
A New Iterative Structure for Hardware Division: the Parallel Paths Algorithm

Eric Rice Richard Hughey

Department of Computer Engineering
University of California, Santa Cruz, CA 95064

E-mail: elrice,rph@soe.ucsc.edu

Abstract

This paper presents a new approach to hardware
division—the parallel paths algorithm. In this approach,
prescaling allows the division recurrence to be implemented
by three processes which can be calculated in parallel dur-
ing iterations. While two of the processes must complete
in a single iteration, the third—which includes the most ex-
pensive division operations—can be calculated over multi-
ple iterations. Iteration latency is determined by the slowest
of the three paths, and in many cases can be limited to that
of carry-save addition and latching. A radix-4 implementa-
tion of the algorithm is shown to achieve better performance
than other commonly used methods while requiring a mod-
est increase in area.

Index Terms: Computer arithmetic, hardware division,
prescaling, linear convergence.

1 Introduction

Digit-recurrence algorithms used in special-purpose di-
vision hardware involve several steps, the most problematic
of which is quotient selection. In basic SRT division [1, 2],
quotient selection represents half or more of iteration la-
tency [3]. As a result, considerable effort has been made to
reduce its impact on division latency.

Two strategies are of particular interest to speed quotient
selection. The first is to overlap multiple SRT stages in a
single iteration, making use of multiple speculative calcula-
tions that can be selected among quickly when a key result
becomes available. This overlap can involve quotient se-
lection (used in the Ultra Sparc64 processor [4]), partial re-
mainder formation (used in the Hal Sparc64 processor [5]),
or both [6]. These are currently the best approaches for ac-
celerating division without significant increase in area.

A second strategy to reduce the impact of quotient selec-
tion is to prescale the divisor close to unity. When prescaled
with sufficient precision, this allows quotient selection to be
performed by simply rounding or truncating the partial re-
mainder [7]. While prescaling has been proposed for low-

radix algorithms, the overhead associated with prescaling
prevents them from being as efficient as overlapped SRT.
High-radix prescaling algorithms proposed by Ercegovac
et. al. [8] and by Wong and Flynn [9] lead to faster divi-
sion than overlapped SRT but require significant increases
in area.

A prescaling algorithm proposed by Ercegovac and Lang
[10] uses prescaling in a different way. Although it does
not quite achieve sufficient compensation for the prescaling
overhead, it is of interest because of its similarity to our
proposed algorithm in that (1) prescaling is performed to
greater precision than needed by the iteration radix, and (2)
this added precision is used to allow quotient selection to
be calculated over multiple iterations (this is fixed at two
iterations in the cited paper).

This paper presents a new strategy that can eliminate
quotient selection from the critical path altogether. In this
approach, prescaling allows the division recurrence to be
implemented by three separate processes which can be cal-
culated in parallel during iterations. Iteration latency is de-
termined by the slowest of the three paths, and in many
cases can be limited to that of carry-save addition and latch-
ing. We call this approach the parallel paths algorithm.

This paper is organized as follows. After introducing
basic terms and concepts in Section 2, Section 3 describes
the Parallel Paths algorithm. A radix-4 implementation is
described in Section 4, followed by a comparison of the im-
plementation with other efficient algorithms in Section 5.

2 Division Basics and Notation

We address the problem of calculating
���������

, where
the standard recurrence for an iterative division algorithm
is: 	�
��� � 	�
�� ���
��

(1)

for partial remainder
	�

(where
	�� ���

) and partial quotient�

. Calculating equation (1) involves several steps:
� SEL: Select next quotient digit

�

.

� DRV: Drive selected digit (encoded) to array of full
adders that will be used for partial remainder update.

1

-2b

DATAPATHCONTROL

b

0

REG

b

CSA

DRV
q i

SEL

iP

P i+1

MUX

-b2b

Figure 1. Basic radix-4 SRT algorithm.

� MUX: Use driven signals to multiplex appropriate
(precalculated)

���

.

� CSA: Perform partial remainder update via array of
carry-save adders.

� REG: Latch new partial remainder.

Figures 1 and 2 illustrate how these basic blocks are
used in a basic radix-4 SRT algorithm and a radix-4 SRT
algorithm using overlapped radix-2 stages. In both cases,
SEL is performed via table lookup based on

�
and the most

significant bits of
	�

after a short carry-propagate addition
(CPA).

