
N-Bit Unsigned Division Via N-Bit Multiply-Add

Arch D. Robison
Intel Corporation

arch.robison@intel.com

Abstract

Integer division on modern processors is expensive

compared to multiplication. Previous algorithms for
performing unsigned division by an invariant divisor,
via reciprocal approximation, suffer in the worst case
from a common requirement for n+1 bit multiplication,
which typically must be synthesized from n-bit
multiplication and extra arithmetic operations. This
paper presents, and proves, a hybrid of previous
algorithms that replaces n+1 bit multiplication with a
single fused multiply-add operation on n-bit operands,
thus reducing any n-bit unsigned division to the upper
n bits of a multiply-add, followed by a single right
shift. An additional benefit is that the prerequisite
calculations are simple and fast. On the Itanium® 2
processor, the technique is advantageous for as few as
two quotients that share a common run-time divisor.

1. Introduction

In typical programs, integer division is relatively
infrequent compared to other arithmetic operations.
Combined with the complexity of directly
implementing division in hardware, this has led a trend
in modern processor architectures to omit direct
support for integer division, and instead rely on
software implementation. A case of particular interest
is where a divisor is a compile-time constant [1] [7], or
a run-time loop-invariant [6]. Previous work has
shown that in such situations, an unsigned integer
division x/d can be profitably computed as
(ax+b)/2s, where integer a approximates the scaled
reciprocal 2s/d, integer b compensates for rounding
errors, and integer s is a right-shift count.

Previous work varies in whether the approximation
a is rounded down [7] or rounded up [1] [6] from the
exact scaled reciprocal. Rounding up has a slight
advantage of making b=0¸ which simplifies
implementation on most processors. However, for
performing n-bit unsigned division, all prior schemes

based on (ax+b)/2s require that a be rounded to n+1
bits of significance in the general case. Processors
naturally implement only n-bit arithmetic, necessitating
extra operations to synthesize n+1 bit arithmetic. For
some divisors, the extra bit can be optimized away
because it is zero [6]. But this is neither possible for
all divisors nor for divisors determined at run time.

This paper contributes a method and proof for
avoiding the extra bit, so that x/d can be evaluated
using (ax+b)/2s, where a and b have only n bits of
significance and s is a non-negative integer. The key is
choosing whether to round the reciprocal 1/d up or
down. Serendipitously, the value b turns out to be 0
or a. Furthermore, the choice can be made quickly
enough to pay off even when as few as two unsigned
quotients share a divisor.

Some 7-bit examples demonstrate how choosing the
direction of rounding matters. (For shorter precisions,
the “round down” approach always works given a
suitable choice of b.) Consider a divisor d=11. The
reciprocal 1/11 is 0.00010111010001...2. Rounding
down to the most significant 7 bits yields
0.00010111012, which is 93/210. The approximation is
slightly low, but b can be chosen to avoid undershoot
[7]. One possible choice is b=93; the formula
(93x+93)/210 computes x/11 for any unsigned 7-bit
x. Attempts to use a rounded-up reciprocal (94/210) are
doomed: even for b=0, the formula (94x+b)/210
overshoots x/11 when x=109.

For a divisor d=13, the situation is reversed.
Rounding up works but rounding down does not. The
reciprocal 1/13 is 0.00010011101100...2. Rounding up
to the most significant 7 bits yields 0.00010011112,
which is 79/210. Indeed, (79x+0)/210 can be used to
compute x/13 for any unsigned 7-bit x. However,
using the rounded down reciprocal 78/210 is hopeless.
The formula (78x+b)/210 undershoots (for x=117) if
b=87 and overshoots (for x=12) if b=88, and there is
no other integral value of b in between.

In the two 7-bit examples, rounding the reciprocal
in one particular direction works, but the other
direction introduces too large an error. Previous
algorithms shrink the error by resorting to 8-bit

approximations. The new algorithms shrink the error
by choosing a favorable rounding direction.

The rest of this paper is structured as follows.
Section 2 describes the necessary architectural support.
Section 3 gives the mathematical basis. Section 4
describes algorithms for choosing a and b. Section 5
evaluates the overhead and benefit of the technique for
both compile-time constant divisors and hoisting loop-
invariant divisors, with specifics for the Itanium® 2
processor. Section 6 discusses related work. Section 7
summarizes findings.

2. Architectural support

The algorithms to be presented depend upon an
integer fused multiply-add instruction, denoted
XMA.HU, that delivers the high n-bits of ax+b.
Optionally, an instruction XMA.LU that returns the
low n bits of ax+b will be useful. Formally, for a, x,
and b that are n-bit unsigned integers, these
instructions are defined as:

XMA.HU(a,x,b) = (ax+b)/2n
XMA.LU(a,x,b) = (ax+b) mod 2n

The mnemonics are taken from Itanium® instructions.
In the Itanium® architecture, multiply-add runs in the
floating-point unit, hence extra transfer instructions
must be executed to get integer operands to and from
the floating-point unit. To simplify the presentation,
the transfer instructions are omitted from the
algorithms, though they are considered in the timing
comparisons of Section 5.

