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Abstract 

 
Integer division on modern processors is expensive 

compared to multiplication.  Previous algorithms for 
performing unsigned division by an invariant divisor, 
via reciprocal approximation, suffer in the worst case 
from a common requirement for n+1 bit multiplication, 
which typically must be synthesized from n-bit 
multiplication and extra arithmetic operations.  This 
paper presents, and proves, a hybrid of previous 
algorithms that replaces n+1 bit multiplication with a 
single fused multiply-add operation on n-bit operands, 
thus reducing any n-bit unsigned division to the upper 
n bits of a multiply-add, followed by a single right 
shift.  An additional benefit is that the prerequisite 
calculations are simple and fast.  On the Itanium® 2 
processor, the technique is advantageous for as few as 
two quotients that share a common run-time divisor. 
 
 
1. Introduction 
 

In typical programs, integer division is relatively 
infrequent compared to other arithmetic operations. 
Combined with the complexity of directly 
implementing division in hardware, this has led a trend 
in modern processor architectures to omit direct 
support for integer division, and instead rely on 
software implementation.  A case of particular interest 
is where a divisor is a compile-time constant [1] [7], or 
a run-time loop-invariant [6].  Previous work has 
shown that in such situations, an unsigned integer 
division x/d can be profitably computed as 
(ax+b)/2s, where integer a approximates the scaled 
reciprocal 2s/d, integer b compensates for rounding 
errors, and integer s is a right-shift count. 

Previous work varies in whether the approximation 
a is rounded down [7] or rounded up [1] [6] from the 
exact scaled reciprocal.  Rounding up has a slight 
advantage of making b=0¸ which simplifies 
implementation on most processors.  However, for 
performing n-bit unsigned division, all prior schemes 

based on (ax+b)/2s require that a be rounded to n+1 
bits of significance in the general case.  Processors 
naturally implement only n-bit arithmetic, necessitating 
extra operations to synthesize n+1 bit arithmetic.  For 
some divisors, the extra bit can be optimized away 
because it is zero [6].  But this is neither possible for 
all divisors nor for divisors determined at run time.     

This paper contributes a method and proof for 
avoiding the extra bit, so that x/d can be evaluated 
using (ax+b)/2s, where a and b have only n bits of 
significance and s is a non-negative integer.  The key is 
choosing whether to round the reciprocal 1/d up or 
down.   Serendipitously, the value b turns out to be 0 
or a.  Furthermore, the choice can be made quickly 
enough to pay off even when as few as two unsigned 
quotients share a divisor. 

Some 7-bit examples demonstrate how choosing the 
direction of rounding matters.  (For shorter precisions, 
the “round down” approach always works given a 
suitable choice of b.)  Consider a divisor d=11.  The 
reciprocal 1/11 is 0.00010111010001...2. Rounding 
down to the most significant 7 bits yields 
0.00010111012, which is 93/210.  The approximation is 
slightly low, but b can be chosen to avoid undershoot 
[7].  One possible choice is b=93; the formula 
(93x+93)/210 computes  x/11 for any unsigned 7-bit 
x.  Attempts to use a rounded-up reciprocal (94/210) are 
doomed: even for b=0, the formula (94x+b)/210 
overshoots x/11 when x=109.      

For a divisor d=13, the situation is reversed.  
Rounding up works but rounding down does not.  The 
reciprocal 1/13 is 0.00010011101100...2.  Rounding up 
to the most significant 7 bits yields 0.00010011112, 
which is 79/210.  Indeed, (79x+0)/210 can be used to 
compute  x/13 for any unsigned 7-bit x.  However, 
using the rounded down reciprocal 78/210 is hopeless.  
The formula (78x+b)/210 undershoots (for x=117) if 
b=87 and overshoots (for x=12) if b=88, and there is 
no other integral value of b in between. 

In the two 7-bit examples, rounding the reciprocal 
in one particular direction works, but the other 
direction introduces too large an error.  Previous 
algorithms shrink the error by resorting to 8-bit 



approximations.  The new algorithms shrink the error 
by choosing a favorable rounding direction.          

The rest of this paper is structured as follows.  
Section 2 describes the necessary architectural support.  
Section 3 gives the mathematical basis.  Section 4 
describes algorithms for choosing a and b.  Section 5 
evaluates the overhead and benefit of the technique for 
both compile-time constant divisors and hoisting loop-
invariant divisors, with specifics for the Itanium® 2 
processor.  Section 6 discusses related work.  Section 7 
summarizes findings. 
 
2. Architectural support 
 

The algorithms to be presented depend upon an 
integer fused multiply-add instruction, denoted 
XMA.HU, that delivers the high n-bits of ax+b.   
Optionally, an instruction XMA.LU that returns the 
low n bits of ax+b will be useful.  Formally, for a, x, 
and b that are n-bit unsigned integers, these 
instructions are defined as: 

XMA.HU(a,x,b) =  (ax+b)/2n 
XMA.LU(a,x,b) = (ax+b) mod 2n 

The mnemonics are taken from Itanium® instructions.  
In the Itanium® architecture, multiply-add runs in the 
floating-point unit, hence extra transfer instructions 
must be executed to get integer operands to and from 
the floating-point unit.  To simplify the presentation, 
the transfer instructions are omitted from the 
algorithms, though they are considered in the timing 
comparisons of Section 5.  