2.1 Prescaling algorithms

In a prescaling algorithm, a scaling factor � —an esti-
mate of � ��� —is used to scale

�
and

�
. The division problem

then becomes: � � �
� � � �

� �
�

and the recurrence becomes:	�
��� � 	�
 � �
�� � ���
(2)� � 	�
 � �
 ��� �
�� �

�
� �	�	

(3)
where

	�� � � �
.

The reformulation in equation (3) shows the relationship
between the precision of the scaling factor and the num-
ber of quotient bits that can be retired in each iteration by
rounding or truncating. Since (

	
 � �

) can have an arbitrar-

ily large number of leading zeros (we could use a very over-
redundant quotient digit set and select

�
 � 	

), the magni-

tude of
�
�� �

�
� �	�

determines the maximum number of bits
that can be retired.

3 The Parallel Paths Algorithm

The parallel paths algorithm is based on equation (3), but
aims at minimizing iteration latency rather than maximizing

the number of bits that can be retired per iteration. The
strategy is developed by studying the two terms of equation
(3) and noticing two important differences between them.

The first difference is their complexity. While
� 	
 � �
 �

can be calculated quickly for some quotient selection meth-
ods (described below), adding

�
 � �
�
� �	�

requires the com-
bined latency of SEL � DRV � MUX � CSA, the entire
standard digit-recurrence iteration.

The second difference between the terms of equation (3)
is the relative magnitudes of the two terms. While subtract-
ing

�

in

� 	�
 � �
 �
zeroes the leading fractional bits and sig-

nificantly affects
	�
���

, the magnitude of
�
�� �

�
� �	�

is de-
termined by the accuracy of the scaling factor � .

The new approach uses this last fact to address the high
latency of calculating

�

and adding

�
�� �
�
� ���

to the par-
tial remainder. By prescaling with sufficient precision,�
�� �

�
� �	�

can be made small enough so that it will not
affect quotient selection in one or more subsequent itera-
tion(s). This allows postponing its introduction, spreading
its latency over multiple iterations.

While this leads to partial remainders that are not fully
adjusted with respect to previous quotient digits, it is easy
to see the validity of the process:

� �

�
�� �

� �
	
���
� �

�

�
�� �

� �
	�
�� �
�� � ���

� �

�

�
�� �

� �
� 	�
 � �
 �

� � � �
�� �
�

� �	�
� �

�

Since
�
�� �

�
� �	�

will eventually be added to the partial
remainder where its value will be divided by � �

, it does
not matter that it has been postponed.

An iteration of the new approach involves three paral-
lel processes. This is because addition of

�
�� �
�
� �	�

is di-
vided into two parts. While SEL � DRV � MUX can be dis-
tributed over multiple iterations, its subsequent addition to
the partial remainder (CSA) must occur within a single it-
eration since each iteration will introduce new partial prod-
uct(s) to the partial remainder. The three processes are thus:

� SUB Calculation of (
	�
 � �

). (Despite its name and
function, an appropriate SUB will generally not in-
volve subtraction, as discussed below.)

� SEL � DRV � MUX Preparation of the partial prod-
ucts for partial remainder update. This requires selec-
tion of

�

, driving such to the CSA array, and multi-

plexing between
�
�� �

�
� �	�

values.

� CSA Partial remainder update through carry-save ad-
dition.

2

DRV

CONTROL DATAPATH

i+2P

iP

i+2P (msb)

b -b

b -b

REGREG

DRV

SEL

MUX

CSA

MUX

b -b0

CSA

MUX

b -b0

MUX

SEL

CSA

SEL

CSA

-b

i+1q

q i

iP (msb)

P i+1

CSA

MUX

CSA CSA

SEL

CSA

b

Figure 2. Radix-4 SRT using overlapped radix-2 stages (with overlapped quotient selection and
overlapped partial remainder formation).

Both SUB and CSA update the partial remainder in each
iteration and are performed simultaneously. SUB (based on�

) adjusts the high-order bits of
	�

, and CSA (based on�
�� � for
�

postponed stages) adjusts the lower-order bits.
Since the latency of SEL � DRV � MUX can be ‘hidden’
by sufficiently postponing the introduction of partial prod-
ucts, iteration latency is often limited by the maximum of
the SUB and CSA latencies.