On a machine without multiply-add, XMA.LU is
trivially performed by an n-bit multiplication and n-bit
addition. XMA.HU is a bit harder, because the
possible carry from the low n bits to the upper n bits
must be propagated. One way is to compute ax+b
exactly, using 2n bits, and take the upper n bits. For
example, on x86 processors this can be done for n=32
in four instructions:

mov eax,a // Set eax:=a
mul x // Set pair (edx,eax):=x*eax
add eax,b // Set eax:=eax+b
adc edx,0 // Propagate carry

Though fused floating-point multiply-add instructions
are common on RISCs, the integer variant is less
common. Typically, four instructions are required: two
to compute both halves of the product, followed by two
to perform the double precision addition.

DSP processors typically have a signed multiply-
accumulate, but perhaps not the unsigned variant. This
can be worked around by adding a correction, because
the algorithms to be presented always set the high-
order bit of a to 1, so the algebraic value of a,
interpreted as a signed value, will be a−2n. Therefore
XMA.HU(a,x,b) = x+XMA.HS(a,x,b), where XMA.HS

denotes a multiply-add instruction that treats a and x
(but not b) as signed integers.

Besides integer multiply-add, the usual n-bit
unsigned and signed right-shifts, denoted SHR.U and
SHR.S respectively, are presumed to exist:

SHR.U(x,m) = x/2m (x an unsigned integer)
SHR.S(x,m) = x/2m (x a signed integer)

Some of the algorithms require a floating-point
fused multiply-add operation and the ability to extract
the binary exponent and significand from a floating-
point value. For floating-point values x, y, and z, the
fused multiply-add operations computes xy+z with a
single final rounding to n bits of significance, where n
includes the leading 1 bit. This operation, common on
high-performance floating-point units, is denoted
(x×y+z)rn. The exponent bias is denoted BIAS.
Operations to extract the exponent and significand are
denoted as EXPONENT and SIGNIFICAND. I.e., for
f≠0, f = SIGNIFICAND(f)×2EXPONENT(f)-BIAS-n+1. The
“−n+1” adjusts for the fact that SIGNIFICAND(f)
returns an n-bit integer that represents a significand
with an explicit leading one followed by n-1 bits after
the binary point.

3. Mathematical foundation

This section gives the mathematical basis for the
algorithms, motivated by graphical analysis. As with
other algorithms that perform division via reciprocal
approximation, the notion is that for a given divisor d,
the integer quotient x/d can be approximated by
computing a linear function f(x) and rounding it down.

We start with Lemma 1, which provides some
useful bounds.
Lemma 1 Let c = 1/d for a positive integer d. For
any integer x, if cx ≤ f(x) < cx+c then x/d = f(x) .
Proof: Proceed by showing that x/d ≤ f(x)< x/d+1.
The lower bound on f(x) follows from the observation
x/d ≤ x/d = cx ≤ f(x). The upper bound on f(x)
depends upon the fact that x and d are integers, and so
by elementary number theory, x can be written as dk+j,
with k=x/d and 0 ≤ j≤ d−1. Then f(x) < cx+c =
c(dk+j)+c = (cd)k+cj+c = k+cj+c = k+c(j+1) ≤ k+cd
= k+1 = x/d+1. �

Fig. 1 depicts the situation. For an integer x, f(x)
must lie on or above the lower staircase x/d and
strictly below the upper stair case (x+1)/d. Lemma
1’s bounds on f(x) delimit the gray area. The closed
lower bound rests on the lower staircase. The open
upper bound presses up against the upper staircase.
The lemma’s bounds might seem peculiar, because
obviously the necessary and sufficient bounds are
clearly x/d ≤ f(x) < x/d+1 for any real x.
Lemma 1’s bounds are nonetheless more useful in this

paper because their linear form allows geometrical
arguments to be employed in the proof of the key
theorems below.

The next two theorems concern instances of f with
the form αx and αx+α. The theorems phrase bounds
on α in terms of relative error, instead of the absolute
error typical in discussions of integer algorithms,
because one version of the proposed algorithm
computes α using floating-point arithmetic, where
relative error is more natural. Besides, the “integer
algorithms” are essentially floating-point algorithms in
disguise, since they involve scaling shifts.
Theorem 2 Let c=1/d for a positive integer d. Let
n≥1. For real α such that c ≤ α < c(1+2-n+2-2n+2-3n+...),
then for all integers x such that 0 ≤ x ≤ 2n−1,
x/d = αx.
Proof: Examine Fig. 2. All that needs to be shown is
that αx lies within the gray parallelogram, which by
Lemma 1 suffices to prove the theorem. Clearly, the
line αx passes through the origin, so the concern is
whether αx exits through the right side of the
parallelogram. From inspection, it is clear that the
smallest valid α allows αx to be coincident with cx,
and the largest valid α is bounded above by h(x). The
theorem follows from these bounds and the expansion
2n/(2n−1) = 1+2−n+2−2n+2−3n+.... �

