
Worst Cases and Lattice Reduction

Damien Stehlé
ENS Paris

45 rue d’Ulm
F-75005 Paris

damien.stehle@ens.fr

Vincent Lefèvre
LORIA/INRIA Lorraine

Technopôle de Nancy-Brabois
615 rue du Jardin Botanique

F-54602 Villers-lès-Nancy Cedex
lefevre@loria.fr

Paul Zimmermann
LORIA/INRIA Lorraine

Technopôle de Nancy-Brabois
615 rue du Jardin Botanique

F-54602 Villers-lès-Nancy Cedex
zimmerma@loria.fr

Abstract

We propose a new algorithm to find worst cases for cor-
rect rounding of an analytic function. We first reduce this
problem to the real small value problem — i.e. for polyno-
mials with real coefficients. Then we show that this sec-
ond problem can be solved efficiently, by extending Copper-
smith’s work on the integer small value problem — for poly-
nomials with integer coefficients — using lattice reduction
[4, 5, 6].

For floating-point numbers with a mantissa less than�
, and a polynomial approximation of degree � , our al-

gorithm finds all worst cases at distance � �������� ��	�
 from

a machine number in time ��
 ����	�
� ��	�
������ . For ����� , this
improves on the ��
 ����� � ��� � complexity from Lefèvre’s al-
gorithm [15, 16] to ��
 �����"! ��� � . We exhibit some new worst
cases found using our algorithm, for double-extended and
quadruple precision. For larger � , our algorithm can be
used to check that there exist no worst cases at distance
� �$#�%

in time ��
 �
� �'&)(
*,+ � .

1 Introduction

The IEEE-754 standard for binary floating-point arith-
metic [11], approved in 1985 by the IEEE Standards Board
and the American National Standards Institute, requires
that all four basic arithmetic operations (- , . , / , 0) and
the square root are correctly rounded. For a given func-
tion, floating-point inputs for which it is difficult to guar-
antee correct rounding, called worst cases, are numbers for
which the exact result — as computed in infinite precision
— is near a machine number, or near the middle of two
consecutive machine numbers. This is the famous “Table
Maker’s Dilemma” problem (TMD for short). Several au-
thors [13, 21, 12, 14, 19] have shown that for the class of
algebraic functions, such worst cases cannot be too near

from a machine number or the middle of two consecutive
machine numbers. Such bounds enable one to design some
efficient algorithms that guarantee correct rounding for divi-
sion and square root, and less efficient algorithms for other
algebraic functions.

However, for non-algebraic functions, number theory
bounds are not sharp enough, which makes correct round-
ing harder to implement. This is probably the reason why
the IEEE-754 standard does not require correct rounding
for those functions. Muller and other authors proposed in
[20] to introduce different levels of quality for transcenden-
tal functions. This proposal was presented by Markstein at
the May 2002 meeting of the IEEE-754 revision group, but
the conclusion was that “we’re not yet ready to standard-
ize”.

Systematic work on the Table Maker’s Dilemma was
done by Lefèvre and Muller [16], who published worst
cases for many elementary functions in double precision
(
� �1� !"�), over the full range for some functions. Alas,

their approach is too expensive to deal with the quadru-
ple precision, which is included in the current revision of
the IEEE-754 standard. Thus currently the only possible
approaches for higher precisions are either to guess a rea-
sonable bound on the precision required for the hardest to
round cases and to write a library computing up to that pre-
cision, or to write a generic multiple-precision library. For
instance, Ziv’s MathLib library does the former, where the
guessed bound is 2,354 bits for double precision [22].

Having an efficient algorithm to find the hardest to round
cases, for a given function and a given floating-point format,
would help to replace guessed bounds — which are usually
overestimated — by sharper and rigorous bounds. It would
thus enable one to design very efficient libraries with correct
rounding [7, 8]. Then there would be no good reason any
more to exclude those functions from the correct rounding
requirements of the IEEE-754 standard.

