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Abstract

This paper introduces two novel architectures for par-
allel decimal multipliers. Our multipliers are based on a
new algorithm for decimal carry–save multioperand ad-
dition that uses a novel BCD–4221 recoding for decimal
digits. It significantly improves the area and latency of
the partial product reduction tree with respect to previous
proposals. We also present three schemes for fast and ef-
ficient generation of partial products in parallel. The re-
coding of the BCD–8421 multiplier operand into minimally
redundant signed–digit radix–10, radix–4 and radix–5 rep-
resentations using new recoders reduces the complexity of
partial product generation. In addition, SD radix–4 and
radix–5 recodings allow the reuse of a conventional par-
allel binary radix–4 multiplier to perform combined bi-
nary/decimal multiplications. Evaluation results show that
the proposed architectures have interesting area–delay fig-
ures compared to conventional Booth radix–4 and radix–8
parallel binary multipliers and other representative alter-
natives for decimal multiplication.

1. Introduction

Providing hardware support for decimal arithmetic is be-
coming a topic of interest. Specifically, the revision of the
IEEE–754 Standard for Floating–Point Arithmetic (IEEE–
754r) [1] already incorporates specifications for decimal
arithmetic. Thus, it is expected that microprocessor manu-
facturers include decimal floating–point units in their prod-
ucts oriented to mainframe servers to satisfy the high perfor-
mance demands of current financial, commercial and user–
oriented applications [3].

An important and frequent operation in decimal compu-
tations is multiplication. However, due to the inherent in-
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efficiency of decimal arithmetic implementations in binary
logic, practically all the proposed decimal multipliers are
sequential units [2, 4, 7, 9, 11, 16]. Recently, the first im-
plementation of a parallel decimal multiplier was presented
in [8]. Parallel multipliers are used extensively in most of
the binary floating–point units [10, 13] and are of interest
for decimal applications to scale performance.

In this paper, we introduce new methods for the effi-
cient implementation of decimal parallel multiplication by
a parallel generation of partial products and the reduction
of these partial products using a novel decimal carry–save
addition tree. We present the architectures of two differ-
ent high–performance parallel multipliers that implement
these methods. The second architecture also allows an ef-
fective implementation of a combined binary/decimal mul-
tiplier. These high–performance implementations have sim-
ilar hardware complexity or a moderate increment in area
with respect to the equivalent binary parallel multipliers.
The paper is organized as follows. Section 2 outlines the
previous (most representative) work on decimal multiplica-
tion. In Section 3 we introduce our proposals for an efficient
implementation of decimal parallel multiplication. The pro-
posed techniques for the generation of partial products are
more detailed in Section 4, while the reduction of partial
products is fully discussed in Section 5. We describe the
two resulting architectures and some variants in Section 6.
In Section 7 we provide rough area–delay evaluation results
for 64–bit (16 decimal digits) decimal and binary parallel
multipliers. We compare these results with some other rep-
resentative works. Finally we summarize the main conclu-
sions in Section 8.

2. An overview of decimal multiplication

Multiplication consists of three stages: generation of par-
tial products, fast reduction (addition) of partial products to
a two operand and a final carry propagate addition. Decimal
multiplication is more complex than binary multiplication
mainly for two reasons: the higher range of decimal digits
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([0, 9]), which increments the number of multiplicand mul-
tiples and the inefficiency of representing decimal values in
systems based on binary logic using BCD–8421 (since only
9 out of the 16 possible 4–bit combinations represent a valid
decimal digit). These issues complicate the generation and
reduction of partial products.

Proposed methods for the generation of decimal par-
tial products follow two approaches. The first alterna-
tive [2, 4] generates and stores all the required multipli-
cand multiples. Next, multiples are distributed to the re-
duction stage through multiplexers controlled by the mul-
tiplier digits. This approach requires more than a cycle
to generate some complex BCD-8421 multiplicand mul-
tiples (3X,6X,7X,8X,9X). To avoid complicated multiples
the multiplier can be recoded. In [8] each multiplier digit
is recoded as Yi = YH 5 + YL, with YH ∈ {0, 1} and
YL ∈ {−2,−1, 0, 1, 2}. Multiples 2X and 5X can be com-
puted without a carry propagation over the whole number.
Negative multiples requires an additional 9’s complement
addition. The second approach generates only the partial
product as needed using digit–by–digit lookup table meth-
ods [9, 16]. In a recent work [5], a magnitude range reduc-
tion of the operand digits by a radix–10 signed–digit recod-
ing (from [0,9] to [-5,5]) is suggested. This recoding of both
operands speeds–up and simplifies the generation of partial
products. Then, overlapped signed–digit partial products 1

are generated using simplified tables and a set of multiplex-
ers and xor gates.