It should be clear from the diagram that the upper
bound on α is not only sufficient, but also necessary.
Theorem 3 Let c=1/d for a positive integer d. Let
n≥1. For real α is such that c(1−2−n) ≤ α < c, then for
all integers x such that 0 ≤ x ≤ 2n−1, x/d = αx+α.
Proof: Similar to Theorem 2, all that needs to be
shown is that αx+α lies within the gray parallelogram
in Fig. 2. The line αx+α must pass through the left
side of the parallelogram because 0 < c(1−2−n) ≤ α < c,
and because α<c, cannot get any closer to cx+c. So
what is left to show is that it passes through the right
side. If α=c(1−2−n), this condition is just barely met
because then αx+α becomes g(x) in Fig. 2, which
passes through the lower right corner of the

parallelogram; higher values of α cause it to go
through the side. �

Theorems 2 and 3 show that given an
approximation α=(1/d)(1+ε), where ε is the relative
error bounded by −2−n ≤ ε < 2−n+2−2n+2−3n+..., the
unsigned quotient x/d can be computed for an
unsigned n-bit value x by using αx if ε≥0, or using
αx+α if ε<0.

Theorem 3 has the following corollary.
Corollary 4 If α=1−2−n, then for integers x such that
0 ≤ x ≤ 2n−1, x/1 = αx+α.

This provides a gimmick for making the XMA.HU
instruction perform an identity operation. The obvious
alternative formula 1x+0 cannot be used to
implement x/1 using XMA.HU(a,x,b), because that
would require a=2n and b=0, which makes a too big to
represent in an n-bit word. Computing x with
XMA.HU(2n−1, x, 2n−1) is crucial when a uniform
formula must be used for all divisors.

4. Algorithms

The theorems of the previous section show that
x/d can be computed as αx+β, where α is
sufficiently close to 1/d and β is 0 or α, depending
upon whether a ≥ 1/d or a < 1/d respectively. The
division algorithms to be presented evaluate αx+β by
executing SHR.U(XMA.HU(a,x,b),m), where a, b, and
m are integers such that

α = a × 2−m

β = b × 2−m
Because β is always α or 0, it follows that b is always
a or 0. The sections below examine two ways to
compute a and decide whether b=a or b=0.

4.1. Using integer arithmetic

Algorithm 1 employs strictly integer arithmetic to

x/d

(x+1)/d

cx
cx+c

1

d 1
Fig. 1. Linear bounds for approximating x/d
for integral x and d.

0
x

c

y

2n−1

h(x) = [c2n/(2n−1)]x

cx

cx+c

g(x) = [c(1−2-n)](x+1)

c(1−2-n)

Fig. 2. Linear approximations for x/d must
lie within the gray parallogram. The upper
side is open; the other three are closed.

compute a and b. The pseudo-code notation is adapted
from [6]. When d=2m, Algorithm 1 reduces the
multiply-add to an identity operation (per Corollary 4),
and applies the obvious right shift to do the division by
a power of 2. When d≠2m, the algorithm computes the
scaled and rounded-down reciprocal approximation t,
and then decides whether to use the formula ax or the
formula ax+a.

Algorithm 1 requires dividing a double word by a
single word to compute t. The rest of the arithmetic is
single-word arithmetic. Notably, it computes r from t
and d using only n-bit unsigned arithmetic, as indicated
by “mod 2n”. The low n bits suffice, because the test
computes an n-bit residue described by Lemma 5
below.
Lemma 5 In Algorithm 1, r=d(t+1)−2m+n.
Proof: Let r′ = d(t+1)−2m+n and show that r′=r.
Because t arises from integer division by d, it is
constrained by d > 2m+n−dt ≥ 0. Multiply these
expressions by −1 and add d to get transformed bounds
–d+d < dt−2m+n+d ≤ 0+d, which after simplification
and substitution, simplifies to 0 < r′ ≤ d. Because
d < 2n, the former bounds imply 0 < r′ < 2n. Thus
r = [d(t+1)−2m+n] mod 2n = d(t+1) mod 2n, the last
equality arising from the fact that 2m+n mod 2n = 0. �

The correctness of Algorithm 1 rests on the way it
uses r to keep the relative error ε of a within the ranges
required by Theorems 2 and 3, as shown respectively
by Theorems 6 and 7 below.
Theorem 6 If r ≤ 2m in Algorithm 1, then for all

integers x such that 0 ≤ x ≤ 2n−1, x/d = (t+1)x/2m+n.
Proof: Let c = 1/d. Define α such that α = (t+1)/2m+n
and define ε implicitly as the solution to α = c(1+ε).
The solution is ε = α/c−1 = αd−1 = ((t+1)/2m+n)d−1.
Refactor to get ε=[d(t+1)−2m+n]/2m+n. By Lemma 5,
the bracketed expression is r, thus ε=r/2m+n, which
combined with the premise r ≤ 2m implies ε ≤ 1/2n.
The conclusion follows from Theorem 2. �
Theorem 7 If r ≥ 2m in Algorithm 1, then for all
integers x such that 0 ≤ x < 2n, x/d = (tx+t)/2m+n.
Proof: Let c = 1/d. Define α that α = t/2m+n and
define ε implicitly as the solution to α = c(1+ε).
Solving for ε yields ε = α/c−1 = αd−1 = ((t/2m+n)d−1.
Refactor to get ε = [dt−2m+n]/2m+n. Use the definition
r=d(t+1)−2m+n from Lemma 5, and substitute for r in
the premise r ≥ 2m to get d(t+1)−2m+n ≥ 2m. Subtract d
from both sides to get dt−2m+n ≥ 2m−d. Because
m=log2(d) and d≠2m, it follows that 2×2m > d, and
thus 2m−d > − (2m). Combine the inequalities to get
dt−2m+n > − (2m). Divide both sides by 2m+n to get
[dt−2m+n]/2m+n > −1/2n. Thus ε > −1/2n. The
conclusion follows from Theorem 3. �

The obvious algebraic equality ax+a = a(x+1)
exposes a certain poetic symmetry in Algorithm 1:
“round up the reciprocal, or round up the dividend”.
However, a(x+1) cannot generally be used for
implementation, because x+1 might overflow, unless
particular circumstance constrains x<2n−1.

The last detail is to show that a<2n, otherwise a
might not fit in n bits.
Theorem 8 In Algorithm 1, a<2n.
Proof: The theorem is trivial when d=2m, because then
a=2n−1. If d≠2m, then 2m+1 ≤ d < 2n, with the
following consequences:

2m +1 < 2n
0 < 2n − 2m + 1 Subtract 2m +1

2m+n < 2m+n + 2n −2m +1 Add 2m+n
2m+n < (2n −1) (2m +1) Factor

2m+n/(2m +1) < 2n −1 Divide by (2m +1)
2m+n/(2m +1) + 1 < 2n Add 1
Combine with the definition of t in Algorithm 1, and
the prior observation that 2m+1 ≤ d, to derive
t+1 ≤ (2m+n /d)+1 < 2n. Finally, a is either t or t+1, so
by the previous inequality, a < 2n. �

4.2. Using floating-point Arithmetic

Algorithm 1 is fine for compile-time constant
divisors, but for loop-invariant divisors, it may be quite
expensive, because it requires an integer division of a
2n-bit dividend by an n-bit divisor. Granlund and
Montgomery [6] note a similar drawback, and that the
cost of the calculations outside the loop might swamp
any savings inside the loop. This section describes a

 Inputs: uword d and n, with n≥1 and 1≤d<2n
int m := log2(d);
uword a, b;
if d=2m then

a := 2n−1;
b := 2n−1;

else
uword t := (2m+n)/d;
uword r := ((t×d+d) mod 2n;
if r ≤ 2m then

 a := t+1;
 b := 0;

else
 a := t;

b := t;
endif

endif

Emit SHR.U(XMA.HU(a,x,b),m)

Algorithm 1. Unsigned integer division via
multiply-add, using integer arithmetic to pick
a and b.

variation that overcomes this objection when
appropriate floating-point hardware is available.

Algorithm 2 applies floating-point arithmetic to
compute a, b, and m when n=64. It is specialized to
n=64 because it iteratively approximates 1/d with a
custom iteration sequence that depends upon n and the
machine architecture. The sequence, adapted from a
double-extended precision division sequence [8],
employs a reciprocal approximation instruction to
initialize an initial estimate y0, and fused multiply-add
operations to refine that estimate. In the style of [8],
potentially concurrent multiply-add operations are
shown on the same line. The sequence is typical on
machines that omit direct support for floating-point
division. If the hardware has direct support, then 1/d
rounded-to-nearest to n bits of significance may be
used instead.

Algorithm 2 presumes that the exponent range is
large enough to prevent exponent underflow or
overflow. The value f approximates 1/d with a relative
error ε of at most 2−64 [8]. The test (−d×f+1)r n ≤ 0
determines whether this error is positive or negative;
the particular form of the test allows it to be performed
by a fused multiply-add. The correctness of Algorithm
2 follows from Theorems 2 and 3.

4.3. Signed division

There does not appear to be any benefit to using the
multiply-add approach for signed division that rounds
towards zero. Constructing a diagram similar to Fig. 1
for signed division reveals that the approximating
function must be piecewise linear, with separate pieces
for positive and negative x. Prior methods employing
multiplication by a rounded up reciprocal suffice
because each piece spans a range of 2n−1, and thus an n-
bit multiplier suffices [6].

However, in applications that require rounding the
quotient towards −∞ , a linear approximation
(ax+b)/2m does offer an improvement when the
divisor is unsigned. Algorithm 3 shows such an
algorithm. Remarkably, no conditional logic is
necessary to compute b from a. This simplification is
offset by a complication: the computation ax+b needs
to be performed with an unsigned a and signed x,
which is not in the assumed instruction repertoire.
Fortunately, because the most significant bit of a is
always 1, a two’s complement reinterpretation a′ of a
has the algebraic value a′ = a−2n, hence
XMA.HS(a,x,b) = ((a−2n)x+b)/2n = (ax +b)/2n − x.
The algorithm corrects for the “−x” error by adding x
back.