Exhaustive search methods consist in finding the hardest
to round cases of the given function in the given range. They

give the best possible bound, but are very time-consuming.
Moreover, a search for a given precision gives little knowl-
edge for another precision. We propose here a new algo-
rithm belonging to that class. It naturally extends the first
algorithm proposed by Lefèvre [15], and is based on Cop-
persmith’s ideas.

Previous related work was done by Elkies, who gives in
[9] a new algorithm using lattice reduction to find all ratio-
nal points of small height near a plane curve; for example,
his record:
� 4 ��� 4�453 ��� 3�2 4 � �5� � � .�����2,454��	���54����54���
���
���� �
�2
� � 4 �

� � 3�� � 4�� �

corresponds to a worst case of the function � �"�"� for a
���

-bit
input and a 2�� -bit output; his other example

���5��
�������� � � � .��,4 �
 � ����3 � � .$��� � 45454�4 ��� 2 � � �

corresponds to a worst case of the function
�� � -�� � ��� �"�
in
� � -bit arithmetic. More recently Gonnet [10] also used

lattice reduction to find worst cases, however his approach
seems equivalent to Lefèvre’s algorithm.

Our paper is organized as follows: Section 2 explains in
mathematical terms the problem we want to solve, recalls
Lefèvre’s algorithm and analyzes its complexity. Section 3
describes our new algorithm, after a short survey on lattice
reduction and Coppersmith’s work, which we heavily use.
Section 4 presents some new worst cases found with our
algorithm for the ��� function, in double-extended precision
and quadruple precision. Section 5 discusses some ideas for
possible improvements and open questions.

2 Preliminaries

2.1 Definitions and Notations

We assume we work here with floating-point numbers
with a mantissa of � bits. Let

� � ��� ; for instance,
� �

� !"� corresponds to double precision,
� � �	��� corresponds

to double-extended precision, and
� � � ��� � corresponds

to quadruple precision. A worst case for a function � is a
floating-point number � such that �
�� � has � identical bits
after the round bit. If all those � bits equal (resp. differ
from) the round bit, � is a worst case for directed rounding
(resp. rounding to nearest).

For sake of simplicity, we consider here directed round-
ing only (towards .�� , towards - � , towards zero), since
worst cases at precision � for all rounding modes are worst
cases at precision ��- �

for directed rounding. (In gen-
eral, we are interested in the worst cases for the inverse
function too, in which case inputs are also chosen at pre-
cision � - � [16].) To find worst cases for directed round-
ing, we throw away the first � significant bits of the result

Figure 1. A function graph and the grid of ma-
chine numbers. Worst cases correspond to
grid points with a small vertical distance to
the curve.

mantissa. Then a worst case of length � corresponds to! � �
�� �#"%$�& � ! � � #(' , where � "%$�& ��) �*��.,+���- de-
notes the “centered” fractional part (see Fig. 1).

We also consider that both argument � and result � �
�
�� � are normalized, i.e. ��/.0�213�
�� � � �

. This is easy
to achieve by multiplying � or �
�� � by some fixed powers
of � , unless the exponent of �
�� � varies a lot in the consid-
ered range. This excludes the case of numerically irregular
functions like 4�5768� for large � . Given a polynomial approx-
imation 9
�: � to

� �
#;< � (for example, a Taylor expansion),
the Table Maker’s Dilemma can be reduced to the following
problem.
REAL SMALL VALUE PROBLEM (REAL SVALP): Given
positive integers = and > , and a polynomial 9 with real
coefficients, find all integers

! : ! �?> such that

! 9
�: �@"%$�& � ! �
�
=BA (1)

REMARK 1: The mantissa bound
�

does not appear explic-
itly in the real SValP, however the polynomial 9
�: � depends
on

�
, and so does the error made in the polynomial approx-

imation.
REMARK 2: If the fractional bits of the function behave
randomly, we can expect CEDF worst cases. Therefore we
may assume >HGI= if we want only few worst cases.1

2.2 Lefèvre’s Algorithm

Lefèvre’s algorithm [15, 16] works as follows. One con-
siders a linear approximation to the function � on small in-
tervals. Those approximations are computed from higher
order polynomial approximations on larger intervals, us-
ing an efficient scheme based on the “table of differences”
method. On each small interval, worst cases are found using
a modified version of the Euclidean algorithm, which gives
a lower bound for

! � �
@;< �@"%$�& � ! on that interval.

