
A VLSI Algorithm for Modular Multiplication/Division

Marcelo E. Kaihara and Naofumi Takagi
Department of Information Engineering

Nagoya University
Nagoya, 464-8603, Japan

mkaihara@takagi.nuie.nagoya-u.ac.jp

Abstract

We propose an algorithm for modular multiplica-
tion/division suitable for VLSI implementation. The algo-
rithm is based on Montgomery’s method for modular mul-
tiplication and on the extended Binary GCD algorithm for
modular division. It can perform either of these operations
with a reduced amount of hardware. Both calculations are
carried out through iterations of simple operations such as
shifts and additions/subtractions. The radix-2 signed-digit
representation is employed so that all additions and sub-
tractions are performed without carry propagation. A mod-
ular multiplier/divider based on this algorithm has a linear
array structure with a bit-slice feature and carries out an
n-bit modular multiplication in at most b 2(n+2)

3 c + 3 clock
cycles and an n-bit modular division in at most 2n+5 clock
cycles, where the length of the clock cycle is constant and
independent of n.

1 Introduction

With the proliferation of Internet usage, there is an in-
creasing necessity for PCs and mobile devices, such as
PDAs, of having ability to manage several security proto-
cols. Since processing of public-key cryptosystems requires
huge amount of computation, there is a growing demand for
developing dedicated hardware to accelerate this.

In this paper, we propose a VLSI algorithm for modu-
lar multiplication/division with a large modulus. Modular
multiplication with a large modulus is the basic operation in
calculating modular exponentiation which is used to process
public-key cryptosystems such as RSA [4]. One of the effi-
cient methods for calculating the modular multiplication is
by using Montgomery’s multiplication algorithm [3]. Sev-
eral implementations of the algorithm have been proposed
[1]. On the other hand, modular division with a large mod-
ulus is used in decryption of public-key cryptosystems such
as ElGamal [2]. It can be calculated by using the extended

Binary GCD algorithm which is suited for binary arithmetic
[5].

Since PCs and mobile devices do not seem to process
more than one cryptosystem simultaneously, we combine
multiplier and divider so that the hardware requirement is
reduced by making large part of the circuit be shared by the
two operations.

In the VLSI algorithm to be proposed, multiplication is
based on Montgomery’s algorithm and division is based on
the extended Binary GCD algorithm. The algorithm is ac-
celerated by introducing redundant representation in all ad-
ditions/subtractions so that they are carried out in constant
time independent of the length of the operands. Almost all
the components in the VLSI algorithm are shared reducing
considerably hardware requirements.

A modular multiplier/divider based on the algorithm has
a linear array structure with a bit-slice feature and is suit-
able for VLSI implementation. The amount of hardware
of an n-bit modular multiplier/divider is proportional to
n. It performs an n-bit modular multiplication in at most
b 2(n+2)

3 c + 3 clock cycles and an n-bit modular division in
at most 2n + 5 clock cycles where the length of clock cycle
is constant independent of n.

In the next section, we explain the extended Binary GCD
algorithm and Montgomery’s multiplication algorithm. In
Section 3, we propose a VLSI algorithm for modular multi-
plication/division. In Section 4, we discuss several aspects
about implementation. In Section 5, we present the con-
cluding remarks.

2 Preliminaries

2.1 Extended Binary GCD Algorithm for Modu-
lar Division

Extended Binary GCD Algorithm is an efficient way of
calculating modular division [5]. Consider the residue class
field of integers with an odd prime modulus M . Let X and

Y (6= 0) be elements of the field. The algorithm calculates
Z(< M) such that Z ≡ X/Y (mod M). It performs
modular division by intertwining a procedure for finding
the modular quotient with that for calculating gcd(Y, M).
The algorithm is based on the following facts: if A is even
and B is odd, then gcd(A, B) = gcd(A/2, B); if A and
B are both odd, then either A + B or A − B is divisi-
ble by 4; in this case, if A + B is divisible by 4, then
gcd(A, B) = gcd((A + B)/2, B), (A + B)/2 is even and
|(A+B)/2| ≤ max(|A|, |B|); otherwise A−B is divisible
by 4, gcd(A, B) = gcd((A−B)/2, B), (A−B)/2 is even
and |(A − B)/2| ≤ max(|A|, |B|).