On a machine without multiply-add, XMA.LU is 
trivially performed by an n-bit multiplication and n-bit 
addition.   XMA.HU is a bit harder, because the 
possible carry from the low n bits to the upper n bits 
must be propagated.  One way is to compute ax+b 
exactly, using 2n bits, and take the upper n bits.  For 
example, on x86 processors this can be done for n=32 
in four instructions: 

mov eax,a // Set eax:=a 
mul x // Set pair (edx,eax):=x*eax 
add eax,b // Set eax:=eax+b 
adc edx,0  // Propagate carry 

Though fused floating-point multiply-add instructions 
are common on RISCs, the integer variant is less 
common.  Typically, four instructions are required: two 
to compute both halves of the product, followed by two 
to perform the double precision addition.  

DSP processors typically have a signed multiply-
accumulate, but perhaps not the unsigned variant.  This 
can be worked around by adding a correction, because 
the algorithms to be presented always set the high-
order bit of a to 1, so the algebraic value of a, 
interpreted as a signed value, will be a−2n.   Therefore 
XMA.HU(a,x,b) = x+XMA.HS(a,x,b), where XMA.HS 

denotes a multiply-add instruction that treats a and x 
(but not b) as signed integers. 

Besides integer multiply-add, the usual n-bit 
unsigned and signed right-shifts, denoted SHR.U and 
SHR.S respectively, are presumed to exist: 

SHR.U(x,m) = x/2m    (x an unsigned integer) 
SHR.S(x,m) = x/2m     (x a signed integer) 

Some of the algorithms require a floating-point 
fused multiply-add operation and the ability to extract 
the binary exponent and significand from a floating-
point value.  For floating-point values x, y, and z, the 
fused multiply-add operations computes xy+z with a 
single final rounding to n bits of significance, where n 
includes the leading 1 bit.  This operation, common on 
high-performance floating-point units, is denoted 
(x×y+z)rn.  The exponent bias is denoted BIAS.  
Operations to extract the exponent and significand are 
denoted as EXPONENT and SIGNIFICAND.  I.e., for 
f≠0, f = SIGNIFICAND(f)×2EXPONENT(f)-BIAS-n+1.  The 
“−n+1” adjusts for the fact that SIGNIFICAND(f) 
returns an n-bit integer that represents a significand 
with an explicit leading one followed by n-1 bits after 
the binary point. 

 
3. Mathematical foundation 
 

This section gives the mathematical basis for the 
algorithms, motivated by graphical analysis.  As with 
other algorithms that perform division via reciprocal 
approximation, the notion is that for a given divisor d, 
the integer quotient x/d can be approximated by 
computing a linear function f(x) and rounding it down.  

We start with Lemma 1, which provides some 
useful bounds.   
Lemma 1  Let c = 1/d for a positive integer d.   For 
any integer x, if cx ≤  f(x) < cx+c then x/d = f(x) .   
Proof:  Proceed by showing that x/d ≤ f(x)< x/d+1.  
The lower bound on  f(x) follows from the observation 
x/d ≤ x/d = cx ≤ f(x).  The upper bound on f(x) 
depends upon the fact that x and d are integers, and so 
by elementary number theory, x can be written as dk+j, 
with k=x/d and 0 ≤ j≤ d−1.  Then f(x) < cx+c = 
c(dk+j)+c = (cd)k+cj+c = k+cj+c = k+c(j+1) ≤ k+cd 
= k+1 = x/d+1.  � 

Fig. 1 depicts the situation.  For an integer x, f(x) 
must lie on or above the lower staircase x/d and 
strictly below the upper stair case (x+1)/d.  Lemma 
1’s bounds on f(x) delimit the gray area.  The closed 
lower bound rests on the lower staircase.  The open 
upper bound presses up against the upper staircase.  
The lemma’s bounds might seem peculiar, because 
obviously the necessary and sufficient bounds are 
clearly x/d ≤ f(x) < x/d+1  for any real x.   
Lemma 1’s bounds are nonetheless more useful in this 



paper because their linear form allows geometrical 
arguments to be employed in the proof of the key 
theorems below.  

The next two theorems concern instances of f with 
the form αx and αx+α.   The theorems phrase bounds 
on α in terms of relative error, instead of the absolute 
error typical in discussions of integer algorithms, 
because one version of the proposed algorithm 
computes α using floating-point arithmetic, where 
relative error is more natural.   Besides, the “integer 
algorithms” are essentially floating-point algorithms in 
disguise, since they involve scaling shifts. 
Theorem 2  Let c=1/d for a positive integer d.  Let 
n≥1.  For real α such that c ≤ α < c(1+2-n+2-2n+2-3n+...), 
then for all integers x such that 0 ≤ x ≤ 2n−1, 
x/d = αx.   
Proof: Examine Fig. 2.  All that needs to be shown is 
that αx lies within the gray parallelogram, which by 
Lemma 1 suffices to prove the theorem.  Clearly, the 
line αx passes through the origin, so the concern is 
whether αx exits through the right side of the 
parallelogram.  From inspection, it is clear that the 
smallest valid α allows αx to be coincident with cx, 
and the largest valid α is bounded above by h(x).   The 
theorem follows from these bounds and the expansion 
2n/(2n−1) = 1+2−n+2−2n+2−3n+....  � 