1The notation JLKNM is equivalent to JLOQPSR7M
T .

Assume �
�� � ����� -�� �
�� . ��� � -�� �
�� . ��� � � - ��
�
�� .
��� � � � around ��� . Since we neglect the terms of order two
or more in

� �
 ;< � , we must have
! � � D �< ! G �F so that the

error coming from the polynomial approximation does not
exceed the distance �F . Together with > G = , it follows
> G � � �"� . Therefore the complexity of Lefèvre’s algo-
rithm is ��
 � ��� � ��� � , since we have to consider

<
D C

� ���"�
small intervals to check a complete mantissa range.

In practice, Lefèvre’s algorithm is expensive but feasi-
ble for the double precision (

� �"�"� C ��� �
 � �), near from
the limits of the current processors for double-extended pre-
cision (

���"�"� C�2	� �
 � �), and out of reach for quadruple
precision (

� ���"� C � � �
 �"�).
3 A New Algorithm Using Lattice Reduction

In this section, we first state some basic facts about lat-
tices — we refer to [18] for an introduction to that subject
— and we explain Coppersmith’s technique, on which our
algorithm is based. Then we introduce the algorithm, we
prove its correctness and we analyze its complexity.

3.1 Some Basic Facts in Lattice Reduction Theory

A lattice

is a discrete subgroup of � � , or equivalently
the set of all linear integral combinations of � . � linearly
independent vectors over � , that is:

 ��

�� �
� � �

�
b

�
! �
�������

A
We define the determinant, also called the volume, of the
lattice

as: &����

 � ��� �

�
� � !7! b �

�
!7!
, where

! !
A
! !

is the Eu-
clidean norm and b �� 1 A A A 1 b ��"! is the Gram-Schmidt orthogo-
nalization of b � 1 A A A 1 b � ! . The basis b � 1 A7A A 1 b � ! of

is not

unique and on an algorithmic point of view, only bases
which consist of short linearly independent vectors of

are

of interest. Those so-called reduced bases always exist and
can be computed in polynomial time with the well-known
LLL algorithm [17].

Theorem 1 Given a basis b � 1 A A A 1 b � ! of a lattice

$# �

� ,
the LLL algorithm provides in polynomial time in the bit
length of the input, a basis
 v � 1 A A A 1 v �

�
satisfying2:

1.
!7!
v �
!7! . �&%� &��'�

 �
% ;

2.
!7!
v � !7! . � %� &��'�

 �
% ��
 .

Coppersmith (see [4, 5], or [6] for a better description)
recently found an important consequence of this theorem:
one can compute in a time polynomial in ($*),+ the small

2This is not the strongest result, but is sufficient for our needs.

roots of a modular multivariate polynomial modulo an inte-
ger + . His method proved very powerful to factorize inte-
gers when some bits of the factors are known and to forge
cryptographic schemes (see [2, 3, 4] for example). Our new
algorithm intensely uses that technique.

