
Low Latency Pipelined Circular CORDIC∗

Elisardo Antelo
Dept. of Electronic and Computer Eng

University of Santiago. SPAIN
elisardo@dec.usc.es

Julio Villalba
Dept. of Computer Architecture
University of Málaga. SPAIN

julio@ac.uma.es

Abstract

The pipelined CORDIC with linear approximation to ro-
tation has been proposed to achieve reductions in delay,
power and area; however, the schemes for rotation (mul-
tiplication) and vectoring (division) complicate implemen-
tation in a single unit. In this work, we improve the linear
approximation scheme, leading to a unified implementation
for rotation and vectoring where fully parallel tree multipli-
ers are used instead of the second half of CORDIC itera-
tions. We also combine the linear approximation to rotation
with the scale factor compensation so that the compensation
is performed concurrently with the rotation process. Com-
parison with other designs is also provided.

1. Introduction

The CORDIC algorithm is an arithmetic method to per-
form 2D vector rotations. The rotations are performed as
a sequence of elementary rotations with a decreasing angle
in a convergent linear process. In fact, to use only adders
and shifters, the elementary rotations are implemented as
similarities. Therefore, the vectors are scaled by a constant
during the rotation process. The algorithm has two operat-
ing modes: rotation and vectoring.

Current applications include digital signal processing,
3D graphics, reconfigurable computing, speech and music
synthesizers, and communication devices (OFDM, CDMA,
etc). CORDIC modules are offered by core vendors, spe-
cially for FPGA. It is also being used in an FPGA–based
Supercomputer [10].

To achieve high performance the algorithm is unfolded
and pipelined. For small angle a linear approximation to
the rotation can be used requiring multiplications and ad-
dition.This approach has a very significant effect on the la-
tency of the conventional pipelined CORDIC since about

∗E. Antelo has been partially supported by Xunta de Galicia under
project PGIDT03TIC10502PR and J. Villalba has been supported by the
Ministry of Educatinal & Science of Spain under project TIC2003–006623

half of the stages (serially organized) with a delay of about
one carry–propagate adder each, are changed by a fast tree–
like structure of carry–free counters with only one final
carry–propagate addition. The drawback is that this method
can only be applied to the rotation mode. The linear approx-
imation in the vectoring mode leads to a division operation.
Thus, a fully operational pipelined CORDIC (rotation and
vectoring modes) cannot be efficiently implemented using
this approach.

In this work we extend the final multiplication approach
to the vectoring mode. Our approach is based on the con-
current computation of a reciprocal with the first half of the
CORDIC stages. We also present an architecture that im-
plements both modes of operation with final multiplication
and with a concurrent compensation for the scale factor, so
that further reductions of latency are obtained with respect
to the conventional pipelined CORDIC.

2. CORDIC algorithm

In this section we present a brief description of the
CORDIC algorithm. For more details and references see
[5]. The algorithm consists in the following steps:

1.-Initialization: x[0] = x0 ∈ [1/2, 1), y[0] = y0 ∈
(−1, 1) and z[0] = θ ∈ [−π/2, π/2] (rotation) or z[0] = 0
(vectoring)

2.-Iteration. For j = 0 to n − 1: σj = sign(z[j])
(rotation) or σj = sign(y[j]) (vectoring),

x[j + 1] = x[j] + σj2−jy[j]
y[j + 1] = y[j] − σj2−jx[j], (1)

z[j + 1] = z[j] − σj tan−1(2−j)

3.-Scale factor (Kn =
∏n−1

j=0 cos(tan−1(2−j)) ≈
0.607...): xf = Kn x[n], yf = Kn y[n], zf = z[n].

For the rotation mode (xf , yf) are the new coordinates
of the rotated vector and for the vectoring mode xf gives
the modulus of the vector and zf is the rotated angle.