First attempts to improve decimal multiplication per-
formed the reduction of decimal partial products using some
scheme for decimal carry propagate addition such as direct
decimal addition [12]. Proposals to perform the reduction of
decimal partial products using multioperand carry–free ad-
dition were suggested in [9] (carry–save) and [15] (signed–
digit). Recently several techniques have been proposed that
improve these previous works. In [5] a signed–digit decimal
adder based on [15] is used. Redundant binary coded dec-
imal (RBCD) adders [14] can also perform decimal carry–
free additions using a signed–digit representation of deci-
mal digits (∈ [−7, 7]). In [11] a scheme of two levels of
3–2 binary carry–save adders (CSA) is used to add the par-
tial products iteratively. Since it uses BCD–8421 to repre-
sent decimal digits, a digit addition of +6 or +12 (modulo
16) is required to obtain the decimal carry and to correct
the sum digit. Logic for detection of decimal carries and
sum digit is in the critical path (sum path). In order to elim-
inate decimal corrections from the critical path of the bi-
nary CSA, three different techniques were proposed in [6].
Among these proposals, non–speculative adders present the
best area–delay figures and are the most suitable for multi-
operand addition using a CSA tree. Non–speculative adders

1Two overlapped digits in the range of [−5, 5] and [−2, 2] are gener-
ated for each partial product digit position.

reduce the BCD–8421 input operands using a binary CSA
tree. Preliminary sum digits are then obtained using a level
of 4–bit carry propagate adders. Finally, decimal carry and
sum digit corrections are determined from the preliminary
sum digit and the carries passed to the next more significant
digit position in the binary CSA tree2. Decimal correction
is performed using combinational logic (its complexity de-
pends on the number of input operands added) and a 3–bit
carry propagate adder per digit.

Another representative technique [4] uses an array of 4–
bit decimal carry–propagate adders based on direct decimal
addition. This adder takes two BCD–8421 digits and a 1–
bit input carry and generates a 1–bit decimal carry and the
BCD–8421 sum digit. An iterative decimal multiplier based
on a refinement of [4] is presented in [7]. It uses BCD–
8421 invalid combinations to simplify the sum digit logic.
A combinational radix–10 CSA tree is implemented in [8]
using these 4–bit decimal carry–propagate adders. To opti-
mize the partial product reduction they also use an array of
decimal digit counters. Each counter adds 8 decimal carries
of the same weight and produces a BCD–8421 digit.

3. Proposed techniques for decimal parallel
multiplication

We assume that multiplicand X and multiplier Y are
unsigned decimal integer words. Extension to decimal
floating–point multiplication involves exponent addition,
rounding of X · Y to fit the required precision and sign cal-
culations. We represent the decimal digits of any d–digit
decimal integer operand Z =

∑d−1
i=0 Zi · 10i as

Zi =
3∑

i=0

zi,j · rj

where Zi ∈ [0, 9] is the ith decimal digit, zi,j is the jth

bit of the BCD ith digit and rj is the weight of the jth

bit. In Table 1 diverse BCD codings are represented. For
BCD–8421, rj = 2j . BCD–4221 and BCD–5211 are new
codings introduced in this paper characterized by the use of
redundancy in decimal digit representation. As we have
mentioned, the use of BCD–8421 to represent decimal dig-
its means introducing costly decimal corrections in the par-
tial product reduction binary CSA tree to obtain the correct
decimal carry and sum. To avoid these corrections we use
the BCD–4221 coding of Table 1 to represent partial prod-
uct digits. Thus, we can perform fast decimal carry–save
addition using an ordinary 4–bit binary 3:2 CSA as

Ai + Bi + Ci =
3∑

j=0

(si,j + 2hi,j) rj

2A +6 must be added each time a carry is passed to the next more
significant digit position.
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BCD-8421 BCD-5421 BCD-4221 BCD-5211
0 0000 0000 0000 0000
1 0001 0001 0001 0001 | 0010
2 0010 0010 0010 | 0100 0100 | 0011
3 0011 0011 0011 | 0101 0101 | 0110
4 0100 0100 1000 | 0110 0111
5 0101 1000 1001 | 0111 1000
6 0110 1001 1010 | 1100 1001 | 1010
7 0111 1010 1011 | 1101 1100 | 1011
8 1000 1011 1110 1110|1101
9 1001 1100 1111 1111

Table 1. BCD codings

=
3∑

j=0

si,j rj + 2
3∑

j=0

hi,j rj = Si + 2Hi

with (r3, r2, r1, r0) = (4, 2, 2, 1) and

si,j = ai,j ⊕ bi,j ⊕ ci,j

hi,j = ai,j · bi,j ∨ (ai,j ∨ bi,j) · ci,j

Hi ∈ [0, 9], Si ∈ [0, 9] are the decimal carry and sum digits
at position i while symbols ∨, ·, and ⊕ indicate binary oper-
ators OR, AND and XOR respectively. No decimal correc-
tion is required because Hi and Si are valid decimal digits
in BCD–4221 code. However a decimal multiplication by 2
is required before using the carry digit for the computations.
This can be performed in a simple way by a digit recoding
to BCD–5211 (shown in Table 1) followed by a 1–bit wired
left shift:

2Hi = l1shift(Wi) = wi,3 10 + wi,2 4 + wi,1 2 + wi,0 2

where

Wi = wi,3 5 + wi,2 2 + wi,1 + wi,0

is the BCD–5211 recoded decimal carry digit. Moreover,
this operation is in the fast path (carry path of a full–adder).
Note that the 1–bit left shift of Wi produces a carry output
(wi,3) to the next decimal digit (i + 1), while the less sig-
nificant bit position is occupied by the carry input (wi−1,3)
of the previous digit Wi−1. Logical expressions for BCD–
4221 to BCD–5211 recoding are given by

wi,3 = hi,3 · (hi,2 ∨ hi,1 ∨ hi,0) ∨ hi,2 · hi,1 · hi,0

wi,2 = hi,2 · hi,1 · hi,3 ⊕ hi,0 ∨ (hi,3 · hi,0) ⊕ hi,2 ⊕ hi,1

wi,1 = hi,2 · hi,1 · hi,3 ⊕ hi,0 ∨ hi,3 · hi,0 · hi,2 ⊕ hi,1

wi,0 = (hi,2 · hi,1) ⊕ hi,3 ⊕ hi,0

Nevertheless, due to the redundancy of BCD–4221 and
BCD–5211 codings, there are several choices with differ-
ent area–delay trade–offs for the logical implementation of

this digit recoding. This decimal carry–save algorithm leads
to fast and area optimized decimal carry–save tree adders
detailed in Section 5. Furthermore, conversions between
BCD–8421 and BCD–4221 codings can be performed us-
ing a simple gate level.

To generate all the partial products in parallel, we obtain
all the required multiples. We aim for a fast generation of
a reduced number of partial products. This is achieved with
the recoding of the multiplier. We have developed three
different recodings for the multiplier with good trade–offs
between fast generation of partial products and the num-
ber of partial products generated. A minimally redundant
signed–digit (SD) radix–10 recoding (digits in [−5, 5]) pro-
duces only d+1 partial products but requires a carry propa-
gate addition to generate complex multiples 3X and −3X .
Minimally redundant signed–digit (SD) radix–4 and radix–
5 recodings (with digits in [−2, 2]) produce 2d partial prod-
ucts (2 digits per radix–10 digit) but multiplicand multiples
are produced in a few levels of combinational logic. Fur-
thermore, another advantage of using BCD–4221 to repre-
sent partial product digits is that the 9’s complement of each
digit can be obtained by bit inverting each digit. This sim-
plifies the generation of the negative multiplicand multiples.
The proposed BCD–8421 to SD recoders and the generation
and selection of multiples are detailed in Section 4.

For the final decimal carry propagate addition we use a
binary quaternary tree (Q-T) adder modified to perform dec-
imal additions [17]. Decimal quaternary tree adders based
on conditional speculative decimal addition present low la-
tency (about 10% more than the fastest binary adders) and
require less hardware than other alternatives.

4. Generation of partial products

4.1. Multiplier recoding

A. Signed–Digit Radix–10 Recoding.
This recoding transforms the digit set {0, . . . , 9} into the

signed–digit (SD) set {−5, . . . , 5} to perform the selection
of multiples in a similar way as modified Booth recoding.
Fig. 1 shows a block diagram of the recoding and the mul-
tiplicand multiple selection units.

We denote Y ∗
i = y∗

i,3 5 +
∑2

j=0 y∗
i,j 2j the digits of the

multiplier coded in BCD–5421 (see Table 1). The recoded
SD radix–10 multiplier can be expressed in terms of Y ∗

i as

Y =
d−1∑
i=0

(
y∗

i,3 10 − y∗
i,3 5 +

2∑
j=0

y∗
i,j 2j

)
10i

= y∗
d−1,3 10d −

d−1∑
i=0

Y bi 10i

where the value of each SD radix–10 digit Y bi ∈ [−5, 5] is
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4X

BCD−8421 to SD radix−10 
Recoder

Mux−5

5X

ysi 

 Partial Product i

Multiplicand multiple selection

y1i y2i 

Yi 

ysi 

y1i 
y2i 

SD digit {−5...5}

Signed digit radix−10 recoder

digit BCD−8421

Yi−1 (overlapped digit) 

y3i y4i y5i 

3X X2X y5i 
y4i 
y3i 

Figure 1. Partial product generation for SD radix–10.

given by

Y bi = −y∗
i,3 5 +

2∑
j=0

y∗
i,j 2j + y∗

i−1,3

with y∗
−1,3 = 0. Control signals (in ”hot–one” code) can

be obtained directly from input BCD–8421 multiplier digits
using the following logical expressions:

ysi = yi,3 ∨ yi,2 · (yi,1 ∨ yi,0)
y5i = yi,2 · yi,1 · (yi,0 ⊕ ysi−1)
y4i = ysi−1 · yi,0 · (yi,2 ⊕ yi,1)
y3i = yi,1 · (yi,0 ⊕ ysi−1)
y2i = yi,0 ∨ ysi−1 · (yi,3 ∨ yi,2 · yi,1)
y1i = yi,2 ∨ yi,1 · (yi,0 ⊕ ysi−1)

Since multiplicand multiples are recoded to BCD–4221,
negative multiples can be generated by the XOR of ysi with
the corresponding positive multiple as shown in the multi-
plicand multiple selector of Fig. 1.
B. Signed–Digit Radix–4 Recoding.

