
Floating-point L2-approximations to functions

Nicolas Brisebarre
Université de Saint-Étienne - LaMUSE,

23, Rue Dr Paul Michelon, 42023 Saint-Etienne Cedex 2,
nicolas.brisebarre@ens-lyon.fr

Guillaume Hanrot
INRIA - LORIA, Projet CACAO

Bâtiment A, 615, rue du jardin botanique, F-54602 Villers-lès-Nancy cedex,
hanrot@loria.fr

Abstract

In the present paper, we investigate the ap-
proximation of a function by a polynomial with
floating-point coefficients; we are looking for the
best approximation in the L2 sense. Finding a
best polynomial L2-approximation with real coef-
ficients is an easy exercise about orthogonal pro-
jections. However, truncating the coefficients to
floating-point numbers, which is needed for fur-
ther computations, makes the approximation way
worse. Hence, we study the problem of computing
best approximations under the constraint that co-
efficients are floating-point numbers. We show that
the corresponding problem is NP-hard, by reduc-
tion to the CVP problem.

We investigate the practical behaviour of ex-
act and approximate algorithms for this problem.
The conclusion is that it is possible in a short
amount of time to obtain a relative or absolute best
L2-approximation. The main applications are for
large dimension, as a preliminary step of finding
L∞-approximations and for functions with large
variations, for which relative best approximation
is by far more interesting than absolute.

1. Introduction

Computing elementary or special functions is a
central topic in modern computer arithmetic. One
common way of doing this is, given a continuous
real-valued function f , to split the domain of f in
sufficiently many small intervals; and then, over
each of those intervals I , to compute a polynomial

PI such that the distance between PI and f over
I is less than the accuracy expected. That distance
is usually measured with the supremum norm (or
L∞ norm or absolute error)

||PI − f ||∞ = sup
x∈I
|PI(x)− f(x)|,

or the relative error

||PI − f ||rel = sup
x∈I

1
|f(x)| |PI(x)− f(x)|.

The classical theorem of Stone-Weierstraß (see
eg. [5]) tells us that, for any ε > 0, we can find a
polynomial such that maxx∈I ||f(x)−P (x)||∞ ≤
ε, but it gives no way of computing it. Remes’ al-
gorithm [18] gives an efficient way of computing
this polynomial; however, this best approximant
will not have machine number coefficients, except
in very special cases. Of course, one can choose to
round the coefficients of the polynomial computed
by Remes’ algorithm so that they fit the imposed
finite-precision arithmetic format but this is not at
all optimal: we are interested in getting the best
accuracy possible with an approximation having
the least degree and the smallest number of bits
for representing the coefficients possible and this
naive rounding process may give very poor results
in that direction. A recent work [4] has made pro-
gresses towards the computation of best approxi-
mations with machine number as coefficients.

In this paper, we propose to investigate approx-
imation by polynomials with machine-number as
coefficients, but in the L2 sense, ie. we are trying
to minimize an expression

||f − PI ||2 =
(∫

I

(f − PI)2dµ

)1/2

1

for some positive measure dµ over I . Not only
interesting in itself, a motivation for studying it is
that very good L2-approximations may constitute
good approximations with respect to L∞ norm or
relative error. This is very useful since in several
applications, one is not interested in getting the
best approximation but rather a good enough one
and also since a better estimate beforehand of the
optimal error may to lead to a significant speedup
of the method presented in [4].

Roadmap of the paper. Section 2 discusses
how to find best L2 weighted approximations with
real coefficients; this includes best relative approx-
imations. In Section 3, we introduce the problem
we address in that article. In Section 4, we shall
prove that finding the best polynomial (or, more
generally, approximation over any family of L2-
functions) with machine numbers as coefficients is
a (general) instance of the so-called CVP problem.
We shall review briefly algorithms to solve CVP
and give practical results in Section 5. Finally, we
shall give some examples and compare the L2/L∞

approaches in Section 6, before concluding our pa-
per.