It should be clear from the diagram that the upper 
bound on α is not only sufficient, but also necessary. 
Theorem 3  Let c=1/d for a positive integer d.  Let 
n≥1.  For real α is such that c(1−2−n) ≤ α < c, then for 
all integers x such that 0 ≤ x ≤ 2n−1, x/d = αx+α. 
Proof: Similar to Theorem 2, all that needs to be 
shown is that αx+α lies within the gray parallelogram 
in Fig. 2.  The line αx+α must pass through the left 
side of the parallelogram because 0 < c(1−2−n) ≤ α < c, 
and because α<c, cannot get any closer to cx+c.  So 
what is left to show is that it passes through the right 
side.  If α=c(1−2−n), this condition is just barely met 
because then αx+α becomes g(x) in Fig. 2, which 
passes through the lower right corner of the 

parallelogram; higher values of α cause it to go 
through the side.  � 

Theorems 2 and 3 show that given an 
approximation α=(1/d)(1+ε), where ε is the relative 
error bounded by −2−n ≤ ε < 2−n+2−2n+2−3n+..., the 
unsigned quotient x/d can be computed for an 
unsigned n-bit value x by using αx if ε≥0, or using 
αx+α if ε<0.    

Theorem 3 has the following corollary. 
Corollary 4 If α=1−2−n, then for integers x such that 
0 ≤ x ≤ 2n−1, x/1 = αx+α. 

This provides a gimmick for making the XMA.HU 
instruction perform an identity operation.  The obvious 
alternative formula 1x+0 cannot be used to 
implement x/1 using XMA.HU(a,x,b), because that 
would require a=2n and b=0, which makes a too big to 
represent in an n-bit word.  Computing x with 
XMA.HU(2n−1, x, 2n−1) is crucial when a uniform 
formula must be used for all divisors. 
 
4. Algorithms 
 

The theorems of the previous section show that 
x/d can be computed as αx+β, where α is 
sufficiently close to 1/d and β is  0 or α, depending 
upon whether a ≥ 1/d or a < 1/d respectively.   The 
division algorithms to be presented evaluate αx+β by 
executing SHR.U(XMA.HU(a,x,b),m), where a, b, and 
m are integers such that 

α = a × 2−m 

β = b × 2−m 
Because β is always α or 0, it follows that b is always 
a or 0.   The sections below examine two ways to 
compute a and decide whether b=a or b=0.  
 
4.1. Using integer arithmetic 
 

Algorithm 1 employs strictly integer arithmetic to 

x/d

(x+1)/d 

cx
cx+c

1 

d 1 
Fig. 1. Linear bounds for approximating x/d  
for integral x and d. 

0 
x 

c

y 

2n−1 

h(x) = [c2n/(2n−1)]x

cx 

cx+c 

g(x) = [c(1−2-n)](x+1)

c(1−2-n)

Fig. 2. Linear approximations for x/d  must 
lie within the gray parallogram.  The upper 
side is open; the other three are closed.   



compute a and b. The pseudo-code notation is adapted 
from [6].  When d=2m, Algorithm 1 reduces the 
multiply-add to an identity operation (per Corollary 4), 
and applies the obvious right shift to do the division by 
a power of 2.  When d≠2m, the algorithm computes the 
scaled and rounded-down reciprocal approximation t, 
and then decides whether to use the formula ax or the 
formula ax+a.   

Algorithm 1 requires dividing a double word by a 
single word to compute t.  The rest of the arithmetic is 
single-word arithmetic.  Notably, it computes r from t 
and d using only n-bit unsigned arithmetic, as indicated 
by “mod 2n”.  The low n bits suffice, because the test 
computes an n-bit residue described by Lemma 5 
below. 
Lemma 5  In Algorithm 1, r=d(t+1)−2m+n.   
Proof:  Let r′ = d(t+1)−2m+n and show that r′=r.  
Because t arises from integer division by d, it is 
constrained by d > 2m+n−dt ≥ 0.   Multiply these 
expressions by −1 and add d to get transformed bounds 
–d+d < dt−2m+n+d ≤ 0+d, which after simplification 
and substitution, simplifies to 0 < r′ ≤ d.   Because 
d < 2n, the former bounds imply 0 < r′ < 2n.  Thus 
r = [d(t+1)−2m+n] mod 2n = d(t+1) mod 2n, the last 
equality arising from the fact that  2m+n mod 2n = 0.  � 