Surprisingly, SUB is not the limiting factor when the
right SEL is used. For example, by calculating quotient
digits

�

via carry propagate addition (CPA) of the most sig-

nificant bits of
	

followed by truncation, (
	
 � �

) is simply
the fractional result of the CPA plus the bits of

	�

not in-

cluded in the CPA (Figure 3). This SEL method thus allows
(
	�
�� �

) to be calculated without first calculating
�

, and re-
quires less time than a CSA.

Figure 4 illustrates how the parallel paths strategy can
reduce iteration latency through increased prescaling preci-
sion and postponement of partial products. For every two
additional bits of prescaling precision, each partial product
can be postponed one additional iteration, since its magni-
tude relative to the ‘local’ partial remainder will be the same
(ensuring the same bounds). The figure shows how this af-
fects iteration latency for assumed latencies of 2 �����
	 for
CSA, 6 �
����	 for SEL � DRV � MUX, and a SUB requiring
2 ������	 or less. Four possible places for adding the partial
products

�
�� �
�
� ���

are shown, along with corresponding
prescaling requirements and iteration latencies. Note that
the 2nd, 3rd and 4th latencies are determined by the latency
of SEL � DRV � MUX divided by the number of iterations
the partial products are postponed, but that latency cannot
be reduced further due to CSA latency. (Also, note that the
latency estimates given are for illustrative purposes only, as

are the two leading zeros in partial products.)

Designing a good implementation of the parallel paths
algorithm is a complicated optimization problem. In addi-
tion to many of the same parameter choices available in pre-
vious digit-recurrence algorithms, there is the added struc-
tural choice of how many stages to postpone introduction of
partial products. The three-way race inherent in iterations
leads to different priorities for evaluating a given design,
including the requirement for a fast SUB and increased im-
portance of CSA latency. There is also a tradeoff between
prescaling costs and iteration costs, since extra prescaling
precision often leads to reduced iteration latency.

While an important purpose of this paper is to introduce
the parallel paths strategy (rather than a particular imple-
mentation) our exploration of this design space has led to
several promising designs, including the following radix-
4 algorithm that provides improved performance over the
best currently used algorithms without significant increase
in area.

4 Parallel Paths Implementation: a Radix-4
Example

To develop a radix-4 parallel paths algorithm based on�
��� ���
 � � �
 ���
, we begin with a simpler related algorithm

based on
�
�����
 � � �

� �

, and then convert it to the pre-
ferred digit set (preferred primarily because allowing

�
 ���
requires calculating a non-redundant 3(1

�
� �

) for efficient
partial product formation).

3

X X X X X X X X X X ...
X X X X X X X X X X ... P i

q i
iP - q i

X X X X X

CPA

.

Figure 3. Implementing SEL via a CPA of the most significant bits of
	�

allows fast calculation of	
 � �

. (Each ‘X’ represents one bit.)

0 0 X X X X X X X X X X X

0 0 X X X X X X X X X X X

0 0 X X X X X X X X X X X

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X ...

...

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X ...

...

X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X ...

...

X X X X X X X X X X X X X X X ...
...

iq

0 0 X X X X X X X X X X X

8 t

6 t

xor

xor

xor

xor

2 t

3 t

6 + 2 =

max (6/3 , 2) =

max (6 , 2) =

max (6/2 , 2) =

X X X X X X X X X X X X X X X

i+3

i+2

i+1

iP

P

P

P

...

...

...

... 2 -k

i
(1-Mb)q

Iteration latencyfactor needed (in bits)
Accuracy of scaling

M

-k-2

2 -k-4

2
-k-6

2

Figure 4. Reducing iteration latency in a radix-4 algorithm with the parallel paths algorithm.

4.1 Algorithm based on
�

����
 � � �
�� �

The basic recurrence of the
�
�����
 � � �

� �

algorithm is
shown in Figure 5(a). The SEL and SUB functions are im-
plemented by a CPA of

	�

that incorporates two fractional

bits (shaded region), with the integer result becoming
�

(implementing SEL). The fractional result (digits A and B)
plus the bits of

	�

not incorporated in the CPA, becomes	
 � �

(implementing SUB).
	