We show the algorithm below. Note that A and B are
integers and are allowed to be negative. δ represents α− β,
where α and β are values such that 2α and 2β indicates the
minimums of the upper bounds of |A| and |B| respectively.

[Algorithm 1]
(Extended Binary GCD Algorithm)
Function: Modular Division
Inputs: M : 2n−1 < M < 2n

X, Y : 0 ≤ X < M , 0 < Y < M
Output: Z ≡ X/Y mod M
Algorithm:

A := Y ; B := M ; U := X ; V := 0; δ := 0;
while A > 0 do

while A mod 2 = 0 do
A := A/2; U := U/2 mod M ; δ := δ − 1;

end while
if δ < 0 then

T := A; A := B; B := T ;
T := U ; U := V ; V := T ;
δ := −δ;

end if
if (A + B) mod 4 = 0 then q = 1;
else q = −1; end if
A := (A + qB)/2; U := (U + qV)/2 mod M ;

end while
if B = 1 then Z := V ;
else /* B = −1 */ Z := M − V ; end if
output Z as the result;

To calculate U/2 mod M , the algorithm examines the
least significant bit of U to determine whether it is even or
odd. If it is even, the algorithm performs U/2, otherwise
it performs (U + M)/2. In this way, modular reduction is
accomplished by a simple shift operation.

It can easily be shown that the equivalences V × Y ≡
B×X (mod M) and U×Y ≡ A×X (mod M) always
hold. Since gcd(Y, M) = 1, when A = 0, B is 1 or −1.
Hence, in the final step Z × Y ≡ X (mod M) holds, and
Z is the quotient of X/Y modulo M .

2.2 Montgomery’s Modular Multiplication Algo-
rithm

Montgomery introduced an efficient algorithm for cal-
culating modular multiplication [3]. Consider the residue
class ring of integers with an odd modulus M . Let X and Y
be elements of the ring. Montgomery’s modular multiplica-
tion algorithm calculates Z(< M) such that Z ≡ XY r−1

(mod M) where r is an arbitrary constant relatively prime to
M . The value of r is usually set to 2n when the calculations
are performed in radix-2 with an n-bit modulus M .

The radix-2 Montgomery’s multiplication algorithm is
described below. We use the same notation as in the ex-
tended Binary GCD algorithm to emphasize the similitude
of these algorithms.

[Algorithm 2]
(Montgomery’s Multiplication Algorithm)
Function: Montgomery’s Modular Multiplication
Inputs: M : 2n−1 < M < 2n

X, Y : 0 ≤ X, Y < M
Output: Z ≡ XY 2−n mod M
Algorithm:

A := Y ; U := 0; V := X ;
for i = 1 to n

if A mod 2 = 0 then q = 0;
else q = 1; end if
A := (A − q)/2; U := (U + qV)/2 mod M ;

end for
if U ≥ M then Z := U − M ;
else Z := U ; end if
output Z as the result;

Note that U is always bounded by 2M throughout all
iterations. Therefore, the last correction step assures that
the output is correctly expressed in modulo M .

3 A VLSI Algorithm for Montgomery’s
Modular Multiplication and Modular Divi-
sion

We propose a VLSI algorithm that performs Mont-
gomery’s modular multiplication and modular division,
which is efficient in execution time and hardware require-
ments.

3.1 Use of a Redundant Representation

We assume that the input modulus M is an n-bit binary
odd number that satisfies the condition 2n−1 < M < 2n.
We also assume that the input operands X and Y and the

output result Z are n-digit radix-2 signed-digit (SD2) inte-
gers in the range (−M, M).

