)-bit [4:2] adder for LRLF in
Fig. 3, more than half 5-input M42s have one or more
zero inputs, which can be simplified to have smaller
delay. For M42s with one zero input, the simplifica-
tion is as follows. Assume the four non-zero inputs of
a simplified M42 are A, B, C, and D with arrival time
(α) relation αA ≤ αB ≤ αC ≤ αD. The order is arbi-
trary and does not affect the discussion here because
all inputs are functionally equivalent. According to
input arrival profiles, two designs with different Sum
logic are developed: M42L (linear-Sum) in Fig. 5a and
M42T (tree-Sum) in 5b. The arrival times of Tout and

1111111

(n-1)-bit [4:2] CSA (n-3)-bit [3:2] CSA

Final Fast CPA

Figure 3: A LRLF array multiplier (n=12).

Cout are

αTout = αB + TAND2 (3)

αCout = max(αB + TXOR2, αD) + TAO222 (4)

which are smaller than those in M42. In M42L, Sum
arrives at

αlinear−Sum = max(αBCX , αD) + TXOR2 (5)

where αBCX = max(αB + 2TXOR2, αC + TXOR2). In
M42T,

αtree−Sum = αD + 2TXOR2 (6)

(a) MUX-based Design (b) Symbol

0
1

0
1A

B

C
D

C
A D

Sum

Cout

Tin

Tout

SumCout

TinTout

A B C D

Figure 4: Basic [4:2] adder module M42.

A
B
C
D

Sum

Cout
Tout

A
B

C
D

Sum

Cout

Tout

(a) M42L: linear-Sum (b) M42T: tree-Sum

Figure 5: Two simplified M42 designs.

The (n−1)-bit [4:2] adder in LRLF is designed from
LSB to MSB as follows. For each bit, sort five inputs
A, B, C, D, and E (one of them being T in) according

to arrival time and assume that αE ≤ αA ≤ αB ≤
αC ≤ αD . If no input is 0, M42 of Fig. 4 is used.
To minimize delay, five inputs E, A, B, C, and D are
connected to pin A, B, C, D, and T in in that order.
If two or more inputs are 0s, the adder is reduced to
be a FA or HA. The signal flow optimization of FAs
will be addressed in Section 3.3. If only one input is 0,
it must be E because a constant arrives at the earliest
time. Simplified 4-input M42 is used in this case. Four
inputs A, B, C, and D are connected to pin A, B, C,
and D in that order. M42L is used for faster Sum if
αlinear−Sum < αtree−Sum. Otherwise, M42T is used.
The output Tout is fed into the next bit position and
the process is repeated. With this optimization, many
outputs of the [4:2] adder become available one TXOR2

earlier.

3.2. Split array LRLF (SALRLF) structure

The PPR delay of an LRLF array multiplier is
about dn

2 eTXOR2 while that of an n × n-bit radix-4
tree multiplier is 3(dlog2(

n
4)e)TXOR2. The delay of

LRLF is not comparable with that of tree multipliers
when n > 16. To reduce PPR delay, certain level of
parallelism is necessary.

One approach is to split the PP bit array into even
PPs and odd PPs, as shown in Fig. 6. In each split
part, PPs are shifted four bits each row and reduced
into two vectors using a LRLF structure. The final
vectors from even and odd parts are merged by a (2n−
3)-bit [4:2] adder. This algorithm is named even/odd
LRLF (EOLRLF).

Another approach is to split the PP bit array into
upper PPs and lower PPs, as shown in Fig. 7. In each
part, PPs are shifted two bits each row and reduced
into two vectors using LRLF. The final vectors from
upper and lower parts are merged by a [4:2] adder. To

1 1 1 1 1 1 1 1 1 1 1 1 1

1

Figure 6: EOLRLF array multiplier (n=24).

reduce the size of this adder, the highest carry bit from
the right-side [3:2] CSA in LRLF is fed into the left-
side [4:2] CSA as T in instead of being a bit of the final
CPA input. In this way, only a (n+2)-bit [4:2] adder is
required. This algorithm is named upper/lower LRLF
(ULLRLF).

1 1 1 1 1 1 1 1 1 1 1 1 1

1

Figure 7: ULLRLF array multiplier (n=24).