Two SD radix–4 digits Y U
i ∈ {0, 1, 2} (upper), Y L

i ∈
{−2,−1, 0, 1, 2} (lower) are generated per each BCD–8421
digit (Yi = Y U

i · 4 + Y L
i ). We obtain the SD radix–4 selec-

tion signals directly from the BCD–8421 digits as

(Y U
i )




ysU
i = yi,3

y2U
i = yi,3 · yi,2 · yi,1

y1U
i = yi,3 · yi,2 ⊕ yi,1

(Y L
i )




ysL
i = yi,3 ∨ yi,1

y2L
i = ysL

i · yi,0 · yi−1,3 ∨ ysL
i · yi,0 · yi−1,3

y1L
i = yi,0 ⊕ yi−1,3

The block diagram of a 4–bit combined binary/decimal
recoder and the corresponding multiplicand multiple selec-
tor are shown in Fig. 2 where control signal dM is true for
decimal multiplication. The combined SD radix–4 recoder
implements the decimal selection signals and the conven-
tional Booth radix–4 selection signals. Upper signals select
multiples ±8X and ±4X while lower signals select multi-
ples {−2X,−X, X, 2X}. Although the resulting combined

 4−bit/BCD−8421 to SD 
radix−4 Recoder

Mux−2

ysi
U 

 Partial Product i−upper
Selection of multiplicand multiples

ysi
L y1i

U y2i
U y1i

L y2i
L 

yi,3 yi,2 yi,1 yi,0 yi−1,3 

ysi
U 

y1i
U 

y2i
U 

Mux−2

ysi
L 

y1i
L 

y2i
L 

2 SD digits {−2,...,2}
 Partial Product i−lower

Binary/BCD−8421 to SD radix−4 recoder

8XBCD

Mux−2 Mux−2

8XBIN

Mux−2 Mux−2
dM dMdM dM

4XBIN 2XBIN XBIN
4XBCD

2XBCD XBCD

Figure 2. Partial product generation for SD radix–4.

SD radix–4 recoders and multiple selectors are simple, ob-
taining decimal multiples 4X and 8X requires double and
triple latency with respect to obtaining the decimal 2X mul-
tiple.
C. Signed–Digit Radix–5 Recoding.

This recoding uses a different set of multiplicand multi-
ples (5X ,10X instead of 4X ,8X) for decimal partial prod-
uct generation that have a similar latency to 2X and X .
Each BCD–8421 digit of the multiplier is encoded into two
radix–5 digits (Yi = Y U

i · 5 + Y L
i ) with Y U

i ∈ {0, 1} and
Y L

i ∈ {−2,−1, 0, 1, 2} .
SD radix–5 selection signals are obtained from the

BCD–8421 input digits using:

(Y U
i )




ysU
i = 0

y2U
i = yi,3

y1U
i = yi,2 ∨ yi,1 · yi,0

(Y L
i )




ysL
i = yi,3 ∨ yi,2 · yi,1 · yi,0 ∨ yi,2 · yi,1 · yi,0

y2L
i = yi,0 · (yi,3 ∨ yi,1) ∨ yi,2 · yi,1

y1L
i = yi,2 · yi,0 ∨ yi,2 · yi,1 · yi,0

The block diagram of the digit recoder and multiples se-
lector is shown in Fig. 3(a). A combined binary radix–
4/decimal radix–5 block diagram for the partial product
generation is proposed in Fig. 3(b). Multiplexers controlled
by dM select the operands required by binary or decimal
multiplications. Although BCD to SD radix–4 encoding is
slightly simpler than radix–5, partial product generation for
decimal SD radix–5 is faster and comparable in latency with
binary SD radix–4, due to a faster generation of multipli-
cand multiples as we show in the following subsection.

4.2. Generation of multiplicand multiples

Decimal multiplicand multiples 2X and 5X are obtained
in a few levels of logic using recoding and wired left shifts.
Any other multiple is generated using these multiples or
from multiplicand X . The generation sequence of 2X is
as follows. Each BCD–8421 digit is first recoded to BCD–
5211 using

wi,3 = hi,3 ∨ hi,2 · (hi,1 ∨ hi,0)
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5X

BCD−8421 toSD radix−5 
recoder

Mux−2

10X

 Partial Product i−upper

Multiplicand multiples selection

ysi
L y1i

U y2i
U y1i

L y2i
L 

yi,3 yi,2 yi,1 yi,0 

y1i
U 

y2i
U 

X

Mux−2

2X

ysi
L 

y1i
L 

y2i
L 

2 digits SD radix−5 {−2,..2} Partial Product i−lower

BCD−8421 to SD radix−5 recoder

(a) Decimal SD radix–5 recoding.

