
HAL Id: hal-00805242
https://hal.science/hal-00805242

Submitted on 3 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel modular multiplication on multi-core processors
Pascal Giorgi, Laurent Imbert, Thomas Izard

To cite this version:
Pascal Giorgi, Laurent Imbert, Thomas Izard. Parallel modular multiplication on multi-core proces-
sors. IEEE Symposium on Computer Arithmetic, Apr 2013, Austin, TX, United States. pp.135-142,
�10.1109/ARITH.2013.20�. �hal-00805242�

https://hal.science/hal-00805242
https://hal.archives-ouvertes.fr

Parallel modular multiplication on
multi-core processors

Pascal Giorgi
LIRMM, CNRS, UM2

Montpellier, France
pascal.giorgi@lirmm.fr

Laurent Imbert
LIRMM, CNRS, UM2

Montpellier, France
laurent.imbert@lirmm.fr

Thomas Izard
SILKAN

Montpellier, France
thomas.izard@silkan.com

Abstract

Current processors typically embed many cores running at high speed.
The main goal of this paper is to assess the efficiency of software parallelism
for low level arithmetic operations by providing a thorough comparison of
several parallel modular multiplications. Famous methods such as Barrett,
Montgomery as well as more recent algorithms are compared together with a
novel k-ary multipartite multiplication which allows to split the computations
into independent processes. Our experiments show that this new algorithm is
well suited to software parallelism.

Keywords

Modular multiplication, bipartite, tripartite, k-ary multipartite algorithms,
parallel arithmetic, multi-core

1. Introduction

Fast multiplication is critical for many applications [1],
in particular when many of them need to be computed in
sequence as for an exponentiation; an operation that is es-
sential for public-key cryptography (RSA, DH, Elgamal, etc.)
with operands ranging from 1000 to 15000+ bits depending
on the security level1. In these cases, multiplications are
performed in finite rings Z/PZ; an operation referred to as
modular multiplication. At the same time, current processors
include several arithmetic units, allowing to perform several
computations in parallel. Since exponentiation cannot be ef-
ficiently parallelized, it seems natural to investigate parallel
multiplication algorithms and their implementations on multi-
core processors.

Modular multiplication algorithms fall into two main
classes: so-called interleaved methods perform the computa-
tion as a combined multiply-and-modulo operation, providing
both high regularity and memory efficiency; they are gener-
ally preferred for hardware implementation. However, such
interleaved methods prevent the use of fast, sub-quadratic or
quasi-linear algorithms such as Karatsuba [2], Toom-Cook [3],
[4] and the FFT-based methods [5]. Hence, when dealing with
large operands and when memory is not a major concern, mod-
ular multiplication is implemented as two separate operations.
We refer the reader to [6, chapter 2] for a recent, excellent
survey.

1. See the ECRYPT II recommendations at http://www.keylength.com/en/3/

The most famous modular reduction algorithms are due
to Barrett [7] and Montgomery [8]. Interleaved variants of
Montgomery multiplication [9] do exist, but these are not
considered here. These two algorithms share many similarities.
In particular, they essentially consist of two integer multipli-
cations that are intrinsically sequential: the result of the first
one is needed for the second one. Although it is possible
to parallelize each integer multiplication, this implies thread
synchronizations whose cost should not be underestimated.

To the best of our knowledge, the first modular multipli-
cation/reduction algorithm where parallelism is possible at
the modular level was proposed in 2008 by Kaihara and
Takagi [10]. The so-called bipartite modular multiplication
uses two independent modular reduction algorithms, which
reduce the input from both the least and most significant digits
at the same time. In [11], Sakiyama et al. proposed a natural
extension of the bipartite algorithm that can be implemented
with three processes at the cost of some extra synchronizations.
We recall these algorithms and their complexity in Section 2.

The bipartite algorithm is designed for run on two inde-
pendent units. When more cores are available, it is possible
to parallelize the integer multiplications within the bipartite
algorithm, but as we shall see, the number of thread syn-
chronizations required by this approach induces an important
overhead in practice. In this paper, we propose a novel k-ary
multipartite algorithm which allows to split the computations
on more than two independent processes, without increasing
this parallelism overhead.