The PPR delay of SALRLF is about (dn
4 + 3e ∼

dn
4 +4e)TXOR2, depending on the type of adders used.

For n ≤ 32, the delay is < 11 ∼ 12 while the best
result of a tree multiplier is ≤ 9. Further splitting of
the PP array reduces the layout regularity and will not
be considered. Instead, optimization of FAs and final
CPA as well as floorplanning will be used to narrow the
remaining gap. In EOLRLF, the arrival profile of PPR
final vectors has fewer latest-arriving bits than that in
tree multipliers. Fig. 8 shows the PPGR delay profiles
in a 32 × 32-bit TDM multiplier, an EOLRLF, and a
ULLRLF. The number of latest-arriving bits in EOL-
RLF is 5 while this number is 8 in TDM. The bit delay
distribution in EOLRLF is also more regular. Most bit
groups in EOLRLF have 4-5 bits. But the group size
varies a lot in TDM. The final adder design could ex-
ploit these better-shaped arrival profiles in EOLRLF
to reduce delay. Compared with EOLRLF, ULLRLF
has two main advantages. First, the shifting distance
between PPs in each upper/lower part is 2 positions
instead of 4, which leads to simpler interconnects. Sec-
ond, the final [4:2] adder in ULLRLF is only (n+2)-bit
in contrast to (2n − 3)-bit in EOLRLF. On the other
hand, URLRLF has a worse arrival profile than EOL-
RLF. However, such a profile only leads to just one
TAO21 delay, which will be explained in Section 4. Our

detailed layout experiments indicate that EOLRLF is
worse than URLRLF in all measurements. Therefore,
we choose ULLRLF in the following discussion.

2

4

6

8

10

12

14

4812162024283236404448525660
D

el
ay

Bit

TDM-radix2
EOLRLF
ULLRLF

Figure 8: PPGR delay profiles (n=32).

3.3. Optimization of FAs

In array multipliers, the basic components for PPR
are full adders (FA). Two common FA structures, FA-
MUX and FA-ND3, are shown in Fig. 9. Compared
with FA-ND3, FA-MUX typically has smaller area
even if pass transistors are not used. Since FA is
the most used element in array multipliers, smaller FA
would lead to smaller overall area, which is also helpful
in the reduction of power consumption and intercon-
nect delay. As to logic delay, however, FA-NAND3 is
better than FA-MUX because the delay from all inputs
to Cout is TAO222 (TAO222 ≈ TXOR2).

0
1

A
B

C

Sum

Cout

A
B
C

Sum

Cout

(a) FA-MUX (b) FA-ND3

Figure 9: Two FA structures.

Because of the different characteristics of FA inputs,
it is possible to optimize signal flow with respect to
propagation delay. This technique has been applied in
TDM tree multipliers [15]. In addition to delay, signal
flow optimization affects power [7]. Assume the three
input signals to FA are Ain, Sin, Cin. These input
signals are sorted according to their arrival times. We
assume that the α relationship is αAin ≤ αCin ≤ αSin.
The order is arbitrary since the inputs are function-
ally equivalent. In FA-ND3, Sin is connected to pin

C. There is no restriction on the connections between
Ain(Bin) and pin A(B) unless transistor-level differ-
ence between A and B is considered. In FA-MUX, Sin
is also connected to pin C. Between Ain and Bin, the
signal with less switching activity is connected to pin
A for power saving because pin B has less load ca-
pacitance and is used for the one with higher switch-
ing activity. Since PP bits arrive at the earliest time
and never change after PPG, they are connected to A
pins. This signal flow optimization technique is named
CSSC to reflect the interchange of sum and carry sig-
nals. In the experiments section, we show the delay ef-
fects of FA selection and CSSC optimization in LRLF
and ULLRLF array multipliers.

4. Final Adder

Final adders are optimized to match the non-
uniform input arrival profiles. The optimal final adder
for tree multipliers is CSMA based design [16]. Ef-
ficient design of on-the-fly converter for L-R array
multipliers also corresponds to a multi-level carry-
select (CSEL) or conditional-sum (CSUM) adders [11].
In [19], generalized earliest-first (GEF) algorithm was
proposed to design CSUM for arbitrary input arrival
profile. The similarity between CSUM and prefix
adder (PFA) is also shown in [19] where PFA is called
CLA.