2. L2-approximation

Let I be an interval of R, and dµ a positive mea-
sure on I; the reader not aware of measure the-
ory can safely assume that dµ = w(x)dx for some
positive weight function w(x). We define the clas-
sical scalar product on H = L2(I, dµ) as

(f |g) =
∫

I

f(t)g(t)dµ.

Using a weight function w(x) allows one to
“fine-tune” the accuracy of the approximation in
some parts of the interval. For instance if I =
[−a, a], the classical kernel w(x) = (a2 − x2)1/2

will make the approximation sharper in the cen-
ter of the interval, and more sloppy close to the
bounds.

Let now (ei)0≤i≤n be a linearly independent
family of elements of H , and put E = ⊕n

i=0Rei.
The following Lemma is elementary.

Lemma 1 Let f ∈ H . The element pE(f) of E
which is closest to f in the L2 sense has coordi-
nates over the basis (ei) given by G−1V , where
G is the Gram matrix ((ei|ej))0≤i,j≤n and V the
vector ((f |ei))0≤i≤n.

In this classical setting, the problem under con-
sideration is thus easy; in the sense that it is re-

duced to O(n2) computations of integrals and one
linear system solution.

In the sequel, we shall denote by dE(f) :=
d(f,E) the L2 distance from f to the space E i.e.
(
∫

I
(f − pE(f))2dµ)1/2. Note that this is a lower

bound for the L2 distance of f to any element of
E.

Remark 1 The “abstract” point of view devel-
oped above has the interest of allowing applica-
tions which are not restricted to finding best ab-
solute polynomial approximations. This classi-
cal setting is obtained by taking ei = xi, and
dµ = dx the Lebesgue measure, and the reader
should probably keep this in mind as a roadmap.

However, dealing with the problem in general-
ity allows one to find approximation by trigono-
metric polynomials by taking ei = cos(ix), or to
find polynomial approximation using only certain
monomials by taking ei = xki where (ki)0≤i≤n is
a finite strictly increasing sequence of natural in-
tegers, or to find best relative polynomial approx-
imations to a function f , over an interval where
f has no zero over I by taking dµ = dx/f(x)2,
since then∫

I

(P (x)− f(x))2dµ =
∫

I

(
P (x)
f(x)

− 1
)2

dx.

These generalizations are obtained with the
same algorithm; one does just need to compute
slightly different integrals.

3. Floating-point approximations

In the context of floating-point computations,
however, approximations such as pE(f) have a
major drawback: their coefficients are (exact) real
numbers. Using such an approximation in the con-
text of floating-point evaluation is a disaster, since
regardless of the intrinsic quality of the approx-
imation, a truncation is performed on the coeffi-
cient, which often introduces an error larger than
the approximation itself.

In order to avoid such a truncation, a better idea
is to incorporate this constraint in the search for an
optimal approximation, as in [4]. In this paper we
are thus interested in finding the best approxima-
tion with “floating-point numbers” as coefficients.

We model our problem FP-appr in the fol-
lowing way:

FP-appr((ei)0≤i≤n, f , dµ, I). Given
an interval I , a positive measure dµ over

2

I , functions (ei)0≤i≤n ∈ L2(I, dµ), a
function f ∈ L2(I, dµ), find a vector
P = (pi)0≤i≤n ∈ Zn+1 which mini-
mizes ∥∥∥∥∥

n∑
i=0

piei(x)− f(x)

∥∥∥∥∥
2

.

Note that it is easily proved that such a P ex-
ists. To see why this amounts to approximate by
floating-point numbers, refer to the case where
ei(x) = xi2−εi for some integers εi; in that case,
we get an approximation by polynomials with co-
efficients of the form mi · 2−εi with mi ∈ Z. The
choice of εi in practical applications allows one to
control the size of the mi, see Subsection 5.3.1.

4. Reduction to CVP

The problem described above can be restated
in terms of lattices. Let L be the set {∑n

i=0 ui ·
ei, ui ∈ Zn+1}. Then L, equipped with the re-
striction of the scalar product (·|·) is a lattice of E
of maximal rank, and the problem under consid-
eration amounts to find the vector of L which is
the closest to the vector with coordinates the coef-
ficients of pE(f) in the basis ei. In the sequel, we
shall identify without notice a polynomial and the
vector of its coefficients in a given basis, usually
made clear by the context.