The correctness of Algorithm 1 rests on the way it 
uses r to keep the relative error ε of a within the ranges 
required by Theorems 2 and 3, as shown respectively 
by Theorems 6 and 7 below.   
Theorem 6  If r ≤ 2m in Algorithm 1, then for all 

integers x such that 0 ≤ x ≤ 2n−1, x/d = (t+1)x/2m+n.    
Proof:  Let c = 1/d.  Define α such that α = (t+1)/2m+n 
and define ε implicitly as the solution to  α = c(1+ε).  
The solution is ε = α/c−1 = αd−1 = ((t+1)/2m+n)d−1. 
Refactor to get ε=[d(t+1)−2m+n]/2m+n.  By Lemma 5, 
the bracketed expression is r, thus ε=r/2m+n, which 
combined with the premise r ≤ 2m implies ε ≤ 1/2n.  
The conclusion follows from Theorem 2.  � 
Theorem 7  If r ≥ 2m in Algorithm 1, then for all 
integers x such that 0 ≤ x < 2n, x/d = (tx+t)/2m+n.    
Proof:  Let c = 1/d.  Define α that α = t/2m+n and 
define ε implicitly as the solution to  α = c(1+ε).  
Solving for ε yields ε = α/c−1 = αd−1 = ((t/2m+n)d−1.  
Refactor to get ε = [dt−2m+n]/2m+n.    Use the definition 
r=d(t+1)−2m+n from Lemma 5, and substitute for r in 
the premise r ≥ 2m to get d(t+1)−2m+n ≥ 2m.  Subtract d 
from both sides to get dt−2m+n ≥ 2m−d.   Because 
m=log2(d) and d≠2m, it follows that 2×2m > d, and 
thus 2m−d > − (2m).     Combine the inequalities to get 
dt−2m+n > − (2m).   Divide both sides by 2m+n to get 
[dt−2m+n]/2m+n > −1/2n.   Thus ε > −1/2n.   The 
conclusion follows from Theorem 3.   � 

The obvious algebraic equality ax+a = a(x+1) 
exposes a certain poetic symmetry in Algorithm 1: 
“round up the reciprocal, or round up the dividend”.  
However, a(x+1) cannot generally be used for 
implementation, because x+1 might overflow, unless 
particular circumstance constrains x<2n−1. 

The last detail is to show that a<2n, otherwise a 
might not fit in n bits. 
Theorem 8  In Algorithm 1, a<2n. 
Proof:  The theorem is trivial when d=2m, because then 
a=2n−1.  If d≠2m, then 2m+1 ≤ d < 2n, with the 
following consequences:  

2m +1 < 2n  
0 < 2n − 2m + 1 Subtract 2m +1 

2m+n < 2m+n + 2n −2m +1   Add 2m+n  
2m+n < (2n −1) (2m +1) Factor 

2m+n/(2m +1) < 2n −1 Divide by (2m +1) 
2m+n/(2m +1) + 1 < 2n Add 1  
Combine with the definition of t in Algorithm 1, and 
the prior observation that 2m+1 ≤ d, to derive 
t+1 ≤ (2m+n /d)+1 < 2n.   Finally, a is either t or t+1, so 
by the previous inequality, a < 2n.   � 
 
4.2. Using floating-point Arithmetic 
 

Algorithm 1 is fine for compile-time constant 
divisors, but for loop-invariant divisors, it may be quite 
expensive, because it requires an integer division of a 
2n-bit dividend by an n-bit divisor.  Granlund and 
Montgomery [6] note a similar drawback, and that the 
cost of the calculations outside the loop might swamp 
any savings inside the loop.  This section describes a 

 Inputs: uword d and n, with n≥1  and 1≤d<2n 
int m := log2(d); 
uword a, b; 
if d=2m then 

a := 2n−1; 
b := 2n−1; 

else  
uword t := (2m+n)/d;  
uword r := ((t×d+d) mod 2n;   
if r ≤ 2m then 

                     a := t+1;   
                     b := 0; 

else  
                     a := t; 

b := t; 
endif 

endif 
 
Emit SHR.U(XMA.HU(a,x,b),m) 

 

Algorithm 1. Unsigned integer division via 
multiply-add, using integer arithmetic to pick 
a and b. 



variation that overcomes this objection when 
appropriate floating-point hardware is available. 

Algorithm 2 applies floating-point arithmetic to 
compute a, b, and m when n=64.  It is specialized to 
n=64 because it iteratively approximates 1/d with a 
custom iteration sequence that depends upon n and the 
machine architecture.  The sequence, adapted from a 
double-extended precision division sequence [8],  
employs a reciprocal approximation instruction to 
initialize an initial estimate y0, and fused multiply-add 
operations to refine that estimate.  In the style of [8], 
potentially concurrent multiply-add operations are 
shown on the same line.  The sequence is typical on 
machines that omit direct support for floating-point 
division.  If the hardware has direct support, then 1/d 
rounded-to-nearest to n bits of significance may be 
used instead.  

Algorithm 2 presumes that the exponent range is 
large enough to prevent exponent underflow or 
overflow.  The value f approximates 1/d with a relative 
error ε of at most 2−64 [8].  The test (−d×f+1)r n  ≤ 0 
determines whether this error is positive or negative; 
the particular form of the test allows it to be performed 
by a fused multiply-add.  The correctness of Algorithm 
2 follows from Theorems 2 and 3.   
 