It can be shown that using the sign of z[j] (rotation
mode) or y[j] (vectoring mode) to obtain the direction of

each elementary rotation (σj), the following conditions are
verified:

• Rotation mode |z[j]| ≤ tan−1(2−(j−1))
• Vectoring mode

| tan−1(|y[j]|/x[j])| ≤ tan−1(2−(j−1)) (2)

which results in

|y[j]|/x[j] ≤ 2−(j−1) (3)

where x[j] is bounded by the initial modulus of the
input vector (M) scaled by a factor Kj , that is

x[j] ≤ M/Kj =
√

x[0]2 + y[0]2/Kj (4)

In this work we concentrate on a unfolded (parallel)
pipelined implementation of the algorithm with carry prop-
agate adders. It consist of n hardware stages implement-
ing Equations (1) and a final constant multiplication by Kn.
Since each iteration of the algorithm is implemented in a
separate hardware, the shifters are actually hardwired. Reg-
isters are introduced to achieve the desired clock cycle re-
sulting in a pipelined system.

The accuracy of the algorithm is determined by many
parameters [7] [5]. To have a simpler presentation we as-
sume the following: the approximation to the rotation angle
is of the order of the last elementary rotation angle, which
is tan−1(2−(n−1)) for n iterations; the input operands have
n − 1 fractional bits. The width of the data–path is roughly
b = 3+(n−1)+m bits (m = log2(n)), including guard and
overflow bits; the scale factor is rounded to n− 1 + m frac-
tional bits. All the approximations that follow in this work
have an error less than 2−(n−1) and the resultant accuracy
should be of O(2−(n−1)).

From iteration j = �n/3� + 1 = t, the elementary ro-
tation angles can be approximated to within n bits of pre-
cision by σj tan−1(2−j) = σj 2−j . Therefore for j ≥ t,
after a recoding, it is not necessary to implement the z re-
currence for both rotation and vectoring.

2.1. Reducing latency through the linear approxi-
mation to rotation

Termination schemes perform linear approximations for
the rotation when the remaining angle is small enough [1]
[12] [13]. These linear approximations lead to a final mul-
tiplication (rotation) or division (vectoring) to complete the
rotation. To have this approximation correct to within n
bits of precision for both rotation and vectoring, it is nec-
essary for the remaining rotation angle α to be bounded by
α < 2−n/2. Therefore, it is possible to perform this sim-
plified rotation after iteration j = n/2 [1] [12] [13]. The
implications of this approximation are the following:

Kq

Constant
Multiplier

(ct)x(b)

Kq

Constant
Multiplier

(ct)x(b)

y
f

x
f

x
f

Kq

Constant
Multiplier

(ct)x(b)

+

z
f

Stage j=1

Stage j=0

z[0]y[0]x[0]

Stage j=n/2−1

Stage j=n/2

j>n/3

z[q]

x[q] y[q] z[q]

(n/2+m)

/

DIV

n/2

MULT: multiplier

Stage j=1

Stage j=0

z[0]y[0]x[0]

Stage j=n/2−1

Stage j=n/2

j>n/3

x[q] y[q]

(n/2+m)

x

(n/2+m)

MULT
(n/2+m)

x

(n/2+m)

MULT

−+

x[n] y[n]

z[q]

z[q]

(b) Vectoring mode.(a) Rotation mode.

DIV: divider unit

ct: nº bits of constant =
= n−1+m bits

Figure 1. Architectures with a linear approxi-
mation to rotation.

• Rotation: after CORDIC iteration j = n/2 the x and
y coordinates (x[q] = x[n/2 + 1], y[q] = y[n/2 + 1])
are rotated by the remaining angle z[q] = z[n/2 + 1]
as follows

xf=Kq(x[q] + z[q] y[q]), yf = Kq(y[q] − z[q] x[q])

Since |z[q]| < 2−n/2, the multiplication by z is of
about n/2 + m bits and can be performed with a tree
of counters with logarithmic delay. The multiplication
by Kq is performed after the linear approximation to
rotation. This scheme is illustrated in Figure 1(a).