This problem is called CVP in the literature
dealing with lattices, see e.g. [1] for a survey on
the topic. In the present case, the problem is for-
mulated in Gram form. Indeed, the classical form
is

CVP(M , v). Given an n × n matrix M
and a vector v ∈ Rn, find the vector
x ∈ Zn such that |Mx− v|2 is minimal,
where |(yi)1≤i≤n|2 = (

∑n
i=1 y2

i)1/2.

whereas, in the present situation, we are try-
ing to minimize the distance between a point of
the lattice and the orthogonal projection of f on
⊕n

i=0Rei. Lemma 1 shows that the latter is given
by G−1V . Since the L2-norm of any vector W of
⊕n

i=0Rei is W tGW , we deduce our CVP-Gram
form:

CVP-Gram(G, V). Given an n×n sym-
metric definite positive matrix G and a
vector V ∈ Rn, find the vector X ∈
Zn which makes (X − G−1V)tG(X −
G−1V) minimal.

The first form easily reduces to the second one,
by taking G = M tM and V = Gv. Conversely,
the second form can be reduced, at least numer-
ically, to the first, by computing a Cholesky de-
composition (a “square root”) of the matrix G.

The CVP problem is a difficult problem, NP-
hard even when allowing quite large approxima-
tion factors. We proceed to prove that this NP-
hardness implies the NP-hardness of our problem
FP-appr. In fact, we now prove that our problem
is indeed a general CVP-Gram, which means that
any CVP instance can be reduced to it. We start by
giving a precise formulation of the problem we are
studying. The formulation given below is actually
a bit less general than above (we restrict the ei and
f to be polynomials and assume that the measure
dµ is given by its first 2n+1 moments), in order to
deal with objects that have a finite representation.

Proposition 1 Let (u0, . . . , un) be n + 1 lin-
early independent vectors in Rn+1, L the lat-
tice they generate, and v ∈ Rn+1 a vec-
tor. There exist a sequence of polynomi-
als (Pi)0≤i≤n+1 with rational integer coeffi-
cients, a sequence (µi)0≤i≤2n of rational num-
bers such that CVP-Gram(G, V) reduces to
FP-appr((Pi)0≤i≤n, Pn+1, dµ, R) where dµ is
a positive measure over R with (µi)0≤i≤2n as its
first 2n + 1 moments. Further, all those polynomi-
als can be computed in polynomial time.

Proof. Up to a (rational) change of basis, we can
assume that the matrix (gij)0≤i,j≤n is diagonal.
This is achieved in practice by Gram-Schmidt or-
thogonalization, which can be performed (over Q)
in polynomial time. We are thus looking for or-
thogonal polynomials Qi for a measure, with given
norm

√
gii. We start with the polynomials and

build the moments of the corresponding measure.
First, put gkk = 1 for n + 1 ≤ k ≤ 2n. Put

λ0 = g00 and λi = gii/gi−1,i−1 for i = 1, . . . , 2n,
and define Qi by the recurrence relation

Q0 = 1, Q1 = x,Qi+1 = xQi − λiQi−1

for i = 1, . . . , 2n. Put µ0 = λ0. Then, from∫
R

Q0Q1dµ = 0 =
∫

R

xdµ,

we deduce that µ1 = 0.
More generally,

0 =
∫

R

QiQ0dµ =
∫

R

xQi−1dµ− λi

∫
R

Qi−2dµ,

3

which, by expanding the polynomials Qi, al-
lows to find µi in terms of the previous µj , for
all i = 1, . . . , 2n. Then, for k ≤ l − 1
one can rewrite xkQl(x) as a linear combina-
tion of Ql−k, . . . , Ql+k, hence

∫
R

xkQl(x)dµ =
0, which shows that Ql is indeed orthogonal to
Q0, . . . , Ql−1.

Since the gii are positive, the bilinear form in-
duced by µ on the polynomials of degree ≤ 2n
is positive definite, so that Hamburger’s theorem
[9, 10, 11] applies and there exists a positive mea-
sure µ over R with first moments µi.