3.2 The Integer Small Value Problem

The problem that will prove interesting in our case is the
following: given a univariate polynomial 9

�-�
 � ! of de-

gree � , find on which small integer entries it has small val-
ues modulo a large integer + . Equivalently, we are looking
for the small integer roots of the bivariate polynomial:.
�� 1�� � � 9
�� � - �
 "%$�&/+ � A

We now explain how Coppersmith’s technique helps
solving it. First let 0 be a positive integer (that will grow
later to infinity), and assume
����	1��1� � is a root of

.
mod-

ulo + . We consider the family of polynomials
. � 2 3
��21�� � �

�

�
. 3
�� 1�� �4+65 # 3 with
�.87 - �:9 . ��0 . Then
����	1��1� �

is a root modulo +65 of each
. � 2 3 , whence of each linear

combination of them.
Our goal is to build two integer combinations of those

polynomials, ; �
�� 1�� � and ; �
��21�� � , which take small val-
ues — i.e. less than +65 — for small � and � , more pre-
cisely

! � ! .=< and
! � ! .?> for fixed bounds < and > .

Thus, if
�� � 1�� � � is a small root of ; � and ; � modulo +65 ,

�� � 1�� � � is also a root of ; � and ; � over

�
. Finally,
�� � 1�� � �

will be found by looking at the integer roots of the resultant
Res @
A; � 1B; � �

�C�
 � ! .

It remains to explain how to find those two polynomials.
For this we consider the lattice of dimension (5 � � + (ED 5 � � +�
generated by the vectors associated with the polynomials. � 2 3
A<GF�1H>JI � : the vector linked to a bivariate polynomialK �

2 3 �
�
2 3 F
�
I 3 has its F

�
I 3 coordinate equal to �

�
2 3 . We give

here the shape of the matrix we get in the case ��� �
and0 � � .LNMPOQ M Q

 M Q� M QR M QS M QT M QU M QQ M

 M
� M
R M
Q M �

VWWWWWWWWWWWWWWWWWWWWWWX

Y � Y �[Z Y �HZ � Y �BZ R Y � Z S Y �[Z T Y �[Z U� � � � Y1\
� � � � Y Z \� � � � Y Z � \� � � � Y Z R \� � � � � � � � � � � \ �

]_^^^^^^^^^^^^^^^^^^^^^^`
Since we get a triangular matrix, the calculation of the de-

terminant is obvious 3:

&��'�

 � � + � R 5 R �ba (5 R + ��< � �U 5 R �&a (5 R + �c> � U 5 R �ba�(5 R + A
Therefore, by Theorem 1, where here the lattice dimen-
sion satisfies �-d D� 0 � , the LLL algorithm gives us two

3The e R T makes sense when f grows to infinity

vectors v � and v � of norms that are asymptotically less
than + �R 5 �ba (5 + � < �R 5 �ba (5 + � >
R 5 �ba�(5 + . Those vectors
v � and v � correspond to two polynomials ; �
A<GF 1[>JI �
and ; �
 <GF�1[> I � . Moreover if

! � ! . < and
! � ! .> , then

! ; %
�� 1�� � ! . K �
2 3 ! ; (% +

�
2 3 <

�
> 3 ! � � � L � @ � O� L��bO . � �

max
! ; (% +
�
2 3 <

�
> 3 ! .�� � !7! v % ! ! for a certain constant � . Thus,

to get
! ; %
�� 1�� � ! � +65 , it is sufficient that:

�,� + �R 5 �&a (5 + �'< � R 5 �ba�(5 + ��>
R 5 �ba�(5 + � + 5 1
which asymptotically gives the bound < D > G + .

Using Coppersmith’s technique, one can thus solve the
integer SValP in polynomial time as long as < D > � + � #�� .
In fact, this is not completely true because we used an argu-
ment we cannot prove: we assumed that 	 � 4 @�
 ; � 1[; � ��
�N
 .
This heuristic has been made very often in cryptography
(see [2, 3, 4]).

3.3 The SLZ Algorithm

The real SValP is the following problem: Given a poly-
nomial 9 , find for which integers : , 9
�: � is near an integer.
We solve this problem by reducing it to the integer SValP.
The difficulty is that 9
�: � has real coefficients, and the LLL
algorithm does not work well with real input. The follow-
ing algorithm overcomes that difficulty (we present here a
complete algorithm to solve the Table Maker’s Dilemma, in
which case 9
�: � � � �
�:
� � � , but the sub-algorithm con-
sisting of steps

�
to
���

may be of interest to solve the real
SValP itself).