• Vectoring: in this mode the modulus and the an-
gle between the vector and the x axis are computed.
The modulus and the angle are obtained by solving
the following equations xf= Kq (x[q] + α y[q]),
0= Kq(y[q] − α x[q]), zf=z[q] + α, which, for n–bit
precision, results in

xf = Kq x[q], zf = z[q] + (y[q]/x[q])

Since |y[q]/x[q]| < 2−n/2, the computation required
after the CORDIC iterations are a division of about

n/2 bits to obtain the angle, and the scale factor com-
pensation to obtain the modulus. Both processes can
be performed concurrently. This scheme is illustrated
in Figure 1(b).

Since division is a sequential process, the linear approxi-
mation leads to different latency schemes for vectoring and
rotation. This fact leads to inefficient unified implementa-
tions of rotation and vectoring in a pipelined CORDIC pro-
cessor with a latency determined by the division process. In
addition, the scale factor compensation in the rotation mode
is performed after the rotation, while in vectoring the com-
pensation of the scale factor to obtain the modulus can be
performed concurrently with the linear approximation to the
rotation.

In [2] a unified implementation with a linear approxima-
tion was proposed, using a radix–4 prescaled division algo-
rithm to complete the vectoring operation. To have a unified
implementation, the rotation is completed with an iterative
radix–4 multiplication. As indicated, the division algorithm
limits the use of fast parallel tree multipliers. We compare
with this scheme in Section 6.

3 Multiplicative scheme for vectoring

In this section we show how to efficiently combine the
architecture for vectoring and rotation when a linear ap-
proximation to the rotation is used. As shown in the pre-
vious section, the linear approximation to rotation leads to
a multiplication scheme in the rotation mode and to a divi-
sion scheme in the vectoring mode. We now show how to
also use a multiplication scheme for vectoring.

For vectoring we need to compute zf = z[q] +
(y[q]/x[q]) which requires a division and add operation.
This is transformed into a multiplication operation by first
computing R = 1/x[q]. There seems to be no apparent ad-
vantage to doing this. However, two observations need to
be taken into account:

i) We know the bound |y[q]|/x[q] < 2−n/2. Therefore,
since 1/2 ≤ x[q] < M/Kq, R needs to be computed to
about n/2 bits of precision.

ii) The n/2 leading bits of R can be computed from x[j]
with j < q. This is due to the fact that roughly two bits of
the modulus M (stored as the x coordinate) are determined
in each iteration. More specifically, from (2) we know that,
at iteration j, the angle between the vector and the x axis
is bounded by tan−1(2−(j−1)). In addition, the modulus of
the vector at this iteration is bounded by

√
x[j]2 + y[j]2 =

M/Kj < M/Kq . Therefore, the following bound results:

|y[j]| <
M

Kq
sin(tan−1(2−(j−1))) =

M

Kq

2−(j−1)

√
1 + 2−2(j−1)

Then from (3) and (4), a bound for x[j] is obtained

M

Kq

1√
1 + 2−2(j−1)

< x[j] <
M

Kq
(5)

Thus, the maximum difference between x[j] and the scaled
modulus M/Kq is

M

Kq
− x[j] <

M

Kq

(
1 − 1√

1 + 2−2(j−1)

)
≤ (6)

≤ M

Kq
(2−2j+1 − 2−4j+1) (for j > 1)

This bound decreases at a rate of 2−2j , which means that
approximately two bits of the modulus are determined in
each iteration.

We now fully develop both observations to determine the
index j from which we can obtain an approximation R̂ of
R = 1/x[q]. The precision required for R̂ is such that
the error of the multiplication of R̂ and y[q] is less than
2−(n−1), that is,

|R × y[q] − R̂ × y[q]| < 2−(n−1)

We assume that we obtain an approximation of R from x̂[j]
with j < n/2, which represents the f + 1 leading bits of
x[j]. We proceed by following three steps: 1) obtain a
bound of x[q] − x̂[j]; 2) determine the error produced by
the reciprocal computation of x̂[j] using a specific method
of computation; and finally 3) combine both items to obtain
a bound on j.