4.3. Signed division 
 

There does not appear to be any benefit to using the 
multiply-add approach for signed division that rounds 
towards zero.   Constructing a diagram similar to Fig. 1 
for signed division reveals that the approximating 
function must be piecewise linear, with separate pieces 
for positive and negative x.   Prior methods employing 
multiplication by a rounded up reciprocal suffice 
because each piece spans a range of 2n−1, and thus an n-
bit multiplier suffices [6]. 

However, in applications that require rounding the 
quotient towards −∞ , a linear approximation 
(ax+b)/2m does offer an improvement when the 
divisor is unsigned.   Algorithm 3 shows such an 
algorithm.  Remarkably, no conditional logic is 
necessary to compute b from a.    This simplification is 
offset by a complication: the computation ax+b needs 
to be performed with an unsigned a and signed x, 
which is not in the assumed instruction repertoire.  
Fortunately, because the most significant bit of a is 
always 1, a two’s complement reinterpretation a′ of a 
has the algebraic value a′ = a−2n, hence 
XMA.HS(a,x,b) = ((a−2n)x+b)/2n  = (ax +b)/2n − x.   
The algorithm corrects for the “−x” error by adding x 
back.  

Algorithm 3 is similar to Algorithm 2, but has a 
different iteration sequence that delivers a more 
accurate reciprocal approximation f that is 1/d rounded 

 Inputs: uword d, with 1≤d<264  
uword a, b; 
real f 
if d=1 then 

f := 1−2−64 
else  

y0 := (1/d)(1+δ), |δ|≤2−8.886 

e0 := (−d×y0+1)r n  
e1 := (e0× e0)r n         e2 := (e0× e0+ e0)r n  
y1 := (e2×y0+y0) r n         e3 := (e1× e1+ e0)r n  
y2 := (e3×y1+y0)r n  
e4 := (−d×y2+1)r n  
f := (e4×y2+y2)r n  

endif  
m := (BIAS−1) − EXPONENT(f) 
a := SIGNIFICAND(f) 
if (−d×f+1)r n  ≤ 0 then 
            b := 0; 
else  

b := a; 
endif 
 
Emit SHR.U(XMA.HU(a,x,b),m) 

Algorithm 2. Unsigned integer division via 
multiply-add, using floating-point arithmetic 
to pick the a and b. 
   

 Inputs: uword d, with 1≤d<264  
uword a, b; 
real f 
if d=1 then 

f := 1−2−64 
else  

y0 := (1/d)(1+δ), |δ|≤2−8.886 

e0 := (−d×y0+1)r n  
y1 := (e0×y0+y0) r n         e1 := (e0× e0)r n  

y2 := (e1×y1+y1)r n  
e2 := (−d×y2+1)r n  
y3 := (e2×y2+y2)r n  
e3 := (−d×y3+1)r n  
f := (e3×y3+y3)r n  

endif  
m := (BIAS−1) −EXPONENT(f) 
a := SIGNIFICAND(f) 
b:= a/2   
 
Emit SHR.S (x+XMA.HS(a,x,b), m)  

Algorithm 3. Computing x/d for a 64-bit 
signed x and unsigned d.   

 



to nearest, except when d=2n−1 [4].  Increased 
accuracy is used because the computation b:=a/2 
introduces further truncation error that must be 
accounted for quite carefully.  Algorithm 3 computes 
the integer quotient x/d via the formula λ(x), where 
λ(x) = c(1+ε)x + (c/2)(1+ε+φ).  The relative error ε 
results from approximating the exact reciprocal c=1/d 
with a2−m.  The relative error φ results from 
approximating c/2 with a/22−m.  The correctness of 
Algorithm 3 follows from Lemma 1 if in Fig. 3, the 
line λ(x) stays within the gray parallelogram over the 
range 2n−1 ≤ x ≤ 2n−1−1.  The theorems below bound ε 
and φ, and then apply those bounds to prove 0≤∆0<1 
and 0≤∆1<1, which implies that λ(x) is constrained as 
necessary. 

Though Algorithm 3 is specific to n=64 because of 
the particular iterations used to approximate 1/d, the 
proofs below depend only on the assumption that n≥1 
and f  is an n-bit round-to-nearest approximation of 
1/d, with extra latitude granted in two cases.  When 
d=1, the “one off” approximation f=2n−1 is allowed, or 
when d=2n−1, f may be rounded down instead of to 
nearest.  Thus Algorithm 3 can be adapted to other 
values of n simply by computing f suitably.   

The rest of this section details the necessary 
theorems. 
Theorem 9  Define ε implicitly by the equation 
f=(1/d)(1+ε), where f  and d are from Algorithm 3. 
Then –(2−n) ≤ ε ≤ 2−n−2−2n+1.   
Proof: Suppose f is the round-to-nearest floating-point 
approximation of 1/d with an n-bit significand.  
Cornea-Hasegan, Golliver, and Markstein show that an 
integer quotient of two n-bit integers cannot be 
arbitrarily close to the midpoint between two n-bit 
significands, and the closest-to-midpoint case occurs 
for 1/d when d=2n–1 [4].  The rounded-up n-bit 
floating-point approximation f of this value is 
2−n+2−2n+1.  Since ε = fd−1, this implies the bound |ε| ≤ 

(2−n+2−2n+1)(2n–1)−1 = (1–2−n+2−n+1−2−2n+1)−1 = 
2−n−2−2n+1.   