We followed the GEF algorithm and chose PFA for
final addition because the PFA operators, AO21 and
AND2, are simpler than the basic CSUM operators – a
pair of MUX21. Two lists, P list and T list, are main-
tained in GEF. All (G, A) signal pairs are initially put
into P list and sorted according to arrival times. The
earliest pairs are then moved to T list. Adjacent bit
pairs in T list are retrieved and merged from left to
right. The merged pairs are put back into P list. The
iteration continues until the generation of the MSB
carry bit. Other carry bits are generated using ex-
isting (G, A) bits. A PFA example for a hill-shaped
arrival profile is shown in Fig. 10. Black nodes in PFA
are computation cells and white nodes have no logic
or only buffers. In the original GEF, the merging is
conducted from from right to left. Because of different
input-output delays in operator ‘•’, the left-to-right
merging in T list leads to 0.5TXOR2 delay improve-
ment.

Let Wmax be the largest number of adjacent signals
that arrive at the same time. If these Wmax signals
are also the latest arriving signals in a hill-shaped ar-
rival profile, the delay of PFA for such a profile can be
estimated as

TPFA = (log2(Wmax) + 2)TAO21 + TXOR2 (7)

which is not directly related to the adder width 2n.
A small Wmax would lead to a small TPFA. How-
ever, the difference in TPFA is just one TAO21 for most
schemes in our study because of the logarithmic rela-
tionship. One TAO21 delay could be further eliminated
from TPFA if carry-select adders are used for the final
stages of the left part in hill-shaped arrival profiles [3].

xi yi

Pi ,(G,A)1
i,i

Pi = xi yi

(G,A)L[i]
i,R[i] (G,A)L[j]

j,R[j]

(G,A)L[i]+1
i,R[j]

(G,A)L[i]
i,R[i] GL[j]

j,R[j]

Ci+1 = GL[i]+1
i,R[j] Si

Pi Ci

G1
i,i = xi yi

A1
i,i = xi+yi

GL[i]+1
i,R[j] = GL[i]

i,R[i] + AL[i]
i,R[i] G

L[j]
j,R[j]

AL[i]+1
i,R[j] =AL[i]

i,R[i] A
L[j]
j,R[j]

Si = Pi Ci

Figure 10: A PFA example.

5. Experiments

To compare the proposed ULLRLF with tree multi-
pliers, logic-level delay analysis is first conducted. Ac-
tual VHDL implementation and physical layout are
then performed on Synopsys and Cadence design plat-
forms.

5.1. Delay comparison at logic level

VHDL generation programs for both LRLF and
ULLRLF algorithms have been written with the flex-
ibility of FA selection and signal flow optimization.
The comparison results at logic level without wiring
effects are normalized to TXOR2 and listed in Table 1.
TGR is the delay of PPG and PPR. TA is the delay of
the final adder. For LRLF, the use of FA-ND3 rather
than FA-MUX reduces PPR delay and the overall de-
lay by 1 TXOR2. CSSC reduces the delay by 1 TXOR2

except for 48-bit LRLF-ND3 where the reduction is 2.
For ULLRLF, FA-ND3 reduces one TXOR2 in PPR,
but not the overall delay. CSSC only reduces PPR
delay in ULLRLF-MUX by 0.5 and also has no effect

on the overall delay. This is because varying FAs and
applying CSSC change the input arrival profiles of the
final adder and affect TA by up to 1 TXOR2. Even if
there is little delay advantage, however, it is still use-
ful to apply CSSC for power reduction [7]. We have
also noticed that CSSC and FA-ND3 could help EOL-
RLF achieve 0.5 ∼ 2 less logic delay than ULLRLF.
However, ULLRLF outperforms EOLRLF after layout
because of smaller area and simpler wiring. Finally, it
is worthwhile to note that TA does have little relation
with the adder width as explained in Eq. 7.