Finally, for 1 ≤ i ≤ n, since Qi is orthogonal to
the Qj for j < i, it is orthogonal to any polynomial
of degree < i. Hence∫

R

Q2
i (x)dµ =

∫
R

xiQi(x)dµ

=
∫

R

xi−1Qi+1(x)dµ

+λi

∫
R

xi−1Qi−1(x)dµ

= λi

∫
R

Q2
i−1(x)dµ,

which shows, by induction, that
∫

R
Q2

i (x)dµ =
gii. �

This shows, in view of [21], that FP-appr is
NP-hard; further, as a corollary from [14], we ob-
tain

Corollary 1 The problem FP-appr is NP-hard,
even if we allow an approximation factor up to
nO(1/ log log n).

In practice, fortunately, the situation is by far
better. First, the problem is polynomial when the
dimension is fixed. Second, the exponential algo-
rithms behave quite well in our situation, where we
are looking for approximations of small enough di-
mension (in any case, less than, say, 50).

5. A short review of algorithms for CVP

The previous section shows us that we need to
study the behaviour of CVP algorithms in the con-
text of our problem. Though there is already abun-
dant theoretical and practical literature about the
CVP [1], we include this section for the sake of
completeness, but only give heuristic descriptions
of the algorithms.

In a nutshell, algorithms for CVP can be de-
composed into two distinct steps for which various
solutions exist. The first step is a preprocessing

step, which computes a more or less strongly re-
duced basis of the lattice under study. The second
one actually solves the CVP. Usually, the stronger
the reduction, the more accurate or efficient is the
second step.

5.1. Short review of CVP algorithms

5.1.1 A naive method

Let us start with an extremely naive method, which
should probably not be used but serves as a good
introduction. Lemma 1 tells us that the coordinates
of pE(f) in the basis ei are given by G−1V . A
simple idea is thus to compute G−1V and to round
to the nearest integer the values that we have ob-
tained in order to get a vector with integer coordi-
nates in the basis (ei).

Lemma 2 This method is optimal if the basis (ei)
is orthogonal.

Proof. Write (fi) = G−1V . Then, since the basis
is orthogonal, for any x ∈ Zn, the L2 distance of∑n

i=0 xiei to pE(f) =
∑n

i=0 fiei is given by(
n∑

i=0

(xi − fi)2‖ei‖22
)1/2

,

which is minimal for xi = �fi�, ∀i = 0, . . . , n. �

5.1.2 Babai’s nearest plane algorithm

Babai’s method [2] is a refinement of the previous
method. In a very sketchy way, it can be described
as follows: rounding each coefficient M−1v in the
naive method induces an error. Thus, a better way
is to round each coefficient one after the other, and
to reintroduce the error coming from one rounding
before performing the next.

More formally, this gives Algorithm 1.
If the input basis is of sufficient quality, we

can deduce estimates on the quality of the out-
put result. We quote the following classical result
without a proof (this result is usually stated for an
LLL-reduced basis, but adapts to the general case).
The family (e∗i)0≤i≤n denotes the basis given by
the Gram-Schmidt orthogonalization of the basis
(ei)0≤i≤n.

Theorem 1 If we apply Algorithm 1 above to the
FP-appr problem, we obtain a polynomial P =∑n

i=0 xiei such that

‖P − pE(f)‖2 ≤ γn+1

2
√

γ2 − 1
‖P̃ − pE(f)‖2,

4

Algorithm:Babai

Data: An (n + 1)× (n + 1) Gram matrix G ;
an (n + 1)-vector V

Result: An approximation of
CVP-Gram(G,V)

begin
Compute a Gram-Schmidt decomposition
of G = BtDB, with B orthogonal and D
diagonal;
V ← BV ;
for (j = n; j ≥ 0, j- -) do

X[j]← �W [j]/D[j, j]�;
for (i = 0; i ≤ n; i++) do

W [i]←
W [i]−X[j]B[j, i]D[i, i];

end
end
return X;

end

Algorithm 1: Babai’s nearest Plane algorithm

for any γ ≥ max0≤i≤n−1 ‖e∗i ‖2/‖e∗i+1‖2 and P̃
is the actual solution to the FP-appr problem.