3.1. Bound of x[q] − x̂[j]

We use the identity

x[q] − x̂[j] = (x[q] − x[j]) + (x[j] − x̂[j])

From (5) and (6) we have:

0 ≤ x[q] − x[j] <
M

Kq
− x[j] <

M

Kq
(2−2j+1 − 2−4j+1)

To simplify the derivation of the bound of x[j] − x̂[j] we
multiply by a factor to normalize to the range [1, 2). From
(5) we obtain

1 <
2√

1 + 2−2(j−1)
<

2Kq

M
x[j] < 2

Thus, the normalizing factor is 2Kq/M and then the nor-
malized value has at most one integer bit. We scale the dif-
ference x[j] − x̂[j] by this factor. Since x̂[j] represents the
f + 1 leading bits of x[j], the following bound results:

2Kq

M
(x[j] − x̂[j]) < 2−f

Therefore

x[j] − x̂[j] < 2−f M

2Kq

Then the resultant bound for (x[q] − x̂[j]) is

x[q] − x̂[j] <
M

Kq

(
2−f−1 + 2−2j+1 − 2−4j+1

)
(7)

3.2. Reciprocal computation

To simplify the presentation we assume a direct table
method to compute the reciprocal. The extension to other
methods (say bipartite tables, linear or quadratic interpola-
tion, or high–order methods) is straightforward.

From [3] we know the following result: for d ∈ [1, 2), a
table taking as input an estimation of d with error less than
2−p, produces an approximation a = 0.1a1a2....ap+g of the
reciprocal of d that satisfies

1 − 2−p (1 + 2−(g+1))
2

< a × d < 1 + 2−p (1 + 2−(g+1))
2

Therefore ∣∣∣∣1d − a

∣∣∣∣ <
2−p

d

(1 + 2−(g+1))
2

This is the error obtained when an estimation of d ∈ [1, 2)
with an error bounded by 2−p is used to address the table.

Since x[q] ∈ [1/2,M/Kq) we need to normalize x[q] by
2Kq/M to have its value within [1,2), so that we can use
the above result. Thus, taking d = 2Kqx[q]/M ∈ [1, 2),
the error obtained is bounded by∣∣∣∣1d − a

∣∣∣∣ <
M 2−p

2Kqx[q]
(1 + 2−(g+1))

2
(8)

De–normalizing this result, we obtain the bound in the error
of estimation of the reciprocal of x[q]∣∣∣∣ 1

x[q]
− R̂

∣∣∣∣ <
2−p

x[q]
(1 + 2−(g+1))

2
(9)

Since the error of estimation of d is bounded by 2−p, the
resultant allowed estimation error for x[q], considering the
de–normalizing factor, results in

x[q] − x̂[j] ≤ M

2Kq
2−p (10)

3.3. Bound on j

We now determine a bound for the index j so that we
can obtain an estimation of R = 1/x[q] from some bits of
x[j] in such a way that y[q]/x[q] is obtained within n bits of
precision.

From (9) we obtain a bound in the error of the computa-
tion of y[q]/x[q]

|y[q]| ×
∣∣∣∣ 1
x[q]

− R̂

∣∣∣∣ <
y[q]
x[q]

2−p (1 + 2−(g+1))
2

Moreover, since |y[q]| ≤ 2−(n/2)x[q], we have

|y[q]| ×
∣∣∣∣ 1
x[q]

− R̂

∣∣∣∣ < 2−(p+n/2) (1 + 2−(g+1))
2

Since the error in the computation of y[q]/x[q] must be less
than 2−(n−1), we obtain the following condition for p,

2−p < 2−(n/2−1) 2
1 + 2−(g+1)

Since 1 < 2/(1 + 2−(g+1)) < 2 for g ≥ 0, the following
bound results

p ≥ n

2
− 1

To reduce table size we take p = n/2 − 1 and g = 0.
Therefore, from (10) the allowed error for the estimation

of x[q] is

x[q] − x̂[j] <
M

2Kq
2−(n/2−1) =

M

Kq
2−n/2 (11)