Using the results from Table 1, we now compare
the delays of LRLF/ULLRLF with tree multipliers.
Radix-2 and radix-4 TDM schemes [15][18] are cho-
sen because they are the best tree multipliers to our
knowledge. In addition, tree multipliers based on [4:2]
and [3:2] CSAs are also used for comparison as they
have more regular structures. To avoid the delay due
to the extra row PP [n/2] in radix-4 two’s-complement
multipliers, the reduction of 9 PPs from PP [n/2 − 8]
to PP [n/2] is based on a [9:4] adder with only 3TXOR2

delay, as illustrated in Fig. 11. The 3TXOR2 delay is
achieved as follows. All FAs except the right most
one in the shaded [3:2] CSA are simplified into HAs
with half delay as they have constant inputs. Inputs
of the second-level [3:2] adders are properly optimized
so that each FA has one input arriving at least TXOR2

later than the other two inputs. This late input is
connected to pin C of FAs to ensure one TXOR2 delay.
To distinguish from other tree multipliers, the radix-4
tree multiplier using this special [9:4] adder is named
tree9to4.

[4:2] CSA [4:2] CSA
[3:2] CSA [3:2] CSA [3:2] CSA

[3:2] CSA [3:2] CSA

[4:2] CSA [4:2] CSA

[4:2] CSA

[9:4] CSA

PP16PP15PP0 PP1 PP14PP2 PP3 PP4 PP5 PP6 PP7 PP8 PP9 PP10 PP13PP12PP11

3TXOR2

6TXOR2

9TXOR2

Figure 11: Tree PPR with 9TXOR2 delay.

The logic delay comparison results are given in Ta-
ble 2. The blank boxes with ‘–’ are because TGRs or
delay profiles from PPR are not available from litera-
ture. The original TDM-radix4 data in [18] are nor-

malized to our measurement base. It is shown that the
radix-4 tree multipliers based on our [9:4] adder design
have almost the same TPPGR as TDM schemes. For
n ≤ 32, ULLRLFs have 0.5 ∼ 1.5TXOR2 more delay
than tree multipliers. For larger precisions, ULLRLF
shows 23% more gate delay for 48× 48-bit multiplica-
tion and 28% more for 54× 54-bit multiplication.

5.2. Simulation with physical layout

For more realistic evaluation, structural VHDL de-
signs are compiled and mapped into Artisan TSMC
0.18µm 1.8-Volt standard-cell library [23] using Syn-
opsys Design Compiler. For a fair comparison of differ-
ent schemes, [3:2] FA cells in the library are not used
because there is no [4:2] adder cells. Buffers are in-
serted automatically by Design Compiler. Two radix-
4 schemes for 24×24-bit and 32×32-bit multiplication
are compared: tree9to4 and ULLRLF-MUX-CSSC.
tree9to4 has the similar delay as TDM but is more reg-
ular. MUX-CSSC based designs are chosen because it
has smaller area and CSSC is good for power. CSSC
is also applied in tree9to4. Standard-cell based auto-
matic layout is first conducted using Cadence Silicon
Ensemble. Interconnect parameters are extracted from
layout and back-annotated into Synopsys tools for de-
lay and power calculation. Power consumption is mea-
sured at 100MHz with 500 pseudo-random data. The
results are shown in Table 3. For 24-bit, URLRLF is
better than tree9to4 in area, delay, and power, with up
to 7% improvement. For 32-bit, URLRLF has 3% less
area and 10% less power than tree9to4 while keeping
similar delay.

Table 3: Comparison after automatic layout

Schemes Area(µm2) Delay(ns) Pwr(mW)

tree9to4-24b 56,126 6.01 26.27

ULLRLF-24b 54,014 5.88 24.59

tree9to4-32b 108,324 7.18 45.12

ULLRLF-32b 105,380 7.25 40.65

We have also experimented layout with guided
floorplanning for 32 × 32-bit multipliers. The floor-
plan of tree9to4 is shown in Fig. 12, which is based
on H-tree for symmetry and regularity [17]. The row
utilization rate has to be relaxed to 63% from 70% in
automatic layout for routability. In addition, all blocks
have to be assigned to specific regions for delay reduc-
tion. The floorplan of ULLRLF is shown in Fig. 13.
The left-side [4:2] CSA in each part is distributed into
PPR rows. The row utilization remains at 70%. Re-
gions are assigned for two big upper/lower blocks, final