In Section 2, we recall the famous algorithms of Barrett and
Montgomery and we introduce partial variants which proves
useful for the sequel, in particular the bipartite algorithm is
very easily described. We present our novel algorithm and its
complexity in Section 3 and compare several parallelization
strategies in Section 4. We present some timings in Section 5
which show that our algorithm may be of interest for multi-
core processors.

2. Background

We consider multiple precision integers in radix β. Given
0 < P < βn and C ≥ 0, a modular reduction algorithm is a
method for computing R = C mod P . When C is the result
of a product AB we may talk about modular multiplication.

Very often, we want R to be fully reduced, i.e. less than P , but
in some cases partial reduction may be sufficient. (We make
the concept of partial reduction more precise below.) In the
next paragraphs, we recall the algorithms of Montgomery [8],
Barrett [7], as well as the more recent bipartite [10] and
tripartite [11] algorithms. We express their complexity in
terms of the number of integer multiplications. Following [6]
we use M(m,n) to denote the time to perform an integer
multiplication with operands of size m and n respectively, or
simply M(n) when both operands have the same size.

2.1. Montgomery modular reduction

Given 0 < P < βn and 0 ≤ C < P 2, Montgomery’s
algorithm computes the smallest integer Q such that C +QP
is a multiple of βn. Hence (C + QP)/βn is exact and
congruent to Cβ−n (mod P). If gcd(P, β) = 1, this Q-value
is computed as Q = µC mod βn, where µ = −P−1 mod βn

is precomputed. A detailed description is given in [6]. When
both the remainder and quotient are needed, Montgomery’s
method is also known as Hensel’s division. Note that µC and
QP can be evaluated using a low short product and a high
short product respectively. The complexity of Montgomery
reduction is 2M(n). By extension, the complexity of Mont-
gomery multiplication is 3M(n).

In order to simplify the presentation of the next algorithms,
let us now introduce a partial Montgomery reduction. Roughly
speaking, the goal of this partial reduction is to zero out the
t least significant digits of C. For C < βm, C < P 2, Algo-
rithm 1 computes R ≡ Cβ−t (mod P) for some 0 ≤ t ≤ n
such that 0 ≤ R < max(βm−t, βn). In other words, it takes
a value C of size m and computes R ≡ Cβ−t (mod P); a
value that is shorter than C by t digits. If t > m − n, the
return value R is the proper remainder, i.e. less than P .

Algorithm 1: PMR (Partial Montgomery Reduction)

Input: integers P,C, t, µ such that βn−1 < P < βn,
gcd(P, β) = 1, 0 ≤ C < P 2, C < βm, 0 ≤ t ≤ n
and µ = −P−1 mod βt (precomputed)

Output: R ≡ Cβ−t (mod P) with
0 ≤ R < max(βm−t, βn)

1: Q← µC mod βt

2: R← (C +QP) /βt

3: if R ≥ max(βm−t, βn) then R← R− P
4: return R

The proof of correctness is easily deduced from that of the
original Montgomery’s reduction algorithm. (See [6, Chapter
2]). Let us focus on its complexity: step 1 corresponds to
the multiplication of the t least significant digits of C with
the t least significant digits of µ. This step costs either
M (m, t) when m < t or M (t) otherwise. Step 2 involves
a multiplication of P and Q, of size n and t respectively.

As a result, the complexity is:

PMR(t, n,m) =

{
M (t,m) +M (n, t) if m < t

M (t) +M (n, t) otherwise
(1)

2.2. Barrett modular reduction

Barrett’s algorithm [7] computes an approximation of the
quotient bC/P c as Q = bbC/βnc ν/βnc , where ν =⌊
β2n/P

⌋
is precomputed. The remainder is then obtained

by computing C − QP , possibly followed by at most three
subtractions if one wants the remainder to be fully reduced.
The detailed description and proof of correctness can be found
in [6]. (See also [12] for a slightly different version.) Assuming
full products, the complexity of Barrett’s reduction is 2M(n)
(or 3M(n) for Barrett’s multiplication).