The SD2 representation uses the digit set {1̄, 0, 1}
where 1̄ denotes −1. An n-digit SD2 integer A =
[an−1, an−2, · · ·a0] (ai ∈ {1̄, 0, 1}) has the value
∑n−1

i=0 ai · 2i. Addition of two SD2 numbers can be per-
formed without carry propagation. We use the addition
rules for SD2 numbers shown in table 1 [6]. The addi-
tion is accomplished by first calculating the interim sum
ui and the carry digit ci and then performing the final sum
si = ui + ci−1 for each i. To calculate si, we just have to
check the digits ai, bi and their preceding ones. All the dig-
its of the result can be computed in parallel. The negation of
an SD2 number can be done simply by changing the signs
of all nonzero digits in it. Subtraction can be performed
through negation and addition in one step. We require a
carry-propagate addition to convert an SD2 number to the
binary representation.

Table 1. The rules for adding binary SD2 num-
bers

aibi ai−1bi−1 ci ui

00 – 0 0

01/10 neither is 1̄ 1 1̄

01/10 at least one is 1̄ 0 1

01̄/1̄0 neither is 1̄ 0 1̄

01̄/1̄0 at least one is 1̄ 1̄ 1

11 – 1 0

1̄1̄ – 1̄ 0

11̄/1̄1 – 0 0

We represent the internal variables A, B, U and V in
n-digit SD2 representation so that all basic operations are
carried out in constant time independent of the lengths of
the operands by a combinational circuit.

In applications such as exponentiation, chained multipli-
cations are required. To remove time-consuming SD2 to
binary conversion in each multiplication, we allow the in-
put operands X and Y as well as the output result Z be
expressed in the same redundant representation so that the
output can be directly fed into the inputs. Note that the
operands X, Y can still be given in ordinary binary repre-
sentation.

3.2 Division Mode

We follow the structure of the VLSI algorithm for mod-
ular division based on the Binary GCD algorithm [5] and
further accelerate it.

This algorithm [5] performs all basic operations in con-
stant time independent of n by a combinational circuit.
This algorithm implements the ‘while’ loop introducing P
which represents a binary number of n + 2 bits and indi-
cates the minimum of the upper bounds of |A| and |B|, i.e.,
min(2α, 2β). Note that P has only one bit in 1 and the rest
in 0. In this way, the termination condition check, A = 0,
that may require an investigation of the whole bits of A is
replaced by a check of P = 1 which can be carried out
by just looking at the least significant bit of P , i.e. p0. A
binary number D and a flag s (∈ {0, 1}) are introduced
to implement δ. D has n bits of length and has the value
D = 2(−1)s

·δ. Note that this variable also has only one
bit in 1 and the rest in 0. In this way, the decrement of δ,
δ := δ − 1, which may require a long borrow propagation
is replaced by a one-bit shift of D.

The calculation of T/2 modulo M is implemented by the
operation MHLV (T, M). It is carried out by performing
T/2 or (T + M)/2 accordingly as T is even or odd. Note
that only the least digit of T has to be checked to determine
whether it is even or odd. The calculation of T/4 modulo
M is implemented by the operation MQRTR(T, M). It is
carried out by performing the following calculations: If M
(mod 4) is 1, it performs T/4 or (T −M)/4 or (T +2M)/4
or (T +M)/4, accordingly as T (mod 4) is 0, 1, 2 or 3. If M
(mod 4) is 3, it performs T/4 or (T +M)/4 or (T +2M)/4
or (T − M)/4, accordingly as T (mod 4) is 0, 1, 2 or 3.
Since M is an ordinary binary number, addition of M or
−M or 2M in MHLV and MQRTR is simpler than the
ordinary SD2 addition. For the details of the simpler SD2
addition, see, e.g., [7].

The operation U/2 modulo M that is performed with the
operation A := A/2 in Algorithm 1 when A is divisible by
2, is implemented with the operation MHLV (U, M).