Table 1: The delay effects of FA type and CSSC in LRLF/ULLRLF

n = 24 n = 32 n = 48
Schemes

TGR TA Total TGR TA Total TGR TA Total

LRLF-MUX 15 5 20 19 5 24 27 5 32

LRLF-MUX-CSSC 14 5 19 18 5 23 26 5 31

LRLF-ND3 14 5 19 18 5 23 26 5 31

LRLF-ND3-CSSC 13 5 18 17 5 22 24.5 4.5 29

ULLRLF-MUX 12 5 17 14 6 20 18 6 24

ULLRLF-MUX-CSSC 11.5 5.5 17 13.5 6.5 20 17.5 6.5 24

ULLRLF-ND3 11 6 17 13 6 19 17 7 24

ULLRLF-ND3-CSSC 11 6 17 13 6 19 17 7 24

Table 2: Delay comparison of tree multipliers and LRLF/ULLRLF

n = 24 n = 32 n = 48 n = 54
Schemes

TGR TA Total TGR TA Total TGR TA Total TGR TA Total

TDM-radix2 10.5 – – 11.5 6 17.5 13.5 6 19.5 13.5 6 19.5

TDM-radix4 11 5.5 16.5 12 6 18 – – – – – –

Tree9to4 10 6 16 11 7 18 13 7 20 14 7 21

LRLF 13 5 18 17 5 22 24.5 4.5 29 26.5 4.5 31

ULLRLF 11 6 17 13 6 19 17 7 24 18 7 25

[4:2] adder, and CPA. The results are shown in Table 4.
The delay is improved by 4% from automatic layout.
For ULLRLF, there is no cost in area for this delay
improvement. For tree9to4, the area increases 10%.
After layout with guided floorplanning, ULLRLF and
tree9to4 has similar delay while tree9to4 has 15% more
area and 9% more power.

Table 4: Comparison after guided layout

Schemes Area(µm2) Delay(ns) Pwr(mW)

tree9to4-32b 120,958 6.90 45.53

ULLRLF-32b 105,380 6.99 41.72

6. Conclusions

We have studied left-to-right split array multiplier
schemes EOLRLF/ULLRLF. An efficient radix-4 re-
coding logic generates the partial products in a left-
to-right order. These partial products are split into
upper/lower or even/odd groups. These two groups
are reduced in parallel using the L-R leapfrog struc-
ture with optimized adder modules and signal flows.
Results from the two groups are merged using a [4:2]
adder. The final adder is a prefix adder optimized to
match non-uniform input arrival profile. We find that
upper/lower splitting outperforms even/odd splitting
after layout although even/odd splitting is a little bet-

2 PPGs

2 PPGs

2 PPGs

2 PPGs

Level-1 CSA4to2

Level-1 CSA4to2

Level-2 CSA4to2

3 PPGs

Level-1 CSA3to2

Level-2 CSA4to2

Level-3 CSA4to2

CPA

3 PPGs

Level-1 CSA3to2

Level-1 CSA3to2

Level-1.5 CSA3to2

Level-1.5 CSA3to2

3 PPGs

Figure 12: Floorplan of tree9to4 (n=32).

ter in gate delay at logic level. Layout experiments for
n = 24 and n = 32 indicate that ULLRLF multipli-
ers have slightly less area and power than optimized
tree multipliers while keeping similar delay. We con-

 2PPGs & CSA3to2

2PPGs & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

CSA3to2

2PPGs & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

CPA

 3PPGs & CSA3to2

CSA3to2

CSA4to2

Figure 13: Floorplan of ULLRLF (n=32).

clude that ULLRLF array multipliers and tree multi-
pliers are similar in major performance characteristics
for n ≤ 32 if standard-cell based automatic layout is
conducted.

Acknowledgments

The authors would like to thank Dr. Wen-Chang
Yeh and Dr. Paul Stelling for their help. This work has
been supported in part by Raytheon Company, Fujitsu
Laboratories of America, and the State of California
MICRO program.

References

[1] K.C. Bickerstaff, E.E. Swartzlander, Jr., and M.J. Schulte,
“Analysis of column compression multipliers,” in Proc.
15th IEEE Symp. Computer Arithmetic, pp.33-29, 2001.

[2] L. Ciminiera and P. Montuschi, “Carry-save Multiplication
Schemes Without Final Addition,” IEEE Trans. Comput.,
vol. 45, no. 9, pp. 1050-1055, Sept. 1996.

[3] Y. Choi and Earl E. Swartzlander, Jr., “Design of a hy-
brid prefix adder for non-uniform input arrival times,” in
Proc. SPIE 2002 Advanced Signal Processing Algorithms,
Architectures, and Implementations XII, July 2002.