A consequence is the fact that the most orthog-
onal the basis, the best Babai’s algorithm. This
suggests again to use a preprocessing step, as de-
scribed below.

5.1.3 Exact method

Exact methods, which are all a variant of an algo-
rithm initially due to Kannan [15] consist in start-
ing with an approximate solution, i.e. a vector w
in the lattice such that R := (v−w|v−w) is small.
Then, the goal is to find a vector x in the ellipsoid
(v − x|v − x) ≤ R. This is done by enumerating
points in this ellipsoid, or in a small superset of
it. Note that once a good approximation is found,
it can be used to restrict again the set of points to
enumerate, since we are interested in a smaller el-
lipsoid. We do not give further detail, and refer to
[1] for pseudo-code for this method. Let us sim-
ply point that the complexity of this approach is
superexponential in the dimension d of the lattice,
namely dd/2e+o(d) up to polynomial factors in the
input size [12].

5.2. Short review of preprocessing

The accuracy (approximate methods) / effi-
ciency (exact method) of those methods highly de-
pend on the geometry of the basis of our lattice L.

For instance, the first algorithm becomes op-
timal if the basis is orthogonal; and the most or-
thogonal the basis, the best Babai’s algorithm per-
forms. Finally, if the basis is more orthogonal, the
ellipsoid in the exact method is much easier to enu-
merate. This leads to the idea that one should try
to use the most orthogonal basis possible. This
suggests to use a lattice basis reduction algorithm
as a preprocessing step. In this paper, we chose
to use LLL-reduced bases (see [16], computable
in polynomial time) or Korkine-Zolotareff reduced
bases (see [13], reasonably efficient for small di-
mensions); one of the reasons for this is the fact
that software for computing those bases is widely
available, eg. in NTL [20].

It should be pointed, however, that our experi-
ments showed that, in the case of polynomial ap-
proximation, the bases are sufficiently orthogonal,
and in practice Babai’s algorithm always gave the
optimal solution. One might, however, expect that
the situation changes if the dimension increases
too much (say, above 50), but this does not seem
to be the case for applications.

5.3. Tuning of the method

For applying the method, we now need to de-
scribe how one should choose the various free pa-
rameters in our description. Recall that in the case
of polynomial approximation, we are trying to ap-
proximate a function f by a linear combination
over Z of the functions 2−εixi, i = 0, . . . , n,

f(x) ≈
n∑

i=0

mi2−εixi.

We need to choose n, the size of the mi and the
εi. We postpone the choice of the εi, since they
will serve to enforce the size chosen for the mi.

5.3.1 Choosing n and the εi

In order to improve the quality of the approxima-
tion, one has the choice between increasing n and
increasing the εi. This compromise should be care-
fully selected. Indeed,

• Increasing n has the effect to decrease the
intrisic L2-approximation error, ie. ‖f −
pE(f)‖2;

• Increasing the size of the εi decreases
the “floating-point approximation” error, ie.
‖pE(f)−φE(f)‖2, where φE(f) is the solu-
tion to FP-appr.

5

As a consequence, playing on a single side is
pointless, since the other error shall remain of the
same order of magnitude, and the sum of the two
errors in the global approximation scheme will not
decrease.

A first remark is the fact that in practice, one
is willing to use for mi2−εi some kind of machine
floating-point number, either double precision, sin-
gle precision, double extended, quad, or any com-
bination of those (by taking mi2−εi to be the sum
of two floating-point numbers, we can assume that
mi has size 106 bits, for instance). Since our algo-
rithm only allows us to choose the εi, we need to
relate the size of mi and εi.

Heuristic 1 For all i, mi2−εi is close to the coef-
ficient of xi in pE(f).