Since, A := (A + B)/2 (or A := (A − B)/2) is al-
ways divisible by 2, the algorithm combines this calcula-
tion with its succeeding one A := A/2 obtaining A :=
(A + B)/4 (or A := (A − B)/4) and its correspond-
ing operation U := (U + V)/4(modM) (or U := (U −
V)/4(modM)). The latter operation is implemented by
using MQRTR(U+V, M) (or MQRTR(U−V, M)). The
calculations of A := (A+B)/4 and MQRTR(U +V, M)
(or A := (A − B)/4 and MQRTR(U − V, M)) are also
combined with their preceding swap of A and B and that
of U and V , respectively. All the results of these basic op-
erations are always in the range from −M to M and no
over-flow occurs.

In order to accelerate the calculation, for the case that
A is divisible by 4, instead of performing A/2 and U/2
modulo M in two different steps, we modify the algorithm
by grouping two of each operation into the calculations of
A/4 and U/4 modulo M . We perform the latter calculation
by using MQRTR(U, M).

3.3 Multiplication Mode

We implement the while loop by using the same P as in
the division case.

In Algorithm 2, A and V are initialized with the values
of Y and X . U is used to store the partial products and it
is initialized with the value 0. The algorithm examines the
least significant bit of A to determine whether V has to be
added. Then it performs a division of U by 2 modulo M
and A is shifted down one position.

To accelerate the calculation, we modify this algorithm
so that it processes two digits at a time. We examine the
least two significant digits of A, i.e. [a1a0]. If [a1a0] =
[00], we perform U/4 modulo M and shift down A two
digit positions. If [a1a0] = [10] or [1̄0], we perform U/2
modulo M and shift down A only one position. The 1 or 1̄
digit that is shifted into the least significant digit position is
processed in the next iteration. The operations U/4 modulo
M and U/2 modulo M can be accomplished by performing
MHLV (U, M) and MQRTR(U, M) respectively.

If [a1a0] = [01] or [01̄], we perform MQRTR(U +
V, M) or MQRTR(U − V, M) accordingly, and we shift
down A two digit positions. If [a1a0] = [11̄] or [1̄1], we
convert it into [01] or [01̄] so that we can perform the same
operations as the previous case. If [a1a0] = [1̄1̄] or [11], we
convert it into [01] or [01̄] and add −4 or 4 to A so that this
case is also reduced to the previous ones.

In this way, all the operations can be accomplished with
shifts, MHLV and MQRTR, and all the results are always
bounded in magnitude by M . The Montgomery’s constant
r is now 2n+2.

To make use of the same decision rule as in the divi-
sion, we initialize B with its least significant digit in 1̄. In
this way, when the least significant digit of A has value 1,
A+B = 0 mod 4. The correction of adding −4 or 4 can be
done introducing the digit 1̄ in the third least significant bit
of B, i.e. b2. The conversions and corrections are performed
in the algorithm by rewrite(a2, a1, b2) and the rules are sum-
marized in table 2. Note that when [a1, a0] = [11], these
digits are replaced by [01̄] and subtraction is performed.
Therefore, the correction of adding 4 is performed by in-
troducing the value 1̄ in b2.

3.4 The VLSI Algorithm

The VLSI algorithm is presented here. In the following,
{C1, C2} means that two calculations, C1 and C2, are per-
formed in parallel.

[Algorithm 3]
(A VLSI Algorithm for Montgomery’s modular
multiplication and modular division)
Function: Montgomery’s Modular Multiplication and

Table 2. Conversion rule for rewrite (a1, a0, b2)
a1 a0 b2 a1 a0 meaning

1̄ 1̄ 1̄ 0 1 −4 + 1

1̄ 0 0 1̄ 0 0 − 2

1̄ 1 0 0 1̄ 0 − 1

0 1̄ 0 0 1̄ 0 − 1

0 0 0 0 0 0

0 1 0 0 1 0 + 1

1 1̄ 0 0 1 0 + 1

1 0 0 1 0 0 + 2

1 1 1̄ 0 1̄ 4 − 1

Modular Division
Inputs: M : 2n−1 < M < 2n

X, Y : −M < X, Y < M

Output: mode = 0 : Z ≡ XY 2−(n+2) mod M
mode = 1 : Z ≡ X/Y mod M

Algorithm:
Step 1:

A := Y ; P := 2n+1; s := 1; D := 1; M := M ;
if mode = 0 then

B := 1; U := 0; V := X ;
else

B := M ; U := X ; V := 0;
end if

Step 2:
while p0 6= 1 do

if mode = 0 then rewrite (a1, a0, b2); end if
if [a1a0] = 0 then /* A mod 4=0 */

A := A >> 2; U := MQRTR(U, M);
if s = 0 then

if d1 = 0 then D := D >> 2;
if d0 = 1 then s := 1; end if

else P := P >> 1; s := 1; end if
else /* s = 1 */

D := D << 2;
if p1 = 0 then P := P >> 2;
else P := P >> 1; s := 0; end if

end if
elseif a0 = 0 then /* A mod 4=2 */

A := A >> 1; U := MHLV (U, M);
if s = 0 then D := D >> 1;

if d0 = 1 then s := 1; end if
else /* s = 1 */

D := D << 1; P := P >> 1;
else /* A mod 4=1 or A mod 4=3 */

if ([a1a0] + [b1b0]) mod 4 = 0 then q = 1
else q = −1 end if
if mode = 0 or s = 0 or d0 = 1 then

A := (A + qB) >> 2;
U := MQRTR(U + qV, M);
if s = 1 then

if mode = 0 and p1 = 0 then
P := P >> 2;

else P := P >> 1;
if p0 = 1 then s = 0 end if

end if
D := D << 1;

else /* s = 0 */
D := D >> 1;
if d0 = 1 then s := 1; end if

end if
else /* mode = 1 and s = 1 and D > 1 */
{A := (A + qB) >> 2, B := A};
{U := MQRTR(U + qV, M), V := U};
s := 0; D := D >> 1;
if d0 = 1 then s := 1; end if

end if
end if

end while
Step 3:

if mode = 0 and s = 1 then
U := MHLV (U, M);

else if mode = 1 and [b1b0] mod 4 = 3 then
V := −V ; end if

end if
Step 4:

if mode = 0 then Z := U ;
else Z := V ; end if
output Z as the result;

In division mode, i.e. mode= 1, when A mod 4 = 0,
A is shifted down two digits and MQRTR(U, M) is per-
formed. Note that when P = 2 and a0 = 0, an extra 0
digit is processed together. However, since these operations
only updates the values of A and U , this calculation does
not affect the final result nor does increase the number of
iterations needed. No special consideration has to be taken
for the termination condition.

Note also that in the algorithm, δ is represented with the
values of D and s. We take as convention to represent δ = 0
with D = 1 and s = 1.

In Step 3, B is 1 when B mod 4 = 1 and it is −1 oth-
erwise, i.e., when B mod 4 = 3. When B = −1, V is
negated in the SD2 system.

Fig. 1 shows an example of a modular division,
−115/249 mod 251 = −68 mod 251 = 183 where n = 8
by [Algorithm 3]. The leftmost column shows which calcu-
lations have been carried out. For example, ‘(A − B)/4,A’
means that { A := (A − B)/4, B := A } and { U :=
MQRTR(U − V, M), V := U } have been carried out.

In multiplication mode, i.e mode=0 the flag s is set to 1
and it remains in this value until the end of Step 2.

In the case that P = 2, and the corresponding operation
to be performed involves two digits shift, we shift P only
one position to mark the end of the loop and reset the flag
s to 0. At this point, n + 2 digits of A are processed so no
extra calculations are needed. In the case that P = 2, and
the corresponding operation to be performed involves only
one digit shift, P is shifted one position and the loop fin-
ishes leaving one digit of A unprocessed. This is the same
case as having P = 4 with operations involving two digits
shifts. The flag s is left in the value 1 indicating that an ex-
tra operation is needed in Step 3. It can be shown that this
unprocessed digit is always 0, so we only need to perform
MHLV (U, M) at the end. In this way, all the n + 2 digits
of A are always processed and the Montgomery’s constant
has the value r = 2n+2

Proposition 1: Let Y be expressed in SD2 representa-
tion with n bits of length such that −M < Y < M , and
M be an n-bit binary number that satisfies the condition
2n−1 < M < 2n. If Algorithm 3 is used with this input
and Step 2 finishes leaving the topmost significant bit of A
unprocessed, this digit is always 0.