BCD−8421 to SD 
radix−5 recoder

Mux−2

10XBCD

 Partial Product i−upper

Combined 4−bit SD radix−4/radix−5 recoder

dM

Yi
U Yi

L 

Yi 

y1i
U 

y2i
U 

Mux−2

ysi
L 

y1i
L 

y2i
L 

 Partial Product i−lower

Binary to SD 
radix−4 recoder

yi−1,3 

Yi
U Yi

L 

4 

3 3 3 3 

1 

Mux−2 Mux−2

Yi
U Yi

L 

ysi
U 

Mux−2 Mux−2

8XBIN

Mux−2 Mux−2

dM

dM dMdM
dM

Multiplicand multiples selection

4XBIN
2XBIN XBIN

5XBCD
2XBCD XBCD

(b) Combined binary/decimal to SD radix–4/radix–5 recoding.

Figure 3. Partial product generation for SD radix–5.

wi,2 = hi,3 ∨ (hi,1 ⊕ (hi,2 · hi,0))
wi,1 = hi,3 · hi,0 ∨ hi,2 · hi,1 ∨ hi,0

wi,0 = hi,3 ∨ (hi,2 ⊕ hi,0)

Then a wired 1–bit left shift is performed over the recoded
multiplicand, obtaining the 2X multiple in BCD–4221.

The 5X multiple is obtained by a simple 3–bit left shift
of the multiplicand, but with resultant digits coded in BCD–
5421. Thus a digit recoding from BCD–5421 to BCD-4221
is performed using expressions

wi,3 = hi,3 ∨ hi,2

wi,2 = hi,3 · (hi,2 ∨ (hi,1 · hi,0))
wi,1 = hi,1 · hi,3 · (hi,2 ∨ hi,0)
wi,0 = hi,3 ⊕ hi,0

The generation of negative multiples is performed by
evaluating the 10’s complement of positive multiples as

−X =
d−1∑
i=0

(9 − Xi) · 10i + 1

For BCD–8421 this is performed by a digit addition of +6
followed by a bit–complement operation since 9 − Xi =
Xi + 6. For BCD–4221, a 10’s complement is performed
simply by bit–complementing the positive multiple, since
9 − Xi = Xi. Addition of the 10’s complement +1 is per-
formed in the partial product reduction tree by a tail encod-
ing bit, since each partial product is 4–bit (or at least 1–bit)
left shifted from the previous one. To avoid sign extension
and thus to reduce the complexity, the partial product signs
sgi are encoded in each leading digit position as

−
d−1∑
i=0

sgi10i+d = −102d +
d−1∑
i=0

(9 − sgi)10i+d + 1 =

= −102d +
d−1∑
i=1

(8 + sgi)10i+d + (sg010 + sg09)10d

Each partial product is at most of d + 3–digit length, due to
the three extra digit positions required for the encoded sign,
the tail encoding bit and the left shifting.

Fig. 4(a) shows the block diagram for the generation of
multiplicand multiples for SD radix–10 encoding. Multiple
4X is obtained as 2 × 2X . Multiple 3X is evaluated by a
carry propagate addition of multiples X and 2X in a deci-
mal quaternary tree [17]. The latency of the partial product
generation is constrained by the generation of 3X . The SD
radix–10 multiple selector of Fig. 1 uses the xor operation
to select positive or negative multiples as a function of the
SD radix–10 control signal ysi.

Fig. 4(b) shows the generation of multiples for the case
of decimal SD radix–4 recoding. Multiple 8X is obtained
as 2 × 2 × 2X , so the latency of multiplicand multiples
generation is about three times the latency of 2X operation.
On the other hand, generation of radix–5 multiples is faster
(approx. the latency of 2X) as it is shown in Fig. 4(c).

5. Reduction of partial products

To implement the algorithm for carry–save addition for-
mulated in Section 3 we propose a decimal 3:2 CSA that re-
duces 3 BCD–4221 digits to a carry and a sum BCD–4221
digits. This module consists of a 4–bit binary 3:2 CSA plus
a BCD–4221 to BCD–5211 digit recoder. From this mod-
ule we construct p:2 (p ≥ 3) decimal CSAs, optimizing the
critical path delay using fast inputs and outputs.

5.1. Decimal 3:2 carry-save adder

The block diagram of the proposed 4–bit 3:2 CSA is
shown in Fig. 5(a). The block labeled ×2 performs the
multiplication of the carry digit by 2. For decimal multipli-
cation the ×2 module is detailed in Fig. 5(b). It consist of
a BCD–4221 to BCD–5211 digit recoder and a 1–bit wired
left shift. A combined binary/decimal 3:2 CSA is shown in
Fig. 5(c). A 4–bit 2:1 multiplexer controlled by dM selects
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(a) Multiples for SD radix–10 encoding.
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Figure 4. Generation of multiplicand multiples.
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Figure 5. Proposed 3:2 CSA for decimal and combined binary/decimal.

the appropriate output. Different implementations for the
binary 3–2 CSA have been proposed. We consider the two
alternatives shown in Fig. 5(a). Since their inputs present
different delays we use the most suitable in every particular
case to minimize the final path delay of the CSA tree.