Algorithm 3 is similar to Algorithm 2, but has a
different iteration sequence that delivers a more
accurate reciprocal approximation f that is 1/d rounded

 Inputs: uword d, with 1≤d<264
uword a, b;
real f
if d=1 then

f := 1−2−64
else

y0 := (1/d)(1+δ), |δ|≤2−8.886

e0 := (−d×y0+1)r n
e1 := (e0× e0)r n e2 := (e0× e0+ e0)r n
y1 := (e2×y0+y0) r n e3 := (e1× e1+ e0)r n
y2 := (e3×y1+y0)r n
e4 := (−d×y2+1)r n
f := (e4×y2+y2)r n

endif
m := (BIAS−1) − EXPONENT(f)
a := SIGNIFICAND(f)
if (−d×f+1)r n ≤ 0 then
 b := 0;
else

b := a;
endif

Emit SHR.U(XMA.HU(a,x,b),m)

Algorithm 2. Unsigned integer division via
multiply-add, using floating-point arithmetic
to pick the a and b.

 Inputs: uword d, with 1≤d<264
uword a, b;
real f
if d=1 then

f := 1−2−64
else

y0 := (1/d)(1+δ), |δ|≤2−8.886

e0 := (−d×y0+1)r n
y1 := (e0×y0+y0) r n e1 := (e0× e0)r n

y2 := (e1×y1+y1)r n
e2 := (−d×y2+1)r n
y3 := (e2×y2+y2)r n
e3 := (−d×y3+1)r n
f := (e3×y3+y3)r n

endif
m := (BIAS−1) −EXPONENT(f)
a := SIGNIFICAND(f)
b:= a/2

Emit SHR.S (x+XMA.HS(a,x,b), m)

Algorithm 3. Computing x/d for a 64-bit
signed x and unsigned d.

to nearest, except when d=2n−1 [4]. Increased
accuracy is used because the computation b:=a/2
introduces further truncation error that must be
accounted for quite carefully. Algorithm 3 computes
the integer quotient x/d via the formula λ(x), where
λ(x) = c(1+ε)x + (c/2)(1+ε+φ). The relative error ε
results from approximating the exact reciprocal c=1/d
with a2−m. The relative error φ results from
approximating c/2 with a/22−m. The correctness of
Algorithm 3 follows from Lemma 1 if in Fig. 3, the
line λ(x) stays within the gray parallelogram over the
range 2n−1 ≤ x ≤ 2n−1−1. The theorems below bound ε
and φ, and then apply those bounds to prove 0≤∆0<1
and 0≤∆1<1, which implies that λ(x) is constrained as
necessary.

Though Algorithm 3 is specific to n=64 because of
the particular iterations used to approximate 1/d, the
proofs below depend only on the assumption that n≥1
and f is an n-bit round-to-nearest approximation of
1/d, with extra latitude granted in two cases. When
d=1, the “one off” approximation f=2n−1 is allowed, or
when d=2n−1, f may be rounded down instead of to
nearest. Thus Algorithm 3 can be adapted to other
values of n simply by computing f suitably.

The rest of this section details the necessary
theorems.
Theorem 9 Define ε implicitly by the equation
f=(1/d)(1+ε), where f and d are from Algorithm 3.
Then –(2−n) ≤ ε ≤ 2−n−2−2n+1.
Proof: Suppose f is the round-to-nearest floating-point
approximation of 1/d with an n-bit significand.
Cornea-Hasegan, Golliver, and Markstein show that an
integer quotient of two n-bit integers cannot be
arbitrarily close to the midpoint between two n-bit
significands, and the closest-to-midpoint case occurs
for 1/d when d=2n–1 [4]. The rounded-up n-bit
floating-point approximation f of this value is
2−n+2−2n+1. Since ε = fd−1, this implies the bound |ε| ≤

(2−n+2−2n+1)(2n–1)−1 = (1–2−n+2−n+1−2−2n+1)−1 =
2−n−2−2n+1.

The extra latitude allowed for the cases d=1 and
d=2n–1 results in a negative relative error bounded by
ε ≥ −(2−n). �
Theorem 10 Define φ such that b=(1/d)(1+ε+φ)/2,
where b and d are from Algorithm 3, and ε is defined
as in Theorem 9. Then −(2−n+1) < φ ≤ 0. Furthermore,
if ε < −(2−n−2−2n+1) then φ ≥ −(2−n).
Proof: The computation a/2 is equivalent to zeroing
the least significant bit in a, which introduces an
absolute error of 0 or –1, and then halving that result
exactly. Thus the relative error φ introduced cannot be
positive. Since a has n bits with a leading bit of 1, and
a must be odd for the zeroing to have any effect, the
smallest value of a for which ε is non-zero is a=2n−1+1.
Thus the relative error is bounded from below by φ ≥
−1/(2n−1+1) > −(2−n+1).