Proof: At initialization time, the value of Y is copied
into A. Suppose the case that A is positive and an−1 =
1, this digit can be transformed into [10] or into [11̄] when
A + B or A − B is performed following the addition rules
of SD2 numbers described in table 1. For the former case,
the digits [10] can in turn be transformed into [11̄0]. Further
expansion does not occur when the most significant digit
is followed by 1̄. Now, consider the case that n − 1 bits
of A have been processed and we are about to process the
next two of the remaining three bits. A can have its bits
[a2, a1, a0] = 11̄0 or 11̄1̄. No other possibilities are left
because of the restriction of |A| < M . In the former case,
A is shifted by only one position leaving the other two bits
to be processed in the next iteration. In fact, these bits 11̄
are recoded into 01 and they are processed together in the
next iteration. No extra calculation is needed. In the latest
case, the least significant two digits 1̄1̄ of A are recoded
into 01̄ and processed together. The generated carry digit 1̄
is subtracted from A so that the most significant bit of A that
has been left is cancelled and reset to 0. Similarly, when A
is negative and an−1 = 1̄, this digit can be transformed into
[1̄1] and no further expansion occurs.

Fig. 2 shows an example of a Montgomery’s multiplica-
tion , −115 × 249 × 2−10 mod 251 = 137 where n = 8
by [Algorithm 3]. The leftmost column shows which cal-
culations have been carried out. For example, ‘A >> 1’
means that A >> 1 and U := MHLV (U, M) have been
carried out and ‘(A+B) >> 2’ means that (A+B) >> 2
and U := MQRTR(U, M) have been carried out. In this

mode = 1, M = [1111011]2 (251), X = [1̄00101̄01]SD (−115), Y = [1111111̄1̄]SD (249)
A B P D s U V

1111111̄1̄ (249) 11111011 (251) 1000000000 0000000001 1 1̄00101̄01 (−115) 00000000 (0)
(A + B)/4,B 01111101 (125) 11111011 (251) 0100000000 0000000010 1 00100010 (34) 00000000 (0)
(A + B)/4,A 01011110 (94) 01111101 (125) 0100000000 0000000001 1 100011̄10 (134) 00100010 (34)
A/2,B 00101111 (47) 01111101 (125) 0010000000 0000000010 1 0100011̄1 (67) 00100010 (34)
(A + B)/4,A 00101011 (43) 00101111 (47) 0010000000 0000000001 1 01011000 (88) 0100011̄1 (67)
(A − B)/4,B 0000001̄1 (−1) 00101111 (47) 0001000000 0000000010 1 01000100 (68) 0100011̄1 (67)
(A − B)/4,A 00001̄1̄00 (−12) 0000001̄1 (−1) 0001000000 0000000001 1 0100001̄1 (63) 01000100 (68)
A/4,B 0000001̄1̄ (−3) 0000001̄1 (−1) 0000010000 0000000100 1 01̄11̄011̄1̄ (−47) 01000100 (68)
(A + B)/4,A 00000001̄ (−1) 0000001̄1̄ (−3) 0000010000 0000000010 0 01000100 (68) 01̄11̄011̄1̄ (−47)
(A + B)/4,B 00000001̄ (−1) 0000001̄1̄ (−3) 0000010000 0000000001 1 01000100 (68) 01̄11̄011̄1̄ (−47)
(A + B)/4,B 00000001̄ (−1) 0000001̄1̄ (−3) 0000001000 0000000010 1 01000100 (68) 01̄11̄011̄1̄ (−47)
(A + B)/4,A 00000001̄ (−1) 00000001̄ (−1) 0000001000 0000000001 1 01000100 (68) 01000100 (68)
(A − B)/4,B 00000000 (0) 00000001̄ (−1) 0000000100 0000000010 1 00000000 (0) 01000100 (68)
A/4,B 00000000 (0) 00000001̄ (−1) 0000000001 0000001000 1 00000000 (0) 01000100 (68)
−V 01̄0001̄00 (−68)