The extra latitude allowed for the cases d=1 and 
d=2n–1 results in a negative relative error bounded by 
ε ≥  −(2−n).  � 
Theorem 10 Define φ such that b=(1/d)(1+ε+φ)/2, 
where b and d are from Algorithm 3, and ε is defined 
as in Theorem 9.  Then −(2−n+1) < φ ≤ 0.  Furthermore, 
if ε < −(2−n−2−2n+1) then φ ≥ −(2−n). 
Proof: The computation a/2 is equivalent to zeroing 
the least significant bit in a, which introduces an 
absolute error of 0 or –1, and then halving that result 
exactly.  Thus the relative error φ introduced cannot be 
positive.  Since a has n bits with a leading bit of 1, and 
a must be odd for the zeroing to have any effect, the 
smallest value of a for which ε is non-zero is a=2n−1+1.  
Thus the relative error is bounded from below by φ ≥ 
−1/(2n−1+1) > −(2−n+1).   

The “furthermore” portion of the theorem follows 
from the observation that ε < −2−n+2−2n+1 occurs only in 
two situations: when d=1, or when  d=2n−1 and f is 1/d 
rounded down instead of to nearest.  When d=1, the 
value f is 1−2−n.  The least significant bit of f is a one, 
which when zeroed introduces an absolute error of 
−2−n.  Converting this to a relative error (relative to 1) 
yields  φ = −2−n.  When d=2n−1 and f is 1/d rounded 
down, then f=2−n, which has a zero in the least 
significant bit, and thus φ=0 in that case.   � 
Theorem 11: In Fig. 3, 0≤∆0<1. 
Proof: From consideration of the geometry in Fig. 3, 
the following algebraic manipulations yield an 
equation for ∆0. 

c∆0 = λ(x)−cx where x= –(2n−1) 
c∆0 = λ(–(2n−1))−c(–(2n−1))  
c∆0 = c(1+ε)(− (2n−1)) + (c/2)(1+ε+φ) – c(–(2n−1))  
∆0  = − (2n−1) − ε(2n−1) + 2−1 + ε2−1 + φ2−1 + (2n−1)   
∆0 = ε(−2n−1+2−1) + φ2−1 + 2−1 

A lower bound on ∆0 is implied by the upper bound 
ε ≤ 2−n−2−2n+1  and lower bound φ > –(2−n+1).  Plugging 
these bounds into the equation for ∆0 yields ∆0 > 
(2−n−2−2n+1) (−2n−1+2−1) + (−2−n+1)2−1 + 2−1 = 
(−2−1+2−n−1+2−n−2−2n) −2−n +2−1 = 2−n−1−2−2n.  The final 
right side is non-negative for n≥0.   

An upper bound on ∆0 is implied by the lower 
bound ε ≥ –(2−n) and upper bound φ ≤ 0.  Plugging 
these inequalities into the equation for ∆0 derives the 
following: ∆0 ≤ (–(2−n))(−2n−1+2−1) + (0)2−1 +2−1  = 
(2−1 − 2−n−1) + (2−1) = 1−2−n−1 < 1.  � 
Theorem 12: In Fig. 3, 0≤∆1<1. 
Proof: From consideration of the geometry in Fig. 3, 
the following algebraic manipulations yield an 
equation for ∆1. 

c∆1 = λ(x)−cx where x=2n−1−1 

0 
x 

y 

2n−1−1 

cx 

cx+c

−(2n−1) 

λ(x) 

c∆0

c∆1 

λ(x)=c(1+ε)x+c(1+ε+φ)/2
 

Fig. 3. Construction used in proof of Algorithm 3. 



c∆1  = λ(2n−1−1)−c(2n−1−1)  
c∆1 = c(1+ε)(2n−1−1) + (c/2)(1+ε+φ) – c(2n−1−1)   
∆1 = (2n−1−1) + ε2n−1−ε + 2−1 + ε2−1 + φ2−1 – (2n−1−1)  
∆1 = ε(2n−1−2−1) + φ2−1 + 2−1 

A lower bound on ∆1 is implied by the lower bounds 
on ε and φ.  The going gets tricky here, because the 
special case where  ε < −(2−n−2−2n+1) needs the special 
bound on φ from Theorem 10.   

For the usual case, the lower bounds are ε ≥ 
−(2−n)+2−2n+1 and φ ≥ −(2−n+1).  Plugging these 
inequalities into the equation for ∆1 yields ∆1 > 
(−(2−n)+2−2n+1)(2n−1−2−1) + (−(2−n+1))2−1 + 2−1 = 
(−(2−1)+2−n−1+2−n−2−2n) −2−n + 2−1 = 2−n−1−2−2n.  Thus 
∆1 > 2−n−1−2−2n.  The right side is non-negative for n≥0.   

For the special case ε < −(2−n)+2−2n+1, Theorem 10 
says that ε ≥ −(2−n) and φ ≥ −(2−n).  Plugging these 
inequalities into the equation for ∆1 yields ∆1 ≥ 
(−2−n)(2n−1−2−1) + (−(2−n))2−1 + 2−1 = (−2−1+2−n−1) 
−2−n−1 + 2−1= 0.  Notice that there is no slack to spare. 