As for Montgomery’s algorithm, we introduce a partial
Barrett reduction algorithm (see Algorithm 2) which takes
C < P 2, C < βm as input and computes R ≡ C (mod P)
such that 0 ≤ R < βm−t with t ≤ m − n. The idea is to
zero out the t most significant digits of C. This is achieved
by computing the t leading digits of Q as:

Q =


⌊

C
βm−t

⌋ ⌊
βn+t

P

⌋
βt

βm−n−t (2)

Note that the factor ν = bβn+t/P c in the numerator replaces
Barrett’s original precomputed constant.

Algorithm 2: PBR (Partial Barrett Reduction)
Input: integers P,C, t, ν such that βn−1 < P < βn,

0 ≤ C < P 2, C < βm, 0 ≤ t ≤ m− n and
ν = bβn+t/P c (precomputed)

Output: R ≡ C (mod P) with 0 ≤ R < βm−t

1: Q← bC1ν/β
tcβm−n−t where C = C1β

m−t + C0 with
0 ≤ C0 < βm−t

2: R← C −QP
3: while R ≥ βm−t do R← R− βm−n−tP
4: return R

Lemma 1: Algorithm PBR is correct and step 3 is per-
formed at most twice.

Proof: Since all operations are just adding multiples of
P to C, it is clear R ≡ C (mod P). Therefore, we only need
to prove 0 ≤ R < βm−t. Since ν < βn+t/P , writing C as
C = C1β

m−t + C0 with 0 ≤ C0 < βm−t gives

Q ≤ C1ν

βt
βm−n−t ≤ C1β

m−t

P
≤ C

P

which implies R = C−QP ≥ 0. Given the definition of ν and
Q, we have ν > βn+t/P −1 and Q > (C1ν/β

t−1)βm−n−t.
Thus we also have νP > βn+t−P and βtQ > C1νβ

m−n−t−
βm−n, yielding

βtQP > C1νβ
m−n−tP − βm−nP

> βt(C − C0)− P (βm−n + C1β
m−n−t).

Since we have C0 < βm−t and C1 < βt we get

βtQP > βtC − βtβm−t − βt(2βm−n−tP).

Thus
R = C −QP < βm−t + 2βm−n−tP (3)

Finally, since P < βn we have βm−n−tP < βm−t. Hence, if
R ≥ βm−t then R−βm−n−tP ≥ 0. According to (3) at most
two subtractions are required to ensure 0 ≤ R < βm−t.

Regarding complexity: since βn−1 < P < βn we have
βt < βn+t/P < βt+1 and thus βt ≤ ν < βt+1. Hence,
step 1 is the multiplication of C1 of size t and ν of size
t+1 of asymptotic cost M (t). However, as we shall encounter
this situation in the k-ary multipartite multiplication algorithm
presented in Section 3, we note that if C = C ′1β

m−s + C0,
with 0 ≤ C0 < βm−t (i.e. if C1 has only s < t significant
digits in the left-most positions) then the cost of step 1 can
be reduced to M (s, t). Step 2 is a multiplication of P and Q,
more exactly with the t+1 leading digits of Q (the other ones
being all zeros). If one assumes that multiplying by powers of
β is free, the cost of step 2 is M (n, t). Hence the complexity:

PBR(t, n, s) =

{
M (t, s) +M (n, t) if s < t

M (t) +M (n, t) otherwise
(4)

2.3. Bipartite modular multiplication

The bipartite algorithm proposed by Kaihara and Tak-
agi [10] computes AB mod P for 0 ≤ A,B < P < βn

and gcd(P, β) = 1 using two independent, parallel pro-
cesses. One operand, say B, is split into two parts, say
B = B1β

n/2 + B0, such that AB mod P = (AB1β
n/2 mod

P + AB0 mod P) mod P . However, in that form the sizes
of the operands to be reduced are very unbalanced: 2n
for AB1β

n/2 versus 3n/2 for AB0. So the computation of
the former would take much longer to complete than the
latter. Instead, Kaihara and Takagi use a Montgomery-like
representation to compute the result of ABβ−n/2 mod P as(
AB1 mod P +AB0β

−n/2 mod P
)
mod P.