Input: a function � , positive integers � , � , � , � , �
Output: all worst cases at distance ������� for ������ �
for ! "�!$#%�

1. Let &'�(" � be the Taylor expansion of �)������ � up

to order � , and *,+.-0/$1�2�34-05
/$176836
2. Compute a bound 9 such that ! &'�(" ��: �,������ � !;�
9 for ! "<!;#=�

3. Let �?>�+A@B2�CD62�CFE 1HG
I
, JK+L�M��NO� � �?> , and4

& > �MP � +Q@MJR&'�(�SP �UT , VW�(" � +X� 5 & > � �Y �
4. Let Z�[2<\�]^]�]�\ [�_a`RbcZ�Ped4f$gh` for i #=jUNR�Uk #=�l�
5. Let m + �M�nNo� � � 5 , p + JS� 5 and
Z<q 2 \�]�]�]^\ q _ `rbsZl�(�SP � d �4VW�(�SP � N,mrf � g p /at g `
for i #=juNv�Uk'#=�l�

6. Form the *vw,* integral matrix x where xzy|{ } is
the coefficient of the monomial [y in q }

7. ~�bc���|�8�����������<�$�e�����4x �
8. Let ��� \ ��� be the two smallest vectors from ~ ,

and V 2 �(��P \ m�f � and V 6 �(��P \ m�f � the corre-
sponding polynomials

4The notation �����SR�����T(� means that we round to the nearest integer
each coefficient of ���SR�����T . This provides an element of ��� �h .

9. If there exists �(" \8¡ �£¢n¤0: � \ �¦¥§w ¤�: m \ m�¥ with
! V 2 �(" \8¡ � !?¨©p / or ! V 6 �(" \8¡ � !ª¨«p / , re-
turn(FAIL)

10. ¬��(" � b­����®�¯;�4V 2 �(" \8¡ � \ V 6 �(" \8¡ �8� ;
if ¬��(" � +?i then return(FAIL)

11. for each "8° in ±�²l����³´�^µ���¶l¶h��®��0¬��(" � \ ¤0: � \ �¦¥ � do
if ! �,��� � Q� ��· ¶;�¸�l!$�ª�<��� then output " ° .

3.4 Correctness of the Algorithm

Theorem 2 In case algorithm SLZ does not return FAIL,
it behaves correctly, i.e. it prints exactly all integers :

�
 .8> 1�> ! such that

! � �
 ;< �#"%$ & � ! � � � = .

PROOF. Because of the final check in step
���

, we
only have to verify that no worst case is missed. Suppose
there is : �

�
 .8>L1�> ! with

! � �
 ; Q< �#"%$�& � ! � � � = . We
first prove that

! .
�::� �@"%$�&)¹ > D ! .
 � - � � > D . From
the definition of 9 ,

! 9
�::� �#"%$�& � ! � � � = -»º . �� F½¼ .
Since

! ¹ 9
�> F � . 9W¾
AF � ! . D�� �� for
! F ! . � , by choosingF �/: � ��> we get

! .
�: � �#"%$�&¿¹ > D ! � (ED�� � + D �� - (ED�� � + D �� .

Whence
.
�: � - � �H
 "%$�&,¹ > D has a root
�: � 1�� � � with! : � ! .?> and
! � � ! �
 � - � � > D . Since

.
�
�: 1�� � and

. �
�: 1�� �
are linear combinations of

.
�: � -�� and its powers, then

�: � 1�� � � is a common root of

.
�
�: 1�� � and

. �
�: 1�� � modulo
¹ > D , and even over the reals since

! .
�
! 1 ! . � ! � ¹ > D . Thus

::� is an integer root of 	 � 4 @�
 . �
�: 1�� � 1 . �
�: 1�� � � , and will be
found at step

���
.