[4] M.D. Ercegovac and T. Lang, “Fast multiplication without
carry-propagate addition,” IEEE Trans. Comput., vol.39,
no.11, pp.1385-1390, Nov. 1990.

[5] A. Goldovsky, et. al., “Design and implementation of
a 16 by 16 low-power two’s complement multiplier,” in
Proc. 2000 IEEE Int. Symp. Circuits and Systems, vol.5,
pp.345-348, 2000.

[6] G. Goto, et. al., “A 54*54-b regularly structured tree
multiplier,” IEEE J. Solid-State Circuits, vol.27, no.9,
pp.1229-1236, Sept. 1992.

[7] Z. Huang and M.D. Ercegovac, “Low power array mul-
tiplier design by topology optimization,” in Proc. SPIE
2002 Advanced Signal Processing Algorithms, Architec-
tures, and Implementations XII, July 2002.

[8] N. Itoh, et. al., “A 600-MHz 54*54-bit multiplier with
rectangular-styled Wallace tree,” IEEE J. Solid-State Cir-
cuits, vol.36, no.2, p.249-257, Feb. 2001.

[9] J. Iwamura, et. al., “A high speed and low power
CMOS/SOS multiplier-accumulator,” Microelectronics
Journal, vol.14, no.6, pp.49-57, Nov.-Dec. 1983.

[10] J. Kim and E.E. Swartzlander, Jr., “Improving the re-
cursive multiplier,” in Proc. 34th Asilomar Conf. Signals,
Systems and Computers, pp.1320-1324, Nov. 2000.

[11] R.K. Kolagotla, H.R. Srinivas, and G.F. Burns, “VLSI
implementation of a 200-MHz 16*16 left-to-right carry-
free multiplier in 0.35 mu m CMOS technology for next-
generation DSPs,” in Proc. IEEE 1997 Custom Integrated
Circuits Conf., pp.469-472, May 1997.

[12] I. Koren, Computer Arithmetic Algorithms, Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

[13] S.S. Mahant-Shetti, P.T. Balsara, and C. Lemonds, “High
performance low power array multiplier using temporal
tiling,” IEEE Trans. Very Large Scale Integration (VLSI)
Systems, vol.7, no.1, p.121-124, March 1999.

[14] M. Nagamatsu, et. al., “A 15-ns 32*32-b CMOS multiplier
with an improved parallel structure,” IEEE J. Solid-State
Circuits, vol.25, pp.494-497, Apr. 1990.

[15] V.G. Oklobdzija, D. Villeger, and S.S. Liu, “A method for
speed optimized partial product reduction and generation
of fast parallel multipliers using an algorithmic approach,”
IEEE Trans. Comput., vol.45, no.3, pp.294-306, March
1996.

[16] P.F. Stelling and V.G. Oklobdzija, “Designing optimal hy-
brid final adders in a parallel multiplier using conditional
sum blocks,” in Proc. 15th IMACS World Congress Sci-
entific Computation, Modeling, and Applied Math., Aug.
1997.

[17] J.D. Ullman, Computational Aspects of VLSI, Computer
Science Press, Inc., 1983.

[18] W.-C. Yeh and C.-W. Jen, “High-speed Booth encoded
parallel multiplier design,” IEEE Trans. Comput., vol.49,
no.7, pp.692-701, July 2000.

[19] W.-C. Yeh, Arithmetic Module Design and its Application
to FFT. Ph.D. dissertation, National Chiao-Tung Univer-
sity, 2001.

[20] Z. Yu, L. Wasserman, and A.N. Willson, Jr. “A painless
way to reduce power dissipation by over 18% in Booth-
encoded carry-save array multipliers for DSP,” in 2000
IEEE Workshop on SiGNAL PROCESSING SYSTEMS,
pp.571-580, Oct. 2000.

[21] R. Zimmermann, Binary Adder Architectures for Cell-
Based VLSI and their Synthesis. Ph.D. dissertation, Swiss
Federal Institute of Technology, Zurich, 1997.

[22] International Technology Roadmap for Semiconductors –
Interconnect, 2001 Edition.

[23] TSMC 0.18µm Process 1.8-Volt SAGE-X Standard Cell
Library Databook. Artisan Components, Inc., Oct. 2001.