Using the previously defined PBR for AB1 mod P and
PMR for AB0β

−n/2 mod P , the complexity of the bipartite
algorithm is easily deduced. The two partial products AB0

and AB1 cost M(n, n/2) each. Adding the costs of PMR
and PBR with t = n/2 from (1) and (4) respectively yields a
total cost of 2M (n/2) + 4M (n, n/2).

2.4. Tripartite modular multiplication

The tripartite modular multiplication proposed by Sakiyama
et. al. in [11] is a natural extension of the bipartite algorithm,
where both operands are divided into two parts. Karatsuba’s

scheme is used to reduce the number of integer multiplications.
The tripartite algorithm evaluates ABβ−n/2 mod P as

(A1β
n/2 +A0)(B1β

n/2 +B0)β
−n/2 mod P

which is equivalent to

(X2β
n/2 + (X1 −X2 −X0) +X0β

−n/2) mod P

where X2 = A1B1, X1 = (A1 + A0)(B1 + B0) and
X0 = A0B0. The reductions of both X2β

n/2 and X0β
−n/2

can be expressed using PBR and PMR respectively. The
term X1 − X2 − X0, of size at most n, is reduced by
a small number of subtractions. Thus, the complexity of
the tripartite multiplication is 3M (n/2) for X0, X1, X2 plus
2M (n/2) + 2M (n, n/2) for the two reductions, leading to
an overall complexity of 5M (n/2) + 2M (n, n/2).

3. A novel k-ary multipartite modular multipli-
cation

In this section we introduce a generalization of the bipartite
and tripartite algorithms, which allows to break the compu-
tations into an arbitrary number of independent processes,
without increasing the parallelization overhead.
Let 0 ≤ A,B < P < βn and gcd(P, β) = 1. Splitting
A,B into k parts each as A =

∑k−1
i=0 Aiβ

ni/k and B =∑k−1
i=0 Biβ

ni/k, the modular product shifted to the right by
n/2 digits rewrites

ABβ−n/2 mod P =

k−1∑
i=0

k−1∑
j=0

AiBjβ
di,j mod P, (5)

where di,j = n(i + j)/k − n/2 and −n/2 ≤ di,j ≤ 3n/2 −
2n/k. Without loss of generality, we assume through the rest
of the paper that k|n; this can always be achieved by padding
operands with leading zeros.

As in the bipartite and tripartite algorithms, if di,j <
0, the products AiBj are reduced with PMR yielding
AiBjβ

di,j mod P . Similarly, if di,j > n − 2n/k, the terms
AiBjβ

di,j mod P are reduced with PBR. For 0 ≤ di,j ≤
n − 2n/k, we have AiBjβ

di,j < βn and no reduction is
necessary. Unlike the tripartite algorithm, all the terms are
fully independent. Hence the k-ary multipartite algorithm can
be implemented without synchronization. In Figure 1, we
illustrate the case where both operands are divided into k = 3
parts. The final result ABβ−n/2 is then obtained by summing
up modulo P all the partially reduced terms AiBjβdi,j .

3.1. Complexity analysis

In the form described above, the complexity of the k-ary
multipartite algorithm depends on the number of calls to PMR
and PBR as well as the exact number of significant digits of
their respective inputs.

Lemma 2: Let k > 0 denote the number of blocks of each
operand. Then, the number of calls to PMR (resp. PBR) is

β−n/2β0βnβ3n/2

A0

B0

A1

B1

A2

B2

A0B0

A0B1

A0B2

A1B0

A1B1

A1B2

A2B0

A2B1

A2B2

Figure 1: Illustrating the 3-ary multipartite multiplication

equal to k(k+2)/8 if k is even and (k+1)(k+3)/8 if k is odd.
Moreover, the number of partial products that do not need to
be reduced is (3k2− 2k)/4 if k is even and (3k2− 4k− 3)/4
is k is odd.