A bound for the value of x[q]−x̂[j] is given in (7). There-
fore, from the bound of the allowed error given in (11), it is
required that

2−f−1 + 2−2j+1 − 2−4j+1 < 2−n/2

Since f determines the number of bits of x[j] that input
the reciprocal table, we select the minimum possible value
of f = n/2. Then we obtain the condition on j:

2−2j+1 − 2−4j+1 < 2−n/2−1

which is verified for j ≥ n/4 + 1.
In summary, the computation of y[q]/x[q] is performed

as follows: (see Figure 2):

• Obtain a reciprocal R̂ from a table addressed by f =
n/2 bits (it is not necessary to input the leading one
into the table) of x[j] with j ≥ n/4+1. The result is of
about n/2 bits. The index j is selected so that enough
time is provided for the delay of the table. The bound
of about n/4 CORDIC iterations seems long enough
so that the reciprocal computation is not in the critical
path.

• After iteration j = n/2, perform a (n/2+m)×(n/2+
m) multiplication of R̂ × y[q]. Since only the leading
n/2 bits of the multiplication are necessary, we use a
truncated multiplier.

x
f

(n/2+m)

x

(n/2+m)

+

z
f

R

R

x[j]

MULT

MULT: multiplier ct: nº bits of constant

Stage j=1

Stage j=0

z[0]y[0]x[0]

x[q]

Stage j=n/2−1

Stage j=n/2

y[q]

j>n/3

z[q]

z[q]

Constant
Multiplier

(ct)x(b)

Kq

Compute
f

(j>n/4)

Figure 2. Proposed scheme for linear approx-
imation to rotation (vectoring mode).

If n is large the table for reciprocal computation could be
large. In this case alternative methods for reciprocal com-
putation can be used. Depending on the precision required,
we find the following among several alternatives [5]: bi-
partite tables, linear or quadratic interpolation, high–order
polynomial methods and digit–by–digit methods.

4. Concurrent scale factor compensation

Constant scale factor compensation has been performed
in the following ways for different authors [5]: Pre– or post–
multiplying the x and y coordinates by the constant scale
factor, decomposing the scale factor in a product of shift
and add terms and performing the compensation using sim-
ilar iterations such as elementary rotations, concurrent com-
pensation [14], etc.

For a unified rotation/vectoring pipelined architecture,
the most suitable method might be pre– or post–constant
multiplication. Using this scheme the compensation adds
latency overhead, since in the rotation mode the compen-
sation has to be performed after or before the elementary
rotations but not concurrently (see Figure 1(a)).

We now show how to perform the compensation con-
currently with the linear approximation to the rotation, to
reduce the latency overhead of the compensation.

After the n/2 elementary rotations we perform the fol-
lowing computation

xf = Kq x[q] + P y[q], yf = Kq y[q] − P x[q]

with P = Kq z[q]. The multiplications Kq x[q] and Kq y[q]
are constant multipliers with a multiplicand of b bits (result
truncated to b bits). Since |z[q]| < 2−n/2, it has n/2 + m
significant bits (including the sign). Moreover Kq < 1 and
therefore P < 2−n/2. Then the multiplications P y[q] and
P x[q] are of (n/2+m)×(n/2+m) (truncated to n−1+m
fractional bits).

Note that P should be computed before x[q] and y[q] for
the scheme to be effective. In Section 2 we mentioned that
to reduce the complexity of the z iteration, from iteration
j = �n/3� + 1 = t, the σj values are obtained from a
direct recoding of z[t]. Therefore, we obtain z[q] from z[t]
by performing a reverse recoding (from digit set {−1, 1} to
{0, 1} two’s complement) of the digits with weights lower
than 2−n/2.

Figure 3(a) shows the implementation of the proposed
method. This method introduces a latency overhead of
about one constant multiplication for both the linear approx-
imation to rotation and scale factor compensation, while the
conventional scheme requires two series multiplications, a
(n/2+m)× b multiplication and a constant multiplication.
The effect on hardware complexity is analyzed in Section 6.