���

is formed through CSA
addition of the less significant bits of

	

and

�
���� � � � � �	�
,

with digits A and B being forwarded directly to
	
 ���

.

Algorithm bounds are ensured by requiring that each par-
tial product have four leading fractional zeros relative to the
partial remainder to which it is added (Figure 5(b)). This en-
sures that the bits of

	�
 ���
which determine

�
���
(shaded re-

gion) have a maximum value of 4.75, so that
�
 �����

4. Note
that for the parallel paths algorithm one must assume that
a worst-case partial product will be added to each

	

when

checking bounds, since it is not based on
�

.

A bit-wise analysis of the CPA as done in Figure 5(b)
is necessary. For example, one could instead calculate the

maximum allowable
	�

:� 	 ��� � � � ��� � �	� � � �
�

� �	��
 ��� � ���� ������� � 	 ��� �� 	 ��� � � � � � � ��� ��� � � 	 ��� �	 ��� � � � � � �

but while this is in fact the value of

	�
���
in Figure 5(b), a

smaller
	�

could cause CPA overflow. For example:

1 1 1 1 0 0 0 0 ...
1 .0 1 0 0 0 0 ...

would lead to the
�
 �

5. While it would be possible to acco-
modate this by selecting

�
 �
4 and leaving the remaining ‘1’

for
	�
 ���

, such would require a more complex (slow) SEL.
Fortunately, as Figure 5(b) shows, the present implementa-
tion avoids partial remainders that would cause such CPA
overflow.

For perspective, there are many ways to design a CPA-
based radix-4 algorithm. For example, if SEL were imple-
mented using a CPA that incorporated 3 fractional bits of	�

(instead of 2) just three leading fractional zeros would
be needed in partial products (Figure 6(a)). In fact, just two
leading zeros would be needed if the 3rd fractional bit of
the partial product were also incorporated in the CPA (Fig-

4

 1 1 1 1 1 1 X X X X X X X X

.
(sums)A B X X X X X X X ...

X X X X X X X X X

...
...

.
CPA

X X X

 X X X X X X X X

......

(carries)

0 0 0 0 X X X
iP

i+1P 1 1 0 0 1 1 1

0 0 0 0 1 1 1

i+1P

iP

.

 X X X 1 1 1 1 1
X X X X 1 1 1 1 1

i-2 q (1-Mb) i-2 q (1-Mb)......
i q

(b)(a)

Figure 5. (a) Recurrence for
�
 ����
 � � �

� �

algorithm. (The circled X’s show the inputs and outputs of
one full adder.) (b) Demonstrating algorithm bounds.

 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

X X X X X 1 1 1 1
 X X X X 1 1 1 1

0 0 0 1 1 1 1
.

(a) (b)

.........

.
0 0 X 1 1 1 1

1 1 1 1 1 1 1

.
......

X X X X X 1 1 1 1
 X X X X 1 1 1 1

.

Figure 6. Two other CPA-based radix-4 schemes. Different forms of CPA (shaded regions) require
different number of leading fractional zeros in partial products to ensure

�
��� � �
.

ure 6(b)). Note that the CPA could not also incorporate the
2nd fractional bit of the partial product (i.e., so that partial
products would require just 1 leading fractional zero) be-
cause then the CPA could produce two carries, leading to�
 �

5.
While each of the SEL methods in Figure 6 would re-

quire increased latency, one could compensate for this by
postponing partial products a third iteration. Using the
SEL shown in Figure 6(b) would then require the same
prescaling accuracy as in the proposed implementation, but
SEL � DRV � MUX would have the latency of an additional
CSA to complete.

Iteration latency of the proposed algorithm is designed
to be based on CSA latency. By postponing introduction of
partial products two iterations, SEL � DRV � MUX has at
least 2 ����� to finish without affecting iteration latency, and
2.5 ����� if the CSA is designed to allow one input to arrive
late (which we will assume).