Proof: As explained above, PMR is used when di,j < 0,
which is equivalent to 0 ≤ i + j < k/2. Since i + j is an
integer, this is equivalent to 0 ≤ i+ j ≤ dk/2e− 1. Note also
that for every value i + j, there are exactly i + j + 1 partial
products AiBj . Similarly, calls to PBR occur for b3k/2c−1 ≤
i + j ≤ 2k − 2 and there are exactly 2k − 2 − (i + j) + 1
partial products for every value i + j. Therefore, the number
of calls to PMR (resp. PBR) is equal to 1+2+ · · ·+dk/2e =
dk/2e(dk/2e+1)/2. Replacing dk/2e by k/2 when k is even
and (k + 1)/2 when k is odd concludes the proof.

Analyzing those calls to PMR (resp. PBR), we note that
some computations are redundant. Indeed, for each AiBjβdi,j
to be reduced modulo P , we compute a Q-value whose goal is
to zero out some digits of that partial product. Thus, for a given
weight di,j , several Q-values are computed to zero out digits
of identical weight. Therefore, adding those partial products
of identical weight together before computing a single Q-
value is more efficient, at least theoretically. This is illustrated
in Figure 2 for k = 3. Note that this approach reduces the
number of calls to PMR (resp. PBR) from O(k2) to dk/2e.
A description of the k-ary multipartite is given in Algorithm 3.
Note that the partial products AiBj that need not be reduced
can either be added together into Cdi,j as in Algorithm 3 (line
2) or at the end into R. This latter option will be considered
in Section 4.4 to reduce the parallel complexity.

Theorem 1: The total arithmetic cost of the k-ary multipar-
tite modular multiplication is at most

k2M
(n
k

)
+ 2

d k2 e−1∑
i+j=0

(
M

(
ti,j ,

2n

k

)
+M (n, ti,j)

)
, (6)

where ti,j = n/2− n(i+ j)/k.

β−n/2β0βnβ3n/2

A0

B0

A1

B1

A2

B2

A0B0

A0B1 + A1B0

A0B2

A1B1

A2B0

A2B1 + A1B2

A2B2

Figure 2: Reducing the number of call to PMR and PBR in the
3-ary multipartite algorithm by accumulating partial products
of identical weight

Algorithm 3: k-ary multiplication
Input: integers k, P,A,B, µ, ν such that k ≥ 2, 0 < P < βn,

gcd(P, β) = 1, 0 ≤ A,B < P , µ = −1/P mod βn/2,
ν =

⌊
β3n/2/P

⌋
where A =

∑k−1
i=0 Aiβ

in/k and

B =
∑k−1
i=0 Biβ

in/k

Output : R ≡ ABβ−n/2 (mod P) with 0 ≤ R < P

1: foreach di,j from −n/2 to 3n/2− 2n/k by n/k do
2: Cdi,j ←

∑
AiBj such that di,j = n(i+ j)/k − n/2

3: if di,j < 0 then
4: Rdi,j ← PMR(P,Cdi,j , ti,j , µ mod βti,j),

where ti,j = −di,j
5: else if di,j > n− 2n/k then
6: Rdi,j ← PBR(P,Cdi,jβ

di,j , ti,j ,
⌊
ν/βn/2−ti,j

⌋
),

where ti,j = di,j + 2n/k − n
7: else
8: Rdi,j ← Cdi,j

9: R←
∑
Rdi,j

10: while R ≥ P do R← R− P
11: return R

Proof: First, notice that there are k2 products AiBj with
operands of size n/k, whence the term k2M(n/k). The other
multiplications come from the calls to PMR and PBR. As
seen in the proof of Lemma 2, there are exactly dk/2e calls to
PMR and dk/2e calls to PBR. Now, by adding together partial
products of identical weight, the operands to be reduced may
grow due to carry propagation. However, we note that these
carries are not an issue in PMR since they do not change
the number of digits to be reduced. For PBR, the problem
is easily bypassed by zeroing out the ti,j most significant
digits (as before), at the cost of a few extra subtraction at