Z = [01̄0001̄00]SD (−68)

Figure 1. A modular division by [Algorithm 3]

mode = 0, M = [1111011]2 (251), X = [1̄00101̄01]SD (−115), Y = [1111111̄1̄]SD (249)
A B P s U V

1111111̄1̄ (249) 00000001̄ (−1) 1000000000 1 00000000 (0) 1̄00101̄01 (−115)
(A + B) >> 2 010001̄10 (62) 000001̄01̄ (−5) 0010000000 1 00100010 (34) 1̄00101̄01 (−115)
A >> 1 0010001̄1 (31) 00000001̄ (−1) 0001000000 1 00010001 (17) 1̄00101̄01 (−115)
(A − B) >> 2 00011̄000 (8) 00000001̄ (−1) 0000010000 1 011̄00011̄ (33) 1̄00101̄01 (−115)
A >> 2 0000011̄0 (2) 00000001̄ (−1) 0000000100 1 0100101̄1 (71) 1̄00101̄01 (−115)
A >> 1 00000011̄ (1) 00000001̄ (−1) 0000000010 1 10100001 (161) 1̄00101̄01 (−115)
(A + B) >> 2 00000000 (0) 00000001̄ (−1) 0000000001 0 10001001 (137) 1̄00101̄01 (−115)
U 10001001 (137)

Z = [10001001]SD (137)

Figure 2. A Montgomery’s modular multiplication by [Algorithm 3]

example, Step 2 terminates with s = 0, so no extra calcula-
tions are needed.

4 Discussions

4.1 Chained Multiplications and Exponentiation

In applications such as exponentiation, chained multipli-
cations are performed in Montgomery’s representation. Ob-
serving that the result Z of the modular multiplication sat-
isfies |Z| < M , it is possible to reuse the result as input
operands of another modular multiplication. Note that r is
an arbitrary constant relatively prime to M . In our proposed
algorithm r has the value 2n+2. Only one carry propagation
addition is needed at the end of the whole calculation to con-
vert the result from SD2 representation into binary number.
In the case that Z < 0, we need to add M as a final cor-
rection step. The same correction step is applied in division
mode.

Furthermore, modular multiplication/division can also
be used to accelerate the calculation of modular exponentia-
tions. That is, consider the operation xb(mod M). Let b be

expressed in SD2 representation. The modular exponentia-
tion can be calculated by examining each digit of the expo-
nent from the topmost significant position and performing
a modular squaring for each digit in 0, a modular squaring
and a modular multiplication for each digit in 1 and a modu-
lar squaring and a modular division for each digit in 1̄. Since
b can be recoded to reduce the number of 1s, the number of
the overall operations can be considerably reduced.

4.2 Hardware Implementation

We assume to perform one pass of the computations in
the ‘while’ loop of Step 2, i.e., one row in Fig. 1/Fig. 2, in
one clock cycle.

A modular multiplier/divider based on Algorithm 3
mainly consists of 7 registers for storing A, B, P , D, U ,
V and M , three SD2 adders one of which is simpler, se-
lectors, and a small control circuit. Fig. 3 shows a block
diagram of the multiplier/divider.

In multiplication mode D is not used. Therefore, D
can be disconnected during this mode to reduce power con-
sumption. The circuit has a linear array structure with a bit-

A

SEL

RBA1

SEL

B

P

SEL

D

SEL

s

U

SEL

RBA2

M

RBA3

SEL

V

controller

A

SEL

RBA1

SEL

B

Figure 3. Block diagram of the multiplier/divider

slice feature. The amount of hardware of the modular mul-
tiplier/divider is proportional to n. Since the depth of the
combinational circuit part is constant, the length of clock
cycle is a constant independent of n.