4.2 Converting the algorithm to
�

�� ���
 � � �
 � �

Converting the algorithm to
�
��� ���
 � � �
 � �

can be ac-
complished by inserting a constant ‘1’ in the fifth fractional
position of each partial product and later subtracting it when
it ‘migrates’ to an integer position (Figure 7). Because
the constant represents a ‘2’ when it migrates out in a par-
tial quotient, subtracting it neatly converts

�
 ����
 � � �

� �
to�
 �� ���
 � � �
 ��� �

. (Note that while the figure indicates that
�
As pointed out by Ercegovac, the process of adding and later subtract-

ing these constants implements a sort of rounding—the previous two par-

there is a ‘1’ in each constant position, this digit becomes
‘0’ when the corresponding partial product is negative.)

Adding a constant to each
�
�� �

�
� �	�

—rather for ex-
ample than adding all of them to

	 �
—is necessary to en-

sure that partial remainders remain positive, since we need�
 �
0,
� � �

, 4
�

before subtracting 2. Thus we cannot ‘save’
one bit of prescaling precision by adding the constants to	 �

. (For cases as in Figure 6(a) where the number of lead-
ing fractional zeros is odd—i.e. where the first non-zero
position will represent a ‘1’ when it migrates to an inte-
ger position—we can minimize prescaling requirements by
adding half of each constant to the partial product and half
to
	��

.)
Prescaling requirements for this algorithm can be eas-

ily calculated. Since the 5th fractional digit of each par-
tial product is used for the constant ‘1’, each

�
�� �
�
� �	�

requires 5 leading fractional zeros (if positive) or 5 lead-
ing fractional ones (if negative) relative to the partial re-
mainder to which it is added. Since the radix point of this
partial remainder has shifted four places from the partial re-
mainder from which

�

is selected, we need

��� � ��� ���
	
��
 � �

�
� �	� � � � ��� ���	

, leading to:��� � � � � �
�
�

� �	� � � � ���
��� � � � � � � � ���

�
� � � � � � � �

Since the value of
�

can approach 2, this seems to imply
that we need: ��� � � � � �

� � �
�

� � � � � � � �
tial products cause the fractional bits of each partial remainder to be over-
valued by 5/8. Without this or some other form of rounding, it would be
theoretically impossible to design an algorithm based on truncation with-
out using an overredundant quotient digit set [3].

5

 X X X X X X X X

 X X X X X X X X

 X X X X X X X X

 X X X X X X X X

X X X X X X X X X
. ...

0 0 0 0 (1) X X ...

0 0 0 0 X X ...

.

0 0 0 0 X X

Added here
Subtracted here

Constant : (1)

(1)

.

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

Figure 7. A
�
 ����
 � � �
�� �

radix-4 algorithm is converted to a
�
 �� ���
 � � �
 � �

algorithm by adding a
constant to each partial product and later subtracting it from each quotient digit.

However, because most methods for reciprocals produce es-
timates that are considerably more accurate for

��� �
than��� � (the curve � � � � � is flatter at

��� �
), we can use meth-

ods aimed at just
� � � �

reciprocal accuracy.
Based on analysis in [11] (though eventually found em-

pirically) we found a linear approximation that produces an
11-bit redundant reciprocal estimate after a short multiply-
accumulate:

� ��� � � � � � � ��� �

where

�
is
�

truncated after four fractional bits. This method
requires two lookup tables for

� �
and

� �
of sizes (

� � � � �)
and (

� � ���
), respectively. In the next section we describe

how � can be calculated using iteration hardware.

4.3 Implementation Details

Figure 8 shows the hardware blocks needed for iterations
of the proposed implementation, excluding the scaling fac-
tor lookup tables and hardware for on-the-fly conversion of
partial quotients. Two copies of iteration hardware are used
because of the sensitivity of the parallel paths algorithm to
latching latency.

There are several subtle features of the implementation.
To ensure maximum efficiency, REG C must be latched 1������	 later than the other registers (its output will be the late
input to the CSA).