This heuristic is true in practice as long as the cor-
responding coefficients do not get too small. In
large degrees, with small coefficients, it might be
wrong. In that case, one should replace in the
heuristic pE(f) by the output of a first round of
the algorithm: this modified heuristic allowed us
to correctly guess the value of the εi to get a given
number of bits for mi in all cases we tried. A sim-
ilar heuristic is used in the paper [3] for L∞ ap-
proximation.

Heuristic 2 εi should be chosen of the form C +
log2 ‖xi‖2, for C not depending on i, and thus
the size of mi should be chosen of the form
log2 |(pE(f)|xi)|+ C.

Indeed, if the basis xi were orthogonal, and if
pE(f) =

∑n
i=0 ϕix

i, the error can be written as

‖P − pE(f)‖22 =
n∑

i=0

∣∣∣mi

2εi
− ϕi

∣∣∣2 (xi|xi).

The i-th term in this sum is expected to be of the
order of 2−2εi−2‖xi‖22. Thus, εi should be taken
as log2 ‖xi‖2 + C in order to minimize the global
error. Now, the previous heuristic, again if the ba-
sis is orthogonal, gives

log2 mi − εi ≈ log2 |(pE(f)|xi)| − log2(x
i|xi).

In practice, we expect that the basis is “suffi-
ciently” orthogonal for the heuristic above to give
results close to optimal.

We can thus concentrate on finding which de-
grees n and total size of mi yield the best ap-
proximation for a given total number of bits, ie.
choosing mi such that log2 ‖ϕE(f) − pE(f)‖ ≈
log2 ‖f − pE(f)‖2.

Estimating log2 ‖ϕE(f) − pE(f)‖ is estimat-
ing the distance from a random point of Rn+1 to
some lattice L. In the case of a random point and
a random lattice, we can expect it to be of the or-
der of the length of a shortest vector of the lattice,
which by Minkowski’s first theorem is of the order
of (disc L)1/(n+1).

Heuristic 3 Let G′ be the Gram matrix (xi|xj).
We expect that

− log2 ‖ϕE(f)− pE(f)‖2 ≈∑n
i=0 εi

n + 1
− log2 det(G′)

2(n + 1)
.

This gives the choice of the average value of εi,
from which the two previous heuristics allow to
deduce heuristics for log2 mi, in order to achieve
a given error.

5.4. Numerical issues

The main numerical issues of our algorithm are

• the computation of orthogonal bases which is
required at almost every step of the method,

• the problem of computing accurately enough
the integrals that define the matrix G,

• the definition of the problem itself, namely
the fact that we shall have to replace ex-
act real numbers (the value of the integral)
by floating-point (or, in practice, integer) ap-
proximations.

We shall take the second item for granted, eg.
by using [7]. The first item is a classical topic and
has been extensively studied, see for instance [17].
We shall thus focus on the last point. The mean-
ing of this is that we replace the exact values of G
and V by approximations G̃ and Ṽ . A first (trivial)
remark is that the problem is already ill-defined in
dimension 1 : finding the element of Zπ closest to
π/2 is highly subject to numerical approximation.
However, the distance to Zπ is well-defined: the
solution found might change, but we are switching
from an optimal solution to another solution which
is arbitrarily close of being optimal. In the exam-
ple above, depending on the roundings, we might
find either 0 or π, both being admissible answers
to the original problem.

Theorem 2 For M a matrix, we define ‖M‖ to be
the maximum of absolute values of its coefficients,

6

and similarly for a vector. Assume that max(‖G−
G̃‖, ‖V − Ṽ ‖) ≤ ε, and that (n + 1)ε‖G̃−1‖ < 1.
Then, for all x ∈ Zn+1, we have

∣∣(x−G−1V)tG(x−G−1V)−
(x− G̃−1Ṽ)tG̃(x− G̃−1Ṽ)

∣∣∣ ≤ εC,

where C is an explicit constant depending only on
x, n, G̃, Ṽ .

Proof. Left to the reader. �
This theorem shows that a “good” vector for the

approximate problem is not too far away from a
“good” vector for the exact problem, and (by sym-
metry) vice-versa. The drawback is that the qual-
ity of the approximation depends on x. However,
since x lies in a bounded region of Rn, one can in
theory remove this dependency, or check once x is
computed that the precision is sufficient. Using the
theorem (and the theorem where we exchanged the
roles of G,V and G̃, Ṽ) shows that by increasing
the precision we can come as close as we want to
the actual optimal.