The “furthermore” portion of the theorem follows
from the observation that ε < −2−n+2−2n+1 occurs only in
two situations: when d=1, or when d=2n−1 and f is 1/d
rounded down instead of to nearest. When d=1, the
value f is 1−2−n. The least significant bit of f is a one,
which when zeroed introduces an absolute error of
−2−n. Converting this to a relative error (relative to 1)
yields φ = −2−n. When d=2n−1 and f is 1/d rounded
down, then f=2−n, which has a zero in the least
significant bit, and thus φ=0 in that case. �
Theorem 11: In Fig. 3, 0≤∆0<1.
Proof: From consideration of the geometry in Fig. 3,
the following algebraic manipulations yield an
equation for ∆0.

c∆0 = λ(x)−cx where x= –(2n−1)
c∆0 = λ(–(2n−1))−c(–(2n−1))
c∆0 = c(1+ε)(− (2n−1)) + (c/2)(1+ε+φ) – c(–(2n−1))
∆0 = − (2n−1) − ε(2n−1) + 2−1 + ε2−1 + φ2−1 + (2n−1)
∆0 = ε(−2n−1+2−1) + φ2−1 + 2−1

A lower bound on ∆0 is implied by the upper bound
ε ≤ 2−n−2−2n+1 and lower bound φ > –(2−n+1). Plugging
these bounds into the equation for ∆0 yields ∆0 >
(2−n−2−2n+1) (−2n−1+2−1) + (−2−n+1)2−1 + 2−1 =
(−2−1+2−n−1+2−n−2−2n) −2−n +2−1 = 2−n−1−2−2n. The final
right side is non-negative for n≥0.

An upper bound on ∆0 is implied by the lower
bound ε ≥ –(2−n) and upper bound φ ≤ 0. Plugging
these inequalities into the equation for ∆0 derives the
following: ∆0 ≤ (–(2−n))(−2n−1+2−1) + (0)2−1 +2−1 =
(2−1 − 2−n−1) + (2−1) = 1−2−n−1 < 1. �
Theorem 12: In Fig. 3, 0≤∆1<1.
Proof: From consideration of the geometry in Fig. 3,
the following algebraic manipulations yield an
equation for ∆1.

c∆1 = λ(x)−cx where x=2n−1−1

0
x

y

2n−1−1

cx

cx+c

−(2n−1)

λ(x)

c∆0

c∆1

λ(x)=c(1+ε)x+c(1+ε+φ)/2

Fig. 3. Construction used in proof of Algorithm 3.

c∆1 = λ(2n−1−1)−c(2n−1−1)
c∆1 = c(1+ε)(2n−1−1) + (c/2)(1+ε+φ) – c(2n−1−1)
∆1 = (2n−1−1) + ε2n−1−ε + 2−1 + ε2−1 + φ2−1 – (2n−1−1)
∆1 = ε(2n−1−2−1) + φ2−1 + 2−1

A lower bound on ∆1 is implied by the lower bounds
on ε and φ. The going gets tricky here, because the
special case where ε < −(2−n−2−2n+1) needs the special
bound on φ from Theorem 10.

For the usual case, the lower bounds are ε ≥
−(2−n)+2−2n+1 and φ ≥ −(2−n+1). Plugging these
inequalities into the equation for ∆1 yields ∆1 >
(−(2−n)+2−2n+1)(2n−1−2−1) + (−(2−n+1))2−1 + 2−1 =
(−(2−1)+2−n−1+2−n−2−2n) −2−n + 2−1 = 2−n−1−2−2n. Thus
∆1 > 2−n−1−2−2n. The right side is non-negative for n≥0.

For the special case ε < −(2−n)+2−2n+1, Theorem 10
says that ε ≥ −(2−n) and φ ≥ −(2−n). Plugging these
inequalities into the equation for ∆1 yields ∆1 ≥
(−2−n)(2n−1−2−1) + (−(2−n))2−1 + 2−1 = (−2−1+2−n−1)
−2−n−1 + 2−1= 0. Notice that there is no slack to spare.

An upper bound on ∆1 is implied by the upper
bounds ε ≤ 2−n−2−2n+1 and φ ≤ 0. Plugging these
inequalities into the equation for ∆1 yields ∆1 ≤
(2−n−2−2n+1)(2n−1−2−1) + (0)2−1 + 2−1 =
(2−1−2−n−1−2−n+2−2n) + 2−1 = 1−[3(2−n−1)−2−2n]. The
expression [3(2−n−1) − 2−2n] is non-negative for positive
n, thus ∆1< 1. �

5. Performance analysis

For hardware that supports the necessary operations,
the multiply-add approach to unsigned division permits
shorter and faster instruction sequences for compile-
time divisors than approaches that depend exclusively
on the “round up” or “round down” methods, because
it never has to synthesize n+1 bit arithmetic.
Furthermore, it is fast enough to make hoisting of run-
time loop-invariant divisors practical on machines with
the necessary support. This section analyzes these
advantages in detail when implemented on the

Itanium® 2 processor.
Latencies of various instruction sequences can vary

depending upon assumptions, so the following uniform
assumptions are made when comparing latencies.
Typically, formation of constants can be anticipated
and hoisted to earlier program points, and thus do not
contribute to critical paths in a program. Latencies will
be measured between when the dividend x is known
and the quotient y is produced. The Itanium®
architecture has the further idiosyncrasy of performing
general integer multiplication in the floating-point unit,
thus necessitating extra instructions to move integer
operands to and from the floating-point unit. The
latencies measured below assume that x starts out and y
ends up in an integer register.