Primary iteration hardware can be used to calculate �
and the prescaled operands (�

�
� �

) and � �
. To see how

this works, consider a generic multiply-add:� � �
	

where

�
has fewer digits than � . By storing

�
in the most

significant positions of REG B and selecting � in the Q-
MUX, each iteration will process two radix-4 digits of

�
—

multiplying each by � and adding the results to the partial
remainder. Since iteration hardware left-shifts partial re-
mainders 2 places after each CSA, the various partial prod-
ucts

�
 � end up correctly aligned, and the digits of
�

are
slowly shifted out of REG B. (Note that at the beginning we

need a right-shifted � in Q-MUX to compensate for these
shifts.) By loading a right-shifted

	
into

	 �
at the beginning

(adjacent to
�

), iteration hardware will calculate a redun-
dant (

� � ��) in REG B.
Based on this method, the choices of inputs to the two

MUXes at the top of Figure 8 allow iteration hardware to
calculate:

1)
� � � � � � � ��� � � �

2) �
�

� �
3) � �

before beginning division iterations.

5 Comparison with Other Algorithms

We now compare the radix-4 parallel paths algorithm
presented above with several of the best competing algo-
rithms for double precision division. In particular, our com-
parison includes:

� Basic radix-4 SRT.

� Radix-16 SRT using two overlapped radix-4 stages.
(One of the best approaches currently in use.)

� Radix-512 very high radix algorithm (VHR) of Erce-
govac et. al. (We do not include higher radices of this
approach due to their large area requirements.)

In Table I we evaluate area and latency requirements for
these algorithms, relying primarily on the methodology and
results of Montuschi et. al. [12], where parameterized area
and latency estimates are provided for common hardware
blocks. We use their results for basic radix-4 SRT and radix-
16 overlapped SRT without modification. For each algo-
rithm, we also evaluate latency when a faster MUX/REG
design is used, as proposed in [13]. (Due to lack of data, we
assume the same areas when using this design.)

Figure 9 plots speed versus area for these algorithms. As
can be seen, the parallel paths algorithm is slightly faster

6

01(c c)

(M)
(M 1)

Q-MUX(4-1)

MUX(4-1)

(00...-(b-p))

(00...a)
(00...-b)

(1-Mb)

(digits A and B)

(digits A and B)

q

i
q

CPA

CSA

DRV

DRV MUX(4-1)

MUX(4-1)

CSA

CPA

CPA

i+1

Pi

Pi+1

CONTROL DATAPATH

REG E

REG A

REG B

REG F

REG D

REG C

Figure 8. Primary hardware blocks needed for iterations.

Table I. Estimated component latency and area for parallel paths and Radix-512 VHR algorithms.

Radix-4 Parallel Paths R-512 VHR
2 copies

scaling factor �
� � � � �

REG A � � � ���
	

.6(68)
Q-MUX � � ���

�
	
.8(68)

REG E � � �
� � 	

–
MUX (for REG B) � � ���

�	
–

REG B

�
�
� ��� �	

1.2(68)
SEL – –
DRV – –
MUX (part. product) � � ���

�
	 � �
	 � � � ���
	 � �

	
REG C � � ���

�
	
–

REG F � � ���
�
	

–
CSA

�
� � �
	 �

� � � ���
	 � �

	
REG D – –
O-T-Fly

�
� �
� � � �

	 �
� �
� � � �

	
CPA

�
� � � ���

	 �
� � � �	�

	

TOTAL AREA (��
�) ����� �������

Radix-4 Parallel Paths R-512 VHR
2 copies

scaling factor � � �
CSA(1-Mb) �

�
CPA(1-Mb),CSA(Ma) �

�
��� ’s 15 7
finish

�
1

total cycles 26 11
cycle time 4/2.75 7.5/6.25

TOTAL LATENCY (�
��) ����� �!��� � " ��# � "��!���

R-4 SRT R-16 Overlapped SRT

TOTAL AREA (��
�) ����� "�"��
total cycles 28 15

TOTAL LATENCY (�
�) �������$����" ��#����!��� ��� #�"

7

0

50

100

150

200

0 200 400 600 800 1000 1200 1400 1600 1800

La
te

nc
y

(in
 fu

ll
ad

de
rs

)

Area (in full adders)

Radix-512 prescaling algorithm
Radix-16 overlapped SRT

Radix-4 basic SRT
Radix-4 Parallel Paths (with 2 copies of iteration HW)

Figure 9. Speed versus area for several of the best division algorithms. The upper latency shown for
each algorithm is based on component estimates from [12]; the reduced latencies assume use of a
fast MUX/REG as described in [13].

8

than overlapped SRT when the slower registers are used,
and significantly faster when using the faster registers.