3.5 Choice of Parameters and Complexity Analysis

3.5.1 Coppersmith’s Bound

Because of the use of Coppersmith’s technique in our algo-
rithm, to insure the algorithm does not return FAIL at step
9, the bound “ < D > G + ” has to be verified. In our case,< corresponds to > , > to
 � - � � > D and + to ¹ > D , so we
get:

>HGI=
� A
3.5.2 Choice of the Degree � With Respect to >
Let
 �

�
�
�

the Taylor coefficients of � . Since we neglect Tay-
lor coefficients of degree � - � and greater, the error made in
the approximation to

� �
 ;< � by 9
�: � is C�� D�� � > D�� � �$# D .
Since we are looking for worst cases with

! 9
�: �@"%$�& � ! �� � = , we want > D�� � �$# D G � � = , i.e. > D�� � G � D � = .

3.5.3 Complexity Analysis

Thus we have two bounds for > : the first one > G
= � � D comes from Coppersmith’s method, the second one

> D�� � G � D � = comes from the accuracy of the Taylor ex-

pansion. Therefore for = G � � �� ��	�
 , Coppersmith’s bound

wins and implies > GE= � � D , whereas for =�� � � �� ��	�
 ,
Lagrange’s bound gives > D�� � G � D � = . The largest

bound for > is obtained for = d � � �� ��	�
 , with >HG � �� ��	�
 .
For � � �

, we find the constraint > G � � �"� from Lefèvre’s
method; for ��� � , this gives >NG �����"!

with = d � � �"! ;
for � � �

, this gives > G �������
with = d �������

.
With = d � %

, we get a best possible interval length
> d �
� #
� * �ba�(
*,+ .
3.5.4 Working Precision

In step 1, we can use floating-point coefficients in the Tay-
lor expansion 9
�: � instead of symbolic coefficients, as long
as it introduces no error in step 3 while computing 9¸¾
AF � .
Let �

�
be the 7 th Taylor coefficient of � . Then to get

9W¾
 F � correct at step 3, the error on ¹ �
�> � � �
�
�
�

must
be less than

� �,� , thus the error on �
�

must be less than� �
 � ¹ � �
 � �
> �
�
. Since

��� > , it thus suffices to com-
pute �

�
with ($1) �
 � ¹ � � bits after the binary point.

REMARK 3: When searching worst cases with = G�
, degree � is enough. Indeed,

� � # D > D G � � # D =
since > D G = (Coppersmith’s bound), and for � � �

,� � # D > D G � � # D G � � � G � � = . Thus all Taylor terms
of degree

� �
give a negligible contribution to

� �
 ;< � , and
the largest value of > is

����� !
, giving a complexity of

�����"!
to search a whole range of

� �5� values. More generally, for
= G ��%

, degree �
	 is enough, giving a complexity of� � *S * 	�
 .

4 Experimental Results

We have implemented algorithm SLZ in the Pari/GP
system (version 2.2.4-alpha) [1] and experimented it on a
Athlon XP 1600+ under Linux. We have chosen the �	�
function since it is the easiest one, with only one expo-
nent range to study. Fig. 2 shows for each target precision
(double, double-extended, quadruple), and for = C �

and
= C � �

, the best parameters (> , � , and 0) for our method,
together with the estimated time to check the whole expo-
nent range, i.e.

� �,� floating-point numbers. For each preci-
sion, the first row gives the best parameters for the � � 0 ��

case, which is what Gonnet considers in [10]; comparing
that first row to the following ones shows the speedup ob-
tained. For = C �

, the speedup increases from
�

to
� 2 ,

whence is not dramatic. However for = C � �
, we get a

speedup of about
�
�
�
 in quadruple precision with respect

to the naive method (� ��0 � �
), with
 � 1[0 � �
�� 1"� � .