5.2. Decimal p:2 CSA trees

To reduce the partial products generated by the SD
radix–10 encoder we require a (d+1):2 decimal CSA while,
for the other two SD recodings, the reduction is accom-
plished by a 2d:2 decimal CSA. Fig. 6 shows two exam-
ples of a 16:2 decimal CSA trees that reduce 16 rows of
decimal digits to 2. The blocks labeled as 3:2 represent a
4–bit binary 3:2 CSA. The modules labeled as ×2 can be
either the decimal module of Fig. 5(b) or the combined bi-
nary/decimal module of Fig. 5(c). Thus these CSA trees
can perform both binary and decimal additions. In the first
implementation (Fig. 6(a)), every carry output is multiplied
by 2 before connecting to any other input. Since the carry
path is slightly more complex than the sum path, outputs of
block ×2 are connected to fast inputs of the 3:2 CSA. The

second implementation (Fig. 6(b)) reduces the hardware
complexity by adding the carry outputs of the previous tree
level before being multiplied by 2. Therefore it is neces-
sary to perform several ×2 operations in a row for some
paths. Both implementations present similar critical path
delays so, aside from wiring issues, the second implemen-
tation (Fig. 6(b)) is preferable, because of reduced hardware
complexity. A 32:2 decimal CSA tree, shown in Fig. 7(a),
uses the 16:2 CSA of Fig. 6(b) and a first level of decimal
4:2 CSAs shown in Fig. 7(b). This decimal 4:2 CSA was
designed for optimal carry and sum path delays, assuming
similar input delays. The ×2 block was described in Fig. 5.

6. Proposed Architectures

Based on the techniques described in the previous Sec-
tions we have designed a decimal radix–10 parallel mul-
tiplier and combined binary/decimal parallel multipliers for
both SD radix–4 and radix–5 recodings. We assume 16 dec-
imal digit (64–bit) input operands coded in BCD–8421.
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Figure 6. Proposed 16:2 combined binary/decimal CSAs.

6.1. SD radix–10 architecture

The dataflow of the proposed SD radix–10 architecture
is shown in Fig. 8(a). The generation of the 17 partial
products is performed by an encoding of the multiplier into
16 SD radix–10 digits and an additional leading bit as de-
scribed in Section 4. Each SD radix–10 digit controls a level
of 64–bit 5:1 mux and 64 xor gates that select the corre-
sponding multiple of the multiplicand. The block for the
generation of multiples was described in Fig. 4(a). The
alignment of partial products at the different decimal posi-
tions is performed by 4–bit wired left shifts. The array of 17
partial products is then reduced using the decimal 16:2 CSA
of Fig. 6(b) and an additional decimal 3:2 CSA level for the
highest columns or simpler CSAs trees for lower columns.

Before using a 128–bit decimal quaternary–tree (Q–T)
adder to obtain the final products, a +6 digit operation is re-
quired to produce the correct decimal digits for conditional
speculative decimal addition [17]. Sum operand digits are
first recoded from BCD–4221 to BCD–8421 before adding
+6. Combined recoding and digit addition of +6 has prac-
tically the same logical complexity than a single recoding.
The ×2 multiplication for the final decimal carry operand
is performed in parallel with the first stage of the decimal
carry–propagate adder (+6 digit addition). This ×2 multi-
plication uses a BCD–4221 to BCD–5421 recoder 3 to ob-

3This recoder presents a similar latency and hardware complexity as
the BCD–4221 to BCD–5221 recoder

Decimal 16:2. CSA

4:2

32 digits BCD-4221 (same weight)

(1)(2)

4:2 4:2 4:2 4:2 4:2 4:2 4:2 Decimal CSA 4:2

(a) Combined binary/decimal 32:2 CSA.
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Figure 7. Proposed 32:2 combined binary/decimal CSAs.

tain the operand expressed in BCD–8421. Furthermore, the
latency of the 128–bit Q–T decimal adder block shown in
Fig. 8 is similar to the equivalent 128–bit Q–T binary adder.

6.2. SD radix–4 and radix–5 architectures

The dataflow of the proposed combined binary SD
radix–4/decimal SD radix–4 (or radix–5) architecture is
shown in Fig. 8(b). We have different architectures depend-
ing on the scheme used to generate the partial products. A
decimal radix–4 or a combined binary/decimal SD radix–4
multiplier can be implemented using the recoder of Fig. 2
and the multiplicand multiple generator of Fig. 4(b). A dec-
imal radix–5 multiplier is implemented using the recoder
of Fig. 3(a) and the multiples generator of Fig.4(c), while
the combined binary radix–4/decimal radix–5 architecture
is implemented using modules of Fig.3(b) and Fig.4(c).

In all cases, 32 partial products are generated. The ar-
ray of 32 partial products is reduced using the proposed
32:2 CSA tree of Fig. 7(a) for the highest columns or
simpler CSAs for the other columns. The final carry–
propagate addition is performed with a 128–bit combined
binary/decimal Q-T adder [17].
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Figure 8. Dataflow of the proposed decimal parallel multipliers.