5.1 Higher Precision Division

For higher-precision division, the parallel paths approach
increases its advantage over the SRT algorithms. This is be-
cause, for example, if the division must be carried out to
twice as many bits, the SRT algorithms will require fully
twice as many iterations to perform the division. The par-
allel paths algorithms, on the other hand, while requiring
twice as many quotient-digit producing iterations (repre-
senting 50-60% of its double precision latency) will see
very little increase in latency in the other 40+% of the al-
gorithm.

For very high-precision division, another variation of the
Parallel Paths algorithm can attain speeds approaching 1 bit
every 0.25 � � � , though (not unexpectedly) this algorithm re-
quires considerable area.

6 Conclusions/Future Work

This paper introduced the parallel paths algorithm, a new
hardware division strategy that allows the latency of quo-
tient selection and partial product formation to be ‘hid-
den’ by distributing their calculation over multiple itera-
tions. While still looking for an optimal design—the par-
allel paths approach is in fact a class of algorithms—we ex-
amined a specific radix-4 implementation that can achieve
an estimated speedup of 1.4 over radix-16 overlapped SRT
while requiring a factor of 1.6 increase in area. These results
indicate that the parallel paths strategy offers a new option
in terms of area/performance tradeoff. Future work will in-
clude more detailed design and simulation, with eventual
implementation in silicon.

7 Acknowledgments

This work was supported in part by NSF grant EIA-
9905322 and an ARCS foundation scholarship.

References

[1] J. E. Robertson, “A new class of digital division
methods,” IRE Trans. Electronic Computers, vol. 7,
pp. 218–222, Sept. 1958.

[2] K. D. Tocher, “Techniques of multiplication and di-
vision for automatic binary computers,” Quarterly J.
Mech. Appl. Math., vol. 11, pp. 364–384, 364–384
1958.

[3] M. D. Ercegovac and T. Lang, Division and Square
Root: Digit-recurrence algorithms and applications.
Dordrecht, The Netherlands: Kluwer Academic Pub-
lishers, 1994.

[4] J. A. Prabhu and G. B. Zyner, “167 MHz radix-8 di-
vide and square root using overlapped radix-2 stages,”
in Proc. Int. Conf. Computer Design, pp. 155–162,
IEEE, 1995.

[5] T. E. Williams and M. A. Horowitz, “A zero-overhead
self-timed 160-ns 54-b CMOS divider,” IEEE Journal
of Solid-State Circuits, vol. 26, pp. 1651–1661, Nov.
1991.

[6] D. Harris and M. A. Horowitz, “SRT division architec-
tures and implementations,” in Proc. Int. Conf. Com-
puter Design, pp. 18–25, IEEE, 1997.

[7] A. Svoboda, “An algorithm for division,” in Proc. 9th
Symp. Inform. Processing Machines, pp. 25–34, 1963.

[8] M. D. Ercegovac, T. Lang, and P. Montuschi, “Very
high radix division with selection by rounding and
prescaling,” IEEE Trans. Computers, vol. 43, pp. 909–
918, Aug. 1994.

[9] D. Wong and M. Flynn, “Fast division using accurate
quotient approximations to reduce the number of iter-
ations,” IEEE Trans. Computers, vol. 41, pp. 981–995,
Aug. 1992.

[10] M. D. Ercegovac and T. Lang, “A division algorithm
with prediction of quotient digits,” in Proc. Int. Conf.
Computer Design, pp. 51–56, IEEE, 1985.

[11] P.-M. Seidel, “High-speed redundant reciprocal ap-
proximation,” Integration, the VLSI Journal, vol. 28,
pp. 1–12, 1999.

[12] P. Montuschi and T. Lang, “Boosting very-high radix
division with prescaling and selection by rounding,”
IEEE Transactions on Computers, vol. 50, pp. 13–27,
Jan. 2001.

[13] F. Klass, C. Amir, A. Das, K. Aingaran, C. Truong,
R. Wang, A. Mehta, R. Heald, and G. Yee, “A new
family of semidynamic and dynamic flip-flops with
embedded logic for high-performance processors,”
IEEE Journal of Solid-State Circuits, vol. 34, pp. 712–
716, May 1999.

9