Fig. 3 shows a few worst cases found using algo-
rithm SLZ for double-extended and quadruple precision.
These experiments tend to show that with a carefully

� = > � 0 est. time
double � ! � � ��� � � ! � �

560 days
� ! � � ! � � � � � � 120 days

precision � ! � � � � � � �"! � � 45 days
double ����� � � � � � � � �

140 years
extended � ��� � ��� � � � � � 43 years
precision ����� � � ��� � � � � � 9 years
quadruple � � � � � � � � �"! � �

1600 Gyears
� � � � � � � � ��� � � � 94 Gyears

precision � � � � � �"� � � !"� � � 1.6 Gyears

Figure 2. Best experimental parameters for
double, double-extended and quadruple pre-
cision, and estimated time for an exponent
range of

� �,� values.

� ::� � � # � �"� � ; Q � < "%$�& �
����� � 4�3�
�2 � 2�2 � 2 353��53 �
 A

� � � �
�
 ������� A A7A����� � ����
�354 � ��
 � 454 � 2 �
 A

��
� �
�
�
 �
 A A7A����� 4�� � � 453 � 4�� � ��2 � 4�4
 A

� � ! �
�
 �
�
�
 A A7A����� ��
 � � � 4���454�����
�� � ��2
 A

� ! �
 �
�
 ��� A A7A� ��� �53�
��545353�
�� � 4 � � 3 ���
 A

! � �����
�
 � A A7A� ��� � ����� � � 2������5��
�2,�5453 � ��� �
 A

� � �
�
�
�
�
�
 A A7A� ��� � 4���� � �53�
 � 2,� �
53�3 �
�
,3��
 A

����
�
 �
 ��� A A7A� ��� � � � 3 � 3���� � ��
 ��� � 4 � 2�
��5�
�
 A

� � !
 �������
 A A7A� ��� � ��� 3�
54�
 � 4�3�
�
����,3�4�
���
 � 3
 A

� � �
�
�
�
�
 � A A7A

Figure 3. Some worst cases found for the ���
function in double-extended and quadruple
precision.

tuned implementation, and several computers running a few
months, solving the Table Maker’s Dilemma for the double-
extended precision is nowadays feasible for simple elemen-
tary functions.

5 Possible Improvements, Open questions

We have presented a new algorithm, based on lattice re-
duction, to search for worst cases for correct rounding of
analytic functions. The first experimental results show that
algorithm SLZ is quite efficient, especially to detect worst
cases at distance much less than � # � , where � is the target
precision. However the efficiency largely depends on the
function considered, like in Lefèvre’s algorithm.

Several open questions remain. Does this approach ex-
tend like in the modular case ([4]) to functions of two vari-
ables like � @ or
���� �
�6 � @ ?

Our algorithm is complementary to that of Elkies [9],

which works well when = G �
(in our notation), i.e.

when we expect many worst cases, whereas our algorithm
is more efficient when = � �

, i.e. when we expect
only few worst cases, or none. However, in the case of
�
�� � �H� ���"� , related to Hall’s conjecture, Elkies proposes a
special-purpose algorithm to find all worst cases at distance
� � � � in ��
 � � �"� �'� � . Does this algorithm generalize to
other algebraic functions?

References

[1] C. Batut, K. Belabas, D. Bernardi, H. Cohen, and
M. Olivier. User’s Guide to PARI/GP, 2000.
ftp://megrez.math.u-bordeaux.fr/pub/
pari/manuals/users.pdf.

[2] D. Boneh and G. Durfee. Cryptanalysis of RSA with pri-
vate key � less than * °�� 6 � 6 . In Proceedings of Eurocrypt’99,
volume 1592 of Lecture Notes in Computer Science, pages
1–11. Springer-Verlag, 1999.

[3] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factor-
ing *?+�¬ ��� for large � . In Proceedings of Eurocrypt’99,
volume 1592 of Lecture Notes in Computer Science, pages
326–337. Springer-Verlag, 1999.