7. Evaluation and Comparison

We have used an area–delay model for static CMOS
gates based on logical effort to evaluate the area–delay fig-
ures of the proposed architectures and two representative
binary parallel multipliers [10, 13]. We also use this model
to compare our architectures with other proposals for deci-
mal multiplication. It considers input and output loads, but
neither interconnections nor gate sizing optimizations. In-
stead, we assume gates with the drive strength of the mini-
mum sized inverter using buffers for high loads. The delay
is given in FO4 units (delay of a 1x inverter with a fan–
out of four 1x inverters) and area values in minimum size
NAND2 gates units. We do not expect this model to give
accurate area–delay figures, due to the high wiring com-
plexity of parallel multipliers, however we consider that this
model provide rough area/delay ratios good enough to com-
pare different designs.

7.1. Evaluation of proposed multipliers

Evaluation results for partial product generation (16 dig-
its) are shown in Table 2. Area–delay figures for the
proposed SD radix–4 (radix–5) partial product generators
are comparable to the Booth radix–4 binary scheme. On
the other hand, the radix–10 implementation presents area–
delay figures similar to the binary Booth radix–8 partial
product generator. For decimal multiplication, SD radix–5

Architecture Delay Area
(tF O4) Ratio (NAND2) Ratio

Bin.radix–4 9 1.0 15000 1.0
Bin. radix–8 19 2.1 18000 1.2
Dec. radix–4 14 1.6 16000 1.1
Dec. radix–5 9.5 1.05 15000 1.0
Bin/Dec. radix-4 9/15.5 1.0/1.7 16500 1.1
Bin/Dec. radix–5 10.5/11 1.2/1.2 16000 1.1
Dec. radix–10 21 2.3 18000 1.2

Table 2. Area–delay for partial product generation.

based implementations are preferable to SD radix–4 imple-
mentations, while for combined implementations SD radix–
4 is the choice when a fast binary operation is required. Ta-
ble 3 shows the evaluation results for different binary and
decimal 16:2 and 32:2 CSA trees. We also provide results
for the binary 22:2 CSA implemented in the radix–8 mul-
tiplier using 3 levels of binary 4:2 CSAs and a binary 3:2
CSA level. Area and delay ratios for proposed p:2 CSA
trees are given with respect to the equivalent p:2 binary
CSA tree. Delay ratios are close to 1.4 (40% more latency)
in the case of decimal CSAs and 1.3/1.5 for combined bi-
nary/decimal CSAs. For area ratios, figures are close to 1.2
(20% more area) in the case of decimal implementations
and around 1.4 for combined implementations. Evaluation
results for parallel multipliers are shown in Table 4. From
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CSA Delay Area
(tF O4) Ratio (NAND2) Ratio

Bin. 16:2 20 1 13000 1
Dec. 16:2 29 1.4 15000 1.2
Bin./Dec. 16:2 27/31 1.3/1.5 17500 1.4
Bin. 22:2 25 – 18500 –
Bin. 32:2 27 1.0 25500 1.0
Dec. 32:2 38 1.4 30000 1.2
Bin./Dec. 32:2 35/41 1.3/1.5 33500 1.3

Table 3. Area–delay figures for partial product reduction.

Architecture Delay Area
(tF O4) Ratio (NAND2) Ratio

Bin. radix–4 50 1.0 43000 1.0
Bin. radix–8 57 1.15 39500 0.90
Dec. radix–4 70 1.4 49500 1.15
Dec. radix–5 65 1.3 49000 1.10
Bin/Dec. radix–4 59/75 1.2/1.5 54000 1.25
Bin/Dec. radix–4/5 61/71 1.2/1.4 53500 1.25
Dec. radix–10 72 1.45 40000 0.90
Proposed in [8] 92 1.85 69000 1.60

Table 4. Area–delay fig. for 16–BCD digit multipliers.

these results we conclude that the decimal radix–10 archi-
tecture is the appropriate option for high performance dec-
imal multiplications, since it shows a moderate area rather
attractive for a feasible commercial implementation. For
higher performance the decimal radix–5 multiplier is our
choice, but at the expense of 30% of delay overhead with
respect to a radix–4 binary implementation. When a com-
bined binary/decimal implementation is required, the pre-
ferred option is the radix–5 architecture for low latency dec-
imal multiplication and the radix–4 architecture for low la-
tency binary multiplication.

7.2. Comparison with previous proposals

So far, the only known fully parallel implementation of
a decimal multiplier is [8]. The recoding and the gener-
ation of partial products is practically similar to our SD
radix–5 recoding scheme except that [8] requires a 9’s com-
plement operation to obtain negative multiples −2X and
−X . For 16 decimal digits, 32 partial products are gener-
ated. The partial product reduction tree uses seven levels
of decimal CSAs (implemented by arrays of 4–bit decimal
CLAs) in parallel with two levels of decimal digit counters.
The final assimilation consists in a simplified direct deci-
mal carry–propagate addition. Synthesis results given in [8]
show a critical path delay of 2.65ns and an equivalent area
of 68.000 NAND2 gates, while ratios are 1.90 for delay and

1.50 for area respect to a radix–4 binary multiplier. The
last row of Table 4 shows the evaluation results using our
model and the comparison ratios with the binary radix–4
multiplier. We observe that our decimal multipliers have a
speed–up between 1.30 and 1.40 respect to [8] using at most
0.70 times its area.