An upper bound on ∆1 is implied by the upper 
bounds ε ≤ 2−n−2−2n+1 and φ ≤ 0.  Plugging these 
inequalities into the equation for ∆1 yields ∆1 ≤ 
(2−n−2−2n+1)(2n−1−2−1) + (0)2−1 + 2−1 = 
(2−1−2−n−1−2−n+2−2n) + 2−1 = 1−[3(2−n−1)−2−2n].  The 
expression [3(2−n−1) − 2−2n] is non-negative for positive 
n, thus ∆1< 1.   � 
 
5. Performance analysis 
 

For hardware that supports the necessary operations, 
the multiply-add approach to unsigned division permits 
shorter and faster instruction sequences for compile-
time divisors than approaches that depend exclusively 
on the “round up” or “round down” methods, because 
it never has to synthesize n+1 bit arithmetic.  
Furthermore, it is fast enough to make hoisting of run-
time loop-invariant divisors practical on machines with 
the necessary support.  This section analyzes these 
advantages in detail when implemented on the 

Itanium® 2 processor. 
Latencies of various instruction sequences can vary 

depending upon assumptions, so the following uniform 
assumptions are made when comparing latencies. 
Typically, formation of constants can be anticipated 
and hoisted to earlier program points, and thus do not 
contribute to critical paths in a program.  Latencies will 
be measured between when the dividend x is known 
and the quotient y is produced.   The Itanium® 
architecture has the further idiosyncrasy of performing 
general integer multiplication in the floating-point unit, 
thus necessitating extra instructions to move integer 
operands to and from the floating-point unit.  The 
latencies measured below assume that x starts out and y 
ends up in an integer register.     

The explicitly parallel Itanium® architecture allows 
the instructions for checking for divide-by-zero to be 
issued in parallel with the rest of the instruction 
sequence.  Hence, such checking adds no latency. 

For divisors known at compilation time, Algorithms 
1 and 2 deliver instruction sequences that are at least as 
fast, and sometimes faster, than the sequences 
delivered by exclusive use of the round-up or round-
down methods, because those methods sometimes 
require synthesis of n+1 bit multiplication [6] [7].  Fig. 
4 lists some sequences for a 64-bit divide by 7.  The 
notation “;;” delimits groups of instructions that can be 
issued simultaneously.  Here, the round-up method 
needs a 65-bit reciprocal approximation.  The 
multiplication instruction handles 64 bits, and the 
remaining sub/shr/add sequence synthesizes the extra 
bit.  The sequence’s latency from x to y is 19 clocks.  In 
contrast, round-down method delivers a sequence 
requiring only 16 clocks, a 15.8% reduction.  For some 
other divisors, the situation is reversed, and it is the 
round-down algorithm that needs 65 bits and thus a 
longer sequence to synthesize the missing bit.  
Algorithm 1 or 2 always delivers the shorter 16-clock 
sequence. 

// Code emitted by round-up method 
movl r10=0x2492492492492493 ;; 
setf.sig f8=r10                
setf.sig f7=x     ;;        
xma.hu   f6=f8,f7,f0 ;;        
getf.sig r9=f6     ;;        
sub      r8=x,r9     ;; 
shr.u    r3=r8,1     ;; 
add      r2=r9,r3    ;;        
shr.u    y=r2,2                

// Code emitted by round-down method. 
movl r10= 0x9249249249249248 ;; 
setf.sig f8=r10                 
setf.sig f7=x        ;; 
xma.hu   f6=f8,f7,f8 ;; 
getf.sig r9=f6     ;;         
shr.u   y=r9,2                  

 

Fig. 4. 64-bit computation of y=x/7 on Itanium® architecture 



Algorithms 2 is particularly powerful because not 
only is the loop-variant sequence shorter than the 
worst-case sequence required by the round-up or 
round-down method, but the portion that depends only 
upon the divisor is relatively simple and fast.  Consider 
an i-iteration loop with a loop-invariant divisor.  The 
minimum latency instruction sequence for 64-bit 
unsigned integer division on an Itanium® 2 processor 
takes 43 clocks [3].   However, this sequence is not 
ideal for hoisting loop-invariant divisors because it 
uses the dividend early.  A better approach is to use the 
minimum throughput sequence [3], which though it 
takes 47 clocks, uses the dividend relatively late.  This 
sequence splits into a 26-clock loop-invariant (top of 
Fig. 5) and 31-clock loop-variant portion.  For a loop 
with i iterations, the total latency is 26+31i clocks.   In 
contrast, Algorithm 2 splits such that the total latency 
is 45+16i.  (The loop-variant portion is shown at the 
bottom of Fig. 5.)  Thus for as few as 2 loop iterations, 
Algorithm 2 comes out ahead (77 clocks vs. 88 clocks 
for i=2), and is only 7% slower even for a one-trip 
loop (61 clocks vs. 57 clocks for i=1).  Furthermore, 
zero-trip loops are not ordinarily an issue, because 
when hoisting invariants, compilers typically insert a 
zero-trip guard that branches around computation of 
loop invariants, so the approach loses only for one-trip 
loops. 