5. Combined architecture for rotation and vec-
toring

Figure 3(b) shows the unified architecture for vectoring
and rotation incorporating the linear approximation to rota-
tion for both operation modes and the concurrent compen-
sation of the scale factor. The combination of both archi-
tectures is simple since the additional hardware required is
only one multiplexer, one adder, and one row of AND gates.

6. Evaluation

In this section we compare our design and existing pro-
posals in terms of hardware complexity and delay. There
have been many proposals regarding variations on the
CORDIC algorithm. However, we are only concerned about
those schemes proposed for a CORDIC unit implementing
both rotation and vectoring. Moreover, many techniques
proposed to reduce CORDIC latency, such as redundant
CORDIC and very–high radix CORDIC, are orthogonal to
our proposal. Therefore, it is appropriate to only compare

R

x[j]

(j>n/4)
Kq

R

Kq

x
f

z
f

R

(n/2+m)

x

(n/2+m)

y
f

Constant
Multiplier

(ct)x(b)

MULT

−

Kq

Kq

(n/2+m)

x

(n/2+m)

(n/2+m)

x

(n/2+m)

Kq Kq

y
f

x
f

+

Constant
Multiplier

Constant
Multiplier

(ct)x(b) (ct)x(b)

−

Stage j=1

Stage j=0

z[0]y[0]x[0]

x[q]

(j>n/3)

Stage j=n/2−1

Stage j=n/2

f

y[q] Pz[q]

z[q]

Constant
Multiplier
(ct)
x

(n/2+m)

Compute

mux

and

1/0

++

Constant
Multiplier

MULT

(ct)x(b)
x

(n/2+m)

(n/2+m)

P Pz[q]

(b) Architecture for combined

rotation and vectoring.

Stage j=1

Stage j=0

z[0]y[0]x[0]

x[q]

(j>n/3)

Stage j=n/2−1

Stage j=n/2

y[q] P

z[q]

Constant
Multiplier
(ct)
x

(n/2+m)

MULT MULT

(a) Concurrent scale factor

compensation for rotation.

of constant
ct: nº bit

MULT: multiplier

Figure 3. Proposed architectures.

it to the conventional radix–2 CORDIC and to a combined
radix–2/radix–4 CORDIC implementation [2].

The radix–2/radix–4 proposal performs about the first
half of the iterations in radix–2, and the rest of iterations
in radix–4. The radix–4 iterations correspond to a multi-
plication operation for rotation and a division operation for
vectoring with prescaling of operands in parallel to the scale
factor compensation.

For the delay calculations we use a rough timing model
based on logical effort [11] normalized to FO4 units (FO4
refers to the delay of a 1x inverter with a load of four 1x
inverters). The effect of the interconnections in the delay
was not considered.

Regarding hardware complexity, we determined the
number of equivalent two–input nand gates for each design.
The relative complexity of each gate with respect to a two–
input nand gate was determined in terms of the size of the
total active area of the transistors of the gate. This simple
area–delay model provides area and delay ratios that should
indicate the potential advantage of our proposal when actual
implementations are considered.

Table 1 shows the data of the model corresponding to

the simple gates and basic hardware elements used in the
evaluation.

For the comparison we considered additions imple-
mented with fast parallel prefix adders: for the table look–
up we assumed an implementation using a multiplexer tree
(of 4–to–1 multiplexers) for each output bit. This repre-
sents a fast but costly implementation for a look–up table.
Assuming that the complexity of a look–up table varies ac-
cording to an area × time2 law, a slower but more area ef-
ficient implementation results by doubling the delay, reduc-
ing the hardware complexity by a factor of four.