6. Some experiments, comparison with
L∞-approximation

We have implemented the various combina-
tions of methods described above and tested them
for the problem described above on several func-
tions. The algorithms have been implemented in
C, using NTL-5.4[20], GMP-4.2.1 [8] and MPFR-
2.2.0[19]. The scalar products have been com-
puted using GP/pari function intnum, but we
plan to replace it with software yielding guaran-
teed results, such as the CRQ library [7].

These implementations of the LLL algorithm
may present numerical instability [17], but this is
not expected on matrices of the kind we reduce,
in the dimension useful for applications. In any
case, this does not compromise the optimality of
the results computed; simply, the preprocessing is
of lesser quality than expected, and thus the com-
putation time slightly larger.

All these computations, even in larger dimen-
sion, have taken less than a second on an Intel Pen-
tium M 2GHz.

Example 1 We consider the function x �→
sin(π

√
x)/(π

√
x) on the interval [0, 1] and we

search for a degree-8 polynomial approximation
with single precision floating-point coefficients.

We get an L2 error equal to 1.883 . . . · 10−21, that
we compare to 2.562 . . . · 10−17 which is the error
given by the rounded projection i.e. the polynomial
obtained after having rounded to the nearest the
coefficients of the real optimal L2-approximation:
we get a factor 10000 improvement.

We obtain an absolute error equal to 1.345 . . . ·
10−10, that we have to compare to 1.002 . . . ·10−8

which is the error provided by the rounded min-
imax (i.e. the polynomial obtained after having
rounded to the nearest the coefficients of the real
optimal L∞-approximation): we obtain an im-
provement by a factor 100.

Example 2 We consider the arctan function on
[−1, 1]. Then, we search for a polynomial of the
form p(x) = x+x3(p0+p1y+· · ·+p22y

22) where
y = x2 and the pi are double precision floating-
point numbers. This is a practical example from
[6, Chap. 10]

We immediately obtain an approximant giving
rise to a relative error equal to 7.28 . . . · 10−19

which improves by a factor 32 the relative error
given by the rounded minimax which is equal to
2.28 . . . · 10−17.

There is currently another lattice reduction
based approach [3] developed for tackling the
problem of getting very good L∞-approximation.
On the few experiments we did, we noticed that
this approach sometimes leads to better results
than ours but the factor between the errors they
reach and ours is not large, even in degrees around
25. That approach has the drawback to require as
input the computation of a minimax approxima-
tion, given by Remes’ algorithm, whereas our ap-
proach is entirely done at almost no cost. More-
over, there are issues that the approach of [3] is
not yet able to address but which can be treated
with the method developed here. For instance, we
already noticed that we can tackle with relative er-
ror approximation. We are also able to compute
approximations in which the values of some coef-
ficients are fixed. Finally, we can directly adapt
our method to compute approximations to two-
variable functions.

7. Conclusion and further work

We have presented a set of methods for com-
puting best (absolute or relative) L2 floating-point
approximations, either by polynomials, or more
generally by any finite linear combination of func-
tions, such as trigonometric polynomials. These

7

methods can be seen as a further tool in the tool-
box available to the “computer arithmetician” to
compute approximations with floating-point (and
more generally machine-number) coefficients.

We have reviewed the main features of this tool:
efficiency (especially in large dimension), ability
to deal with relative error, and versatility, utility
as a preprocessing step to speed up L∞ or relative
error computations.