Because Algorithm 2 comes out ahead for even as 
few as two quotients that share a divisor, it can be 
profitable in situations besides loops.  For instance, it 
can be applied where two subexpressions share a 
common divisor.  Another application is hash tables, 
where hash functions of the form “... mod d” occur, 
where d is the size of the table.   Algorithm 2 can 
quickly recompute a, b, and m when d changes, thus 
allowing table lookups to apply the concise multiply-
add formula. 
 
6. Related work 
 

Algorithm 1 is similar to previous work, but there is 
literally “a bit” (but a crucial bit) of difference.  
Previous work [1][6] based on rounding up the 

reciprocal approximation requires that log2(d) be 
rounded up, thus requiring up to n+1 bits to represent 
the multiplier a.  Previous work [7] based on rounding 
down the reciprocal approximation also requires an 
n+1 bit multiplier in the worst case.  Viewed from the 
perspective of Fig. 2, both methods try to draw a line 
from the left side to the right side of the gray 
parallelogram.  But “round up” methods are 
constrained to make the line’s slope at least c, and 
“round down” methods require the line’s slope to be no 
more than c.  In either case, n-bit multipliers quantize 
the slope of the line too coarsely to always keep it 
inside the parallelogram.  By choosing between “round 
up” and “round down”, the present work requires only 
an n-bit multiplier.   The “missing” bit is the choice. 

Magenheimer et al [7] give bounds on b when using 
a general formula (ax+b)/z, and recommend using b 
= a+(z mod d)−1 when d does not divide exactly into 
z.  Algorithm 1, for which z=2n, uses the same value 
for b when (z mod d) = 1, but otherwise uses a smaller 
value, namely a, that is smaller than a+(z mod d)−1.  
Using b=a has an advantage when the divisor is a 
compile-time constant: reusing a rather than creating a 
distinct constant b avoids further raising register 
pressure.  Of course if (z mod d) ≥ d/2, Algorithm 1 
uses the “round up” approach instead, in which case 
b=0. 

Similar work is found in [2], which also suggests 
using a formula of the form ax+b/2m, where b=0 or 
b=a.  However, that work has a much slower algorithm 
for choosing which formula to use, and no proof of 
correctness is given.  The algorithm tries the round up 
method [6], and if the resulting a does not fit in n bits, 
tries to produce an n-bit a using the round down 
method [7].   If the round-down method fails, then as a 
last resort it sets a to a rounded up scaled reciprocal 
approximation and b is set to a.  The tests for deciding 
which formula to use are much more complicated than 
the current work, making it an impractical approach for 
loop-invariant divisors.  Furthermore, its last resort 
formula is always wrong for the case x=d−1.  (The 
approximation will compute (a(d−1)+a)/2m, which 
simplifies to (ad)/2m.  Because a was rounded up, 

// Adaptation of maximum throughput  
// sequence from [3]. 
setf.sig f6=x      ;; 
fnorm.s1 f6=f6          ;; 
fma.s1   f9=f8,f6,f0    ;; 
fnma.s1  f7=f7,f9,f6    ;; 
fma.s1   f8=f7,f8,f9    ;; 
fcvt.fxu.trunc.s1 f8=f8 ;;     
getf.sig y=f8         

// Sequence from Algorithm 1 or 2. 
setf.sig f7=x       ;; 
xma.hu   f6=a,f7,b  ;; 
getf.sig r9=f6   ;;      
shr.u    y=r9,m             

 

Fig. 5.  Loop-variant portions of instruction sequences for 64-bit unsigned division. 
 



this formula is doomed to deliver an answer of 1, not 
the correct quotient of 0.)   The probable reason that 
the erroneous formula goes undetected is that it is used 
only if both the round-up algorithm and round-down 
algorithm fail to find an n-bit a, which as the present 
work makes clear, can never occur, and thus the “last 
resort” in the method is simply unnecessary.  (As a 
sanity check of the proofs, the algorithm in [2] for 
computing a, b, and m for 32-bit divisors was 
subjected to exhaustive testing, and indeed the 
erroneous formula is never used.)  A more recent 
edition (March, 2004) of [2] removes the “last resort”, 
but without any proof that the remaining cases cover 
all situations correctly. 

A quite different approach is to eliminate division 
via strength reduction [9].  That approach is limited to 
situations where the operands are constants or linear 
functions of loop indices.  However, combining 
strength reduction with Algorithm 1 might yield further 
improvement by reducing the multiply-add 
computation ax+b to an induction variable when the 
numerator x is itself an induction variable.   
 
7. Summary 
 

This paper proves that unsigned integer division by 
a compile-time or loop-invariant divisor can be 
accomplished by an n-bit integer multiply-add (that 
yields a 2n-bit result) followed by a right shift.  This is 
an improvement over previous methods that required 
n+1 bit arithmetic in the worst case.  The necessary 
operands that depend on the divisor can be calculated 
quickly, making the technique economical for hoisting 
loop-invariant divisors even for short loops and 
quotients with shared divisors.  Fused floating-point 
multiply-add instructions have a multitude of uses.  
Now there is one more reason for supporting its lesser-
known integer cousin. 
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