The computation of R̂ corresponds to the computation
of a reciprocal with about n/2 bits of precision. We con-
sidered three types of implementations: linear approxima-
tion [4], quadratic approximation [9] [8], and a very–high
radix digit–by–digit reciprocal [6]. Figure 4 shows the es-
timated delay and area for the three methods for the range
16 ≤ n ≤ 116. In addition, since the reciprocal should
be computed in parallel to about n/4 CORDIC iterations,
we show in Figure 4(a) the bound of delay corresponding to
n/4 CORDIC iterations. In our design we used the method
with minimum area and a delay less than the delay of n/4

Table 1. Delay equations and relative area for basic components.
Hardware Delay equation Input load relative area
module FO4 units* # inverter loads # nand-2

nand-2 0.4 + 0.2L 4/3 1.0
nor-2 0.4 + 0.2L 5/3 1.3
21AOI 0.5 + 0.2L (2,2,5/3) 2.1
21OAI 0.5 + 0.2L (4/3,2,2) 2.1
XOR 1.5 + 0.2L 7/3 3.8
2–1 mux (control) 1.5 + 0.2L 7/3 3.4
2–1 mux (data) 1.1 + 0.2L 4/3 3.4
4–1 mux (decoded) 1.6 + 0.2L 4/3 7.0
Full–adder 4.0 + 0.2L 13/3 11.0
4-to-2 adder 6.0 + 0.2L 5 23.0
recoder (binary to radix–4) 2.2 + 0.2L 17/3 10/digit
buffering tree (Lin to L) 0.72 ln(L/Lin) Lin L
i inputs look–up table (fast) 1.75i − 4.35 + 0.2L 4 2.3(2i−1 − 1)/output bit
i inputs look–up table (slow) 2 (1.75i − 4.35) + 0.2L 4 0.6(2i−1 − 1)/output bit
* L: total load capacitance normalized to inverter capacitance.

CORDIC iterations. Figure 4(b) shows three regions A, B
and C, each one corresponding to the method used for the
corresponding range of n. For lower precisions (regions A
and B) the linear or quadratic approximation are used. How-
ever, for higher precisions the very–high radix approach is
more convenient due to better scalability1.

In the delay and area estimations we only considered the
combinational elements, since the contributions due to reg-
isters depend on the cycle time requirements. We performed
the comparisons for a range of 16 ≤ n ≤ 116.

Figure 5 shows the delay and hardware complexity for
the compared designs. Figure 6 shows the corresponding
delay and hardware complexity ratios taking as a reference
the proposed design.

The conventional CORDIC presents 1.3 to 1.5 more area
and 1.7 to 2.0 more delay compared to our proposal. The
radix–2/radix–4 CORDIC presents about 1.2 more area and
1.5 more delay.

We conclude that our approach might lead to more ef-
ficient CORDIC modules when rotation and vectoring are
implemented in the same unit. The reduction in delay can
be “converted” into a reduction in dynamic power consump-
tion through voltage scaling (increasing the delay). Specifi-
cally, if s is the speedup factor among two designs with the
same voltage, through voltage scaling of the faster design to
have the same delay in both designs, the factor of reduction
in dynamic power consumption is roughly [(0.3s+0.7)/s]2,
provided that both designs present similar activity factors
and active capacitance. Since our design has less hard-
ware complexity than the other designs we have compared
it with, we can expect factors of dynamic power reduction
of about 0.4-0.5 with respect to conventional CORDIC, and
0.6 with respect to radix–2/radix–4 CORDIC.

1For higher precisions high–order polynomial approximations could
also be considered.

7. Conclusions

In this work we extend the approach of final multiplica-
tion to the vectoring mode of the CORDIC algorithm, by
computing a reciprocal concurrently to the first iterations
and a final multiplication using parallel tree multipliers.
This is in contrast to previous proposals where the imple-
mentation of both modes of operation in the same architec-
ture was constrained by a division operation, preventing the
use of fast parallel tree multipliers. We also combined the
linear approximation scheme with the scale factor compen-
sation, thus further reducing the delay. A comparison using
a rough area–time model indicates that the proposed scheme
may achieve significant delay and/or dynamic power reduc-
tions with no increase in area in actual implementations.