The explicitly parallel Itanium® architecture allows
the instructions for checking for divide-by-zero to be
issued in parallel with the rest of the instruction
sequence. Hence, such checking adds no latency.

For divisors known at compilation time, Algorithms
1 and 2 deliver instruction sequences that are at least as
fast, and sometimes faster, than the sequences
delivered by exclusive use of the round-up or round-
down methods, because those methods sometimes
require synthesis of n+1 bit multiplication [6] [7]. Fig.
4 lists some sequences for a 64-bit divide by 7. The
notation “;;” delimits groups of instructions that can be
issued simultaneously. Here, the round-up method
needs a 65-bit reciprocal approximation. The
multiplication instruction handles 64 bits, and the
remaining sub/shr/add sequence synthesizes the extra
bit. The sequence’s latency from x to y is 19 clocks. In
contrast, round-down method delivers a sequence
requiring only 16 clocks, a 15.8% reduction. For some
other divisors, the situation is reversed, and it is the
round-down algorithm that needs 65 bits and thus a
longer sequence to synthesize the missing bit.
Algorithm 1 or 2 always delivers the shorter 16-clock
sequence.

// Code emitted by round-up method
movl r10=0x2492492492492493 ;;
setf.sig f8=r10
setf.sig f7=x ;;
xma.hu f6=f8,f7,f0 ;;
getf.sig r9=f6 ;;
sub r8=x,r9 ;;
shr.u r3=r8,1 ;;
add r2=r9,r3 ;;
shr.u y=r2,2

// Code emitted by round-down method.
movl r10= 0x9249249249249248 ;;
setf.sig f8=r10
setf.sig f7=x ;;
xma.hu f6=f8,f7,f8 ;;
getf.sig r9=f6 ;;
shr.u y=r9,2

Fig. 4. 64-bit computation of y=x/7 on Itanium® architecture

Algorithms 2 is particularly powerful because not
only is the loop-variant sequence shorter than the
worst-case sequence required by the round-up or
round-down method, but the portion that depends only
upon the divisor is relatively simple and fast. Consider
an i-iteration loop with a loop-invariant divisor. The
minimum latency instruction sequence for 64-bit
unsigned integer division on an Itanium® 2 processor
takes 43 clocks [3]. However, this sequence is not
ideal for hoisting loop-invariant divisors because it
uses the dividend early. A better approach is to use the
minimum throughput sequence [3], which though it
takes 47 clocks, uses the dividend relatively late. This
sequence splits into a 26-clock loop-invariant (top of
Fig. 5) and 31-clock loop-variant portion. For a loop
with i iterations, the total latency is 26+31i clocks. In
contrast, Algorithm 2 splits such that the total latency
is 45+16i. (The loop-variant portion is shown at the
bottom of Fig. 5.) Thus for as few as 2 loop iterations,
Algorithm 2 comes out ahead (77 clocks vs. 88 clocks
for i=2), and is only 7% slower even for a one-trip
loop (61 clocks vs. 57 clocks for i=1). Furthermore,
zero-trip loops are not ordinarily an issue, because
when hoisting invariants, compilers typically insert a
zero-trip guard that branches around computation of
loop invariants, so the approach loses only for one-trip
loops.

Because Algorithm 2 comes out ahead for even as
few as two quotients that share a divisor, it can be
profitable in situations besides loops. For instance, it
can be applied where two subexpressions share a
common divisor. Another application is hash tables,
where hash functions of the form “... mod d” occur,
where d is the size of the table. Algorithm 2 can
quickly recompute a, b, and m when d changes, thus
allowing table lookups to apply the concise multiply-
add formula.

6. Related work

Algorithm 1 is similar to previous work, but there is
literally “a bit” (but a crucial bit) of difference.
Previous work [1][6] based on rounding up the

reciprocal approximation requires that log2(d) be
rounded up, thus requiring up to n+1 bits to represent
the multiplier a. Previous work [7] based on rounding
down the reciprocal approximation also requires an
n+1 bit multiplier in the worst case. Viewed from the
perspective of Fig. 2, both methods try to draw a line
from the left side to the right side of the gray
parallelogram. But “round up” methods are
constrained to make the line’s slope at least c, and
“round down” methods require the line’s slope to be no
more than c. In either case, n-bit multipliers quantize
the slope of the line too coarsely to always keep it
inside the parallelogram. By choosing between “round
up” and “round down”, the present work requires only
an n-bit multiplier. The “missing” bit is the choice.

Magenheimer et al [7] give bounds on b when using
a general formula (ax+b)/z, and recommend using b
= a+(z mod d)−1 when d does not divide exactly into
z. Algorithm 1, for which z=2n, uses the same value
for b when (z mod d) = 1, but otherwise uses a smaller
value, namely a, that is smaller than a+(z mod d)−1.
Using b=a has an advantage when the divisor is a
compile-time constant: reusing a rather than creating a
distinct constant b avoids further raising register
pressure. Of course if (z mod d) ≥ d/2, Algorithm 1
uses the “round up” approach instead, in which case
b=0.