The fact that the best vector produced by the
L2 method seems in practice to be within a small
factor of the L∞ solution suggests an improved
strategy. Denote by b the best L2-approximation
that we have obtained. By using a straightforward
adaptation of the optimal algorithm, we can list all
vectors v for which

‖v − pE(f)‖2 ≤ β‖b− pE(f)‖2, (1)

for some constant β > 1.
Then, we can compute the corresponding L∞

norm of all those vectors, and look for the best of
them. The main trouble is the fact that the number
of vectors will grow roughly as 1

(
β‖b− pE(f)‖2
(det(G))1/2n

)n

;

If the εi are not chosen carefully enough, ‖b −
pE(f)‖2 may be much larger than (det G)1/2n.
More intuitively, ‖b − pE(f)‖2 is of the order of
magnitude of the size of the largest vector in a
“good” basis; if we have many “small” vectors in
the basis, any “not too large” linear combination of
those vectors can be added to b without changing
significantly its L2-distance to pE(f). In that case,
the set of vectors which verify (1) may be very
large, and should be dealt with in a non-exhaustive
way.

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger.
Closest point search in lattices. IEEE Transactions
on Information Theory, 48(8):2201–2214, 2002.

[2] L. Babai. On Lovász’ lattice reduction and the
nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[3] N. Brisebarre and S. Chevillard. Efficient polyno-
mial L∞-approximations. 2007. This volume.

1this estimate follows from the approximation that the num-
ber of integral points within a region can heuristically be esti-
mated by the volume of this region, and applying a linear trans-
formation in order to map the lattice on Z

n.

[4] N. Brisebarre, J.-M. Muller, and A. Tisserand.
Computing machine-efficient polynomial approx-
imations. ACM Transactions on Mathematical
Software, 32(2), June 2006.

[5] E. W. Cheney. Introduction to approximation the-
ory. AMS Chelsea Publishing, second edition,
1982.

[6] M. Cornea, J. Harrison, and P. T. P. Tang. Scien-
tific Computing on Itanium-Based Systems. Intel
Press, 2002.

[7] L. Fousse. CRQ, the correctly rounded quadrature
library for crq, February 2006. http://www.
komite.net/laurent/soft/crq/.

[8] T. Granlund. GMP, the GNU multiple preci-
sion arithmetic library, version 4.2.1, May 2006.
http://www.swox.com/gmp/.

[9] H. Hamburger. Über eine Erweiterung des Stielt-
jesschen Momentenproblems, I. Math. Ann.,
81:235–319, 1920.

[10] H. Hamburger. Über eine Erweiterung des Stielt-
jesschen Momentenproblems, II. Math. Ann.,
82:120–164, 1921.

[11] H. Hamburger. Über eine Erweiterung des Stielt-
jesschen Momentenproblems, III. Math. Ann.,
82:168–187, 1921.

[12] G. Hanrot and D. Stehlé. Tighter analysis of Kan-
nan’s enumeration algorithm. 2007. Submitted.

[13] C. Hermite. Oeuvres complètes. Gauthier-Villars,
1912.

[14] S. S. I. Dinur, G. Kindler. Approximating-CVP
to within almost-polynomial factors is np-hard. In
39th Annual Symposium on Fundations of Com-
puter Science, pages 99–111. IEEE Computer So-
ciety, 1998.

[15] R. Kannan. Minkowski’s convex body theorem
and integer programming. Math. Oper. Res.,
12(3):415–440, 1987.

[16] A. K. Lenstra, H. W. Lenstra, and L. Lovász.
Factoring polynomials with rational coefficients.
Math. Annalen, 261:515–534, 1982.

[17] P. Nguyen and D. Stehlé. Floating-point LLL re-
visited. In Proceedings of Eurocrypt 2005, volume
3494 of Lecture Notes in Computer Science, pages
215–233. Springer-Verlag, 2005.

[18] E. Remes. Sur un procédé convergent
d’approximations successives pour déterminer
les polynômes d’approximation. C.R. Acad. Sci.
Paris, 198:2063–2065, 1934.

[19] The Spaces project. MPFR, the multiple preci-
sion floating point reliable library, version 2.2.0.
http://www.mpfr.org, 2005.

[20] V. Shoup. NTL, a library for doing number the-
ory, version 5.4. http://shoup.net/ntl/,
2005.

[21] P. van Emde Boas. Another NP-complete problem
and the complexity of computing short vectors in
a lattice. Technical Report 81-04, Mathematische
Instituut, University of Amsterdam, 1981.

8