To provide fair comparative results for sequential pro-
posals we have had to compare with techniques that can be
directly applied to decimal parallel multiplication. Repre-
sentative techniques are grouped in those proposed for par-
tial product generation and those proposed for partial prod-
uct reduction.

A. Partial product generation. Proposed methods
based on the generation of all the multiples of the multi-
plicand [2, 4] use directly the BCD–8421 multiplier dig-
its ([0, 9]) to select the corresponding multiplicand multiple
({0X, X, . . . , 9X}). The parallel generation of complex
multiples {3X, 6X, 7X, 9X} requires 4 carry–propagate
adders, while the selection of multiples uses more wiring
and circuitry than the proposed partial product generation.
Therefore, our proposed SD recodings of the multiplier sim-
plify the partial product generation by reducing the hard-
ware complexity of multiplicand multiples generation. On
the other hand, the high hardware requirements of the pro-
posals based on generation of partial products on demand
[9, 16], make them impractical for parallel partial prod-
uct generation. The signed–digit (SD) recoding of input
operands proposed in [5] reduces these high demands. The
partial product generation for 64–bit operands includes two
16–digit radix–10 SD recoders, 16×16 blocks for the gen-
eration of overlapped partial product digits and 16×16 re-
coders to transform these overlapped digits into signed dig-
its. The estimated hardware complexity is of more than
40,000 NAND2 gates and the estimated delay is 16 FO4.
Therefore, our proposed SD radix–10 and SD radix–5 par-
tial product generators require 2.5 times less hardware than
[5]. The proposed SD radix–5 is 1.7 times faster than [5] but
generates 32 partial products while the proposed SD radix–
10 scheme is 1.3 times slower than [5]. However, the par-
tial product reduction using our proposed decimal CSA tree
presents better figures than an equivalent SD tree adder in
terms of both area and delay as we show below. Instead of
a SD tree adder, a decimal CSA can be used for overlapped
partial product reduction, but additional hardware complex-
ity is required to manage signs for each digit position.

B. Partial product reduction. For partial product re-
duction, we have analyzed the methods described in Sec-
tion 2 that allow a carry free decimal tree implementation.
Proposed methods can be grouped in decimal signed–digit
(SD) trees [5, 14], decimal 4–bit CLA trees [4, 7] and deci-
mal CSA trees [6, 11]. Table 5 shows the area/delay estima-
tions for these different decimal tree adders and sixteen 64–
bit operands. The complexity of the signed–digit decimal
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CSA tree (16 operands) Delay Ratio Area Ratio
Binary 16:2 1 1
SD tree† [5, 14] 2.85 3.50
CLA tree † [4, 7] 2.10 1.65
BCD–8421 † [11] 2.20 3.10
Non Spec. ‡ [6] 1.85 1.75
Proposed 16:2 (Fig. 6(b)) 1.45 1.20
†Obtained from area/delay estimations of fast implementations
of a SD adder (one digit) [15], a 4–bit decimal CLA [12]
and a one digit BCD–8421 3:2 CSA [11]. Ratios given
respect area–delay figures of a 4–bit binary 3:2 CSA.
‡Obtained from synthesis evaluation results provided in [6].

Table 5. Area–delay figures for 64–bit CSA trees.

adder [15] leads to decimal signed—digit tree adders [5, 14]
with high area and delay figures, inappropriate for high
speed multioperand addition. The decimal CSA tree pro-
posed in [11] also presents high area and delay figures, due
to the multiple and complex corrections and digit additions
performed in the critical path. Decimal CLA trees [4, 7]
present good area/delay trade-offs, but for high speed mul-
tioperand decimal addition the non speculative CSA tree [6]
is a better choice. Compared with this implementation our
decimal CSA uses 45% less area and is 30% faster and is,
therefore, a good choice for high performance multioperand
addition with moderate area. Moreover, area and delay ra-
tios for the non speculative CSAs provided in [6] increase
with the number of input operands, while for our decimal
CSAs these ratios are roughly constant.

8. Conclusions

In this paper we have presented several techniques to im-
plement decimal parallel multiplication in hardware. We
propose three different SD encodings for the multiplier that
lead to fast parallel and simple generation of partial prod-
ucts. For partial product reduction we have developed a
decimal carry–save algorithm based on a BCD–4221 repre-
sentation of decimal digit operands. It makes possible the
construction of p:2 decimal CSA trees that outperform the
area–delay figures of existing proposals. Moreover, pro-
posed techniques also allow the computation of combined
binary/decimal multiplications with a moderate overhead.
We have proposed an architecture for decimal SD radix–10
parallel multiplication and two combined architectures for
binary/decimal SD radix–4 and binary SD radix–4/decimal
SD radix–5 multiplication. The area–delay figures from
a comparative study including conventional binary paral-
lel multipliers and other representative decimal proposals
show that our decimal SD radix–10 multiplier is an inter-
esting option for high performance with moderate area. For

higher performance or combined binary/decimal multipli-
cations the choices are the binary/decimal SD radix–4 or
radix–5 implementations.
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