4.3 Use of Two Level 1-hot Counters or Binary
Counters

We can reduce the amount of hardware for keeping P
and D by replacing the 1-hot counters with two-level 1-hot
counters. Let nh and nl be integers such that n+2 ≤ nh ·nl

is satisfied and nh + nl is minimized, namely, nh ≈ nl ≈√
n. We replace P with nh-bit and nl-bit 1-hot counters

Ph and Pl which keep ph and pl, respectively, such that
ph ·nl +pl = P . We replace D with Dh and Dl in the same
way.

When we use Ph and Pl instead of P and use Dh and
Dl instead of D, we modify the algorithm as follows. Ph

and Pl are initialized so that ph = b(n + 1)/nlc and pl =
n + 1 mod nl are satisfied. Dh and Dl are initialized so
that dh = 0 and dl = 1. The operation P := P >> 1 is
realized as:

1. If the rightmost bit of Pl is 1, then perform 1-bit right
shift of Ph;

2. Perform 1-bit cyclic right shift of Pl.

Similarly, the operation of P >> 2 can be accomplished by
looking at the rightmost two bits of Pl. Shift operations of
D can be realized in similar ways.

The check of p0 = 1 can be replaced by the check of the
rightmost bits of both Ph and Pl being 1.

When we use a 1-hot counter for each counter, it requires
n + 2 flip-flops. When we use a two-level 1-hot counter, it
requires about 2

√
n flip-flops. We can further reduce the

amount of hardware for counters by using binary counters,
each of which requires about log2 n flip-flops. Although the
depth of the binary counter is not a constant, it is propor-
tional to log log n and is very small even when n is several
hundreds. Therefore, in practice, it may be efficient to use
binary counters.

When we employ binary counters, we should introduce
a zero flag and perform zero detection of the counter in the
previous step, i.e., in one step earlier than in [Algorithm 3]
in order to avoid the increase of the clock period.

5 Concluding Remarks

We have proposed a VLSI algorithm for modular multi-
plication/division. We have modified the extended Binary
GCD algorithm and Montgomery’s modular multiplication
and have accelerated them by the use of a redundant repre-
sentation for internal computation.

A modular multiplier/divider based on the algorithm has
a linear array structure with a bit-slice feature, and is suit-
able for VLSI implementation. The amount of hardware
of an n-bit modular multiplier/divider is proportional to
n. It performs an n-bit modular multiplication in at most
b 2(n+2)

3 c + 3 clock cycles and an n-bit modular division in
at most 2n + 5 clock cycles, where the length of the clock
cycle is constant and independent of n.

References

[1] S. E. Eldridge and C. D. Walter. ‘Hardware implemen-
tation of Montgomery’s modular multiplication algo-
rithm,’ IEEE Trans. Computers, vol. 42, no. 6, pp. 693-
699, June 1993.

[2] T. ElGamal, ‘A public key cryptosystem and a signature
scheme based on discrete logarithms,’ IEEE Trans. In-
formation Theory, vol. IT-31, no. 4, pp. 469–472, July
1985.

[3] P. L. Montgomery, ‘Modular Multiplication without
Trial Division’ Mathematics of Computation, vol. 44,
no. 170, pp. 519-521, Apr. 1985.

[4] R. L. Rivest, A. Shamir, and L. Adleman, ‘A method for
obtaining digital signatures and public-key cryptosys-
tems,’ Commun. ACM, vol. 21, no. 2, pp. 120-126, Feb.
1978.

[5] N. Takagi, ‘A VLSI Algorithm for Modular Division
Based on the Binary GCD Algorithm,’ IEICE Trans.
Fundamentals, vol. E81-A, no. 5, pp. 724–728, May
1998.

[6] N. Takagi, H. Yasuura and S. Yajima, ‘High-speed
VLSI multiplication algorithm with a redundant binary
addition tree,’ IEEE Trans. Computers, vol. C-34, no. 9,
pp. 789–796, Sep. 1985.

[7] N. Takagi and S. Yajima, ‘Modular multiplication hard-
ware algorithms with a redundant representation and
their application to RSA cryptosystem,’ IEEE Trans.
Computers, vol. 41, no. 7, pp. 887–891, July 1992.