Similar work is found in [2], which also suggests
using a formula of the form ax+b/2m, where b=0 or
b=a. However, that work has a much slower algorithm
for choosing which formula to use, and no proof of
correctness is given. The algorithm tries the round up
method [6], and if the resulting a does not fit in n bits,
tries to produce an n-bit a using the round down
method [7]. If the round-down method fails, then as a
last resort it sets a to a rounded up scaled reciprocal
approximation and b is set to a. The tests for deciding
which formula to use are much more complicated than
the current work, making it an impractical approach for
loop-invariant divisors. Furthermore, its last resort
formula is always wrong for the case x=d−1. (The
approximation will compute (a(d−1)+a)/2m, which
simplifies to (ad)/2m. Because a was rounded up,

// Adaptation of maximum throughput
// sequence from [3].
setf.sig f6=x ;;
fnorm.s1 f6=f6 ;;
fma.s1 f9=f8,f6,f0 ;;
fnma.s1 f7=f7,f9,f6 ;;
fma.s1 f8=f7,f8,f9 ;;
fcvt.fxu.trunc.s1 f8=f8 ;;
getf.sig y=f8

// Sequence from Algorithm 1 or 2.
setf.sig f7=x ;;
xma.hu f6=a,f7,b ;;
getf.sig r9=f6 ;;
shr.u y=r9,m

Fig. 5. Loop-variant portions of instruction sequences for 64-bit unsigned division.

this formula is doomed to deliver an answer of 1, not
the correct quotient of 0.) The probable reason that
the erroneous formula goes undetected is that it is used
only if both the round-up algorithm and round-down
algorithm fail to find an n-bit a, which as the present
work makes clear, can never occur, and thus the “last
resort” in the method is simply unnecessary. (As a
sanity check of the proofs, the algorithm in [2] for
computing a, b, and m for 32-bit divisors was
subjected to exhaustive testing, and indeed the
erroneous formula is never used.) A more recent
edition (March, 2004) of [2] removes the “last resort”,
but without any proof that the remaining cases cover
all situations correctly.

A quite different approach is to eliminate division
via strength reduction [9]. That approach is limited to
situations where the operands are constants or linear
functions of loop indices. However, combining
strength reduction with Algorithm 1 might yield further
improvement by reducing the multiply-add
computation ax+b to an induction variable when the
numerator x is itself an induction variable.

7. Summary

This paper proves that unsigned integer division by
a compile-time or loop-invariant divisor can be
accomplished by an n-bit integer multiply-add (that
yields a 2n-bit result) followed by a right shift. This is
an improvement over previous methods that required
n+1 bit arithmetic in the worst case. The necessary
operands that depend on the divisor can be calculated
quickly, making the technique economical for hoisting
loop-invariant divisors even for short loops and
quotients with shared divisors. Fused floating-point
multiply-add instructions have a multitude of uses.
Now there is one more reason for supporting its lesser-
known integer cousin.

8. Acknowledgements

Marius A. Cornea-Hasegan enlightened me on some
mysteries of division on the Itanium® architecture.
Clay Breshears picked nits from an earlier draft. An
anonymous referee suggested using numerical

examples for demonstration, and pointed out how to
tighten the iteration sequence in an earlier version of
Algorithm 2.

9. References

[1] R. Alverson, “Integer Division Using Reciprocals,”
Proceedings of the 10th IEEE Symposium on Computer
Arithmetic (Grenoble, France), June, pp. 186-190.

[2] AMD, Software Optimization Guide for AMD Athlon™
64 and AMD Opteron™ Processors, September 2003,
pp. 186-189.

[3] M. Cornea, J. Harrison, C. Iordache, B. Norin, and S.
Story, Division, Square Root and Remainder Algorithms
for the Intel® Itanium™ Architecture, November 2003.

[4] M. Cornea-Hasegan, R. Golliver, and P. Markstein,
“Correctness Proofs Outline for Newton-Raphson Based
Floating-Point Divide and Square Root Algorithms,”
IEEE Symposium on Computer Arithmetic (Adelaide,
Australia), 1999 pp. 96-105.

[5] D. Goldberg, “What Every Computer Scientist Should
Know About Floating-Point Arithmetic,” ACM
Computing Surveys 23(1), March 1992, pp. 5-48.

[6] T. Granlund and P. Montgomery, “Division by Invariant
Integers Using Multiplication,” Proceedings of the ACM
SIGPLAN 1994 conference on Programming language
design and implementation (Orlando Florida), pp. 61-
72.

[7] D. Magenheimer, L. Peters, K. Pettis, and D. Zuras,
“Integer multiplication and division on the HP Precision
Architecture,” Proceedings Second International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II). ACM,
1987. Published as SIGPLAN Notices, Volume 22, No.
10, October, 1987, pp. 90-99.

[8] P. Markstein, IA-64 and Elementary Functions: Speed
and Precision, Prentice-Hall, 2000, p. 123.

[9] J. Sheldon, W. Lee, B. Greenwald, and S. Amarasinghe,
“Strength Reduction of Integer Division and Modulo
Operations,” Languages and Compilers for Parallel
Computing, 14th International Workshop (Cumberland
Falls, KY, August 1-3, 2001), pp. 254-273.