[4] D. Coppersmith. Finding a small root of a bivariate integer
equation; factoring with high bits known. In Proceedings of
Eurocrypt’96, volume 1070 of Lecture Notes in Computer
Science, pages 178–189. Springer-Verlag, 1996.

[5] D. Coppersmith. Finding a small root of a univariate mod-
ular equation. In Proceedings of Eurocrypt’96, volume
1070 of Lecture Notes in Computer Science, pages 155–165.
Springer-Verlag, 1996.

[6] D. Coppersmith. Finding small solutions to small degree
polynomials. In Proceedings of CALC’01, volume 2146 of
Lecture Notes in Computer Science, pages 20–31. Springer-
Verlag, 2001.

[7] D. Defour and F. de Dinechin. Software carry-save for fast
multiple-precision algorithms. Research Report 2002-08,
Laboratoire de l’Informatique du Parallélisme, 2002. 10
pages.

[8] D. Defour, F. de Dinechin, and J.-M. Muller. Correctly
rounded exponential function in double precision arithmetic.
Research Report 2001-26, Laboratoire de l’Informatique du
Parallélisme, 2001. 21 pages.

[9] N. Elkies. Rational points near curves and small nonzero
! � � : ¡ 6 ! via lattice reduction. In Proceedings of ANTS-IV,
volume 1838 of Lecture Notes in Computer Science, pages
33–63. Springer-Verlag, 2000.

[10] G. Gonnet. A note on finding difficult values to evaluate nu-
merically. http://www.inf.ethz.ch/personal/
gonnet/FPAccuracy/NastyValues.ps, Sept.
2002. 3 pages.

[11] IEEE standard for binary floating-point arithmetic. Tech-
nical Report ANSI-IEEE Standard 754-1985, New York,
1985. approved March 21, 1985: IEEE Standards Board,
approved July 26, 1985: American National Standards In-
stitute, 18 pages.

[12] C. S. Iordache and D. W. Matula. Infinitely precise rounding
for division, square root, and square root reciprocal. In Pro-
ceedings of the 14th IEEE Symposium on Computer Arith-
metic, pages 233–240. IEEE Computer Society, 1999.

[13] W. Kahan. A test for correctly rounded SQRT. Lecture
note, University of California at Berkeley, 1996. http://
www.cs.berkeley.edu/˜wkahan/SQRTest.ps, 4
pages.

[14] T. Lang and J.-M. Muller. Bounds on runs of zeros and ones
for algebraic functions. In Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, pages 13–20. IEEE
Computer Society, 2001.

[15] V. Lefèvre. Moyens arithmétiques pour un calcul fiable.
Thèse de doctorat, École Normale Supérieure de Lyon, Jan.
2000.

[16] V. Lefèvre and J.-M. Muller. Worst cases for correct
rounding of the elementary functions in double preci-
sion. In N. Burgess and L. Ciminiera, editors, Proceed-
ings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH’15), pages 111–118. IEEE Computer Society, 2001.

[17] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen,
261:515–534, 1982.

[18] L. Lovász. An algorithmic theory of numbers, graphs and
convexity. SIAM lecture series, 50, 1986.

[19] L. D. McFearin and D. W. Matula. Generation and analy-
sis of hard to round cases for binary floating point division.
In Proceedings of the 15th IEEE Symposium on Computer
Arithmetic, pages 119–127. IEEE Computer Society, 2001.

[20] J.-M. Muller. Proposals for a specification of the elemen-
tary functions. In Abstracts of SCAN’2002, pages 54–55.
Laboratory LIP6, Paris, France, 2002.

[21] M. Parks. Number-theoretic test generation for directed
rounding. In Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, pages 241–248. IEEE Computer So-
ciety, 1999.

[22] A. Ziv. Fast evaluation of elementary mathematical func-
tions with correctly rounded last bit. ACM Trans. Math.
Softw., 17(3):410–423, 1991.