References

[1] H. Ahmed. Efficient elementary functions generation with
multipliers. Proc. 9th IEEE Symposium on Computer Arith-
metic, pages 52–59, 1990.

[2] E. Antelo, J. Bruguera, and E. Zapata. Unified mixed radix
2–4 redundant cordic processor. IEEE Transactions on Com-
puters, 43(9):227–241, Sept. 1996.

[3] D. DasSarma and D. Matula. Measuring the accuracy of
rom reciprocal tables. IEEE Transactions on Computers,
43(8):932–940, Aug. 1994.

[4] D. DasSarma and D. Matula. Faithful interpolation in re-
ciprocal tables. Proc. 13th IEEE Symposium on Computer
Arithmetic, pages 82–91, 1997.

[5] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan
Kaufmann Publishers, 2004.

[6] M. Ercegovac, T. Lang, and P. Montuschi. Very-high radix
division with prescaling and selection by rounding. IEEE
Transactions on Computers, 43(8):909–918, Aug. 1994.

[7] Y. Hu. The quantization effects of the cordic algorithm. IEE
Transactions on Signal Processing, 40(4):834–844, 1992.

de
la

y
(#

fo
4)

very−high radix

linear approx.

quadratic approx.

n/4 CORDIC iterations

Approximation of 1/x to n/2 bits

n (bits)

(a) Delay.

ha
rd

w
ar

e
co

m
pl

ex
ity

 (

an
d−

2)

very−high radix

quadratic approx.

Approximation of 1/x to n/2 bits

linear approx.

CBA

n (bits)

(b) Hardware complexity.

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100

 1000

 10000

 100000

 20 40 60 80 100

Figure 4. Complexity of the methods used to
compute a reciprocal of n/2 bits.

[8] A. Piñeiro, J. Bruguera, and J. Muller. Faithful power-
ing computation using table look-up and a fused accumula-
tion tree. Proceedings. 15th IEEE Symposium on Computer
Arithmetic, pages 40–47, June 2001.

[9] M. Schulte and E. Swartzlander. Hardware designs for ex-
actly rounded elementary functions. IEEE Transactions on
Computers, 43(8):964–973, Aug. 1994.

[10] O. Storaasli. Computing faster without cpus: Scientific ap-
plications on a reconfigurable, fpga-based hypercomputer.
Available at http://acmb.larc.nasa.gov/acmbexternal/ Per-
sonnel/Storaasli/PDF/1Olaf.pdf.

[11] I. Sutherland and al. Logical Effort: Designing Fast CMOS
Circuits. Morgan Kaufmann Publishers, 1999.

[12] D. Timmermann and al. A modified cordic algorithm with
reduced iterations. Elect. Letters, 25(15):950–951, 1989.

[13] D. Timmermann, H. Hahn, and B. Hosticka. Low latency
time cordic algorithms. IEEE Transactions on Computers,
41(8):1010–1015, Aug. 1992.

[14] J. Villalba, T. Lang, and E. Zapata. Parallel compensation of
scale factor for the cordic algorithm. Journal of VLSI Signal
Processing, 19(3):227–241, Aug. 1998.

de
la

y
(#

fo
4)

radix−2 conventional

radix−2/radix−4

proposed

n (bits)

(a) Delay.

ha
rd

w
ar

e
co

m
pl

ex
ity

 (

na
nd

−
2)

radix−2 conventional

radix−2/radix−4

(including recp. approx.)
Proposed

reciprocal approx.

n (bits)

(b) Hardware complexity

 500

 1000

 1500

 2000

 2500

 20 40 60 80 100

 1000

 10000

 100000

 1e+06

 20 40 60 80 100

Figure 5. Complexity of the compared de-
signs.

n (bits)

area radix−2 conventional

area radix−2/radix−4

delay radix−2/radix−4

delay radix−2 conventional

ra
tio

s
(a

re
a

an
d

de
la

y)

ratios with respect to proposed

 0

 0.5

 1

 1.5

 2

 20 40 60 80 100

Figure 6. Ratios of complexity.