the end. (Note that Barrett’s algorithm already requires a
few final subtractions anyway.) In practice, this extra number
of subtractions is negligible. As illustrated in Figure 2, the
number of digits to zero out with PMR is exactly −di,j .
Therefore, we have ti,j = −di,j = n/2 − n(i + j)/k.
Following (1), each call to PMR costs PMR(ti,j , n,mi,j),
i.e. at most M(ti,j , 2n/k) + M(n, ti,j). Symmetrically, for
each b3k/2c − 1 ≤ i + j ≤ 2k − 2, our algorithm per-
forms a partial Barrett reduction, whose cost is bounded by
M(ti,j , 2n/k) +M(n, ti,j). Hence the thesis.

Note that the complexity given in (6) does not take into
account the cost induced by the parallelism, in particular that
induced by thread synchronizations. In the next section, we
discuss several parallel implementation strategies.

4. Parallelization

In this section, we analyze and compare several parallel
implementations of the algorithms presented above. We give
the parallel complexity together with the number of synchro-
nizations between concurrent threads. The latter should not be
underestimated as it largely impacts practical performances.
In [13] the overhead due to synchronization is defined as
follows: if Ts is the sequential time for a section of code, and
Tp the time for the parallel version of this on p processors,
then the overhead is given by Op = Tp − Ts/p. Using their
benchmarking tools, we were able to estimate the number
of cycles of one synchronization on our architecture (Intel
Xeon X5650 Westmere running at 2.66 GHz). We obtained
the following results: 927 cycles for 2 threads, 1303 cycles
for 3 threads, 1559 cycles for 4 threads, 2221 for 6 threads
and 2571 for 8 threads.

In order to parallelize the algorithms without introducing
too much parallelism overhead, we heavily rely on a quadratic
scheme. The idea is to split the operands in θ1 (resp. θ2)
chunks and to perform θ1θ2 multiplications in parallel. Thus,
one can easily derive a parallel algorithm to multiply two n-
digits integers with a parallel complexity of M(n/θ1, n/θ2) on
T = θ1θ2 cores and 2 thread synchronizations occuring before
and after the summation of the partial products. Our parallel
complexities are solely based on that quadratic scheme. Note
that additions are not performed in parallel as it would require
too many synchronizations. Although sub-quadratic schemes
such as Karatsuba or Toom-Cook perform fewer operations,
they also introduce many synchronizations which make them
unsuitable in our context. They would however be of interest
for bigger operands.

In the next sections, we consider a model where the algo-
rithms receive synchronized data and output synchronized data
such that it is possible to call them multiple times in sequence
without extra synchronization.

In order to provide bounds and legible comparisons, we
consider the following assumption on integer multiplication,
which almost reflects the practical behaviour of integer mul-
tiplication except for quasi linear methods:

M(n1 + n2, n) =M(n1, n) +M(n2, n) (7)

4.1. Barrett/Montgomery:

Although intrinsically sequential, both algorithms can be
distributed on several arithmetic units by parallelizing the in-
teger multiplications. Using the quadratic scheme, both Barrett
and Montgomery’s algorithms have a parallel complexity of
3M(n/θ1, n/θ2) on T = θ1θ2 cores. Each integer multiplica-
tion requires 1 synchronization after the parallel evaluation
of the partial products, plus 1 synchronization at the end
(after the summation of those partial products), allowing to
move on to the next multiplication with synchronized data.
Hence, both Barrett and Montgomery algorithms require 6
synchronizations.

Note that these algorithms are symmetric and have the same
complexity. We verified experimentally that the performances
of both methods are indeed very close. For the sake of clarity,
we only give results for Montgomery’s multiplication.

4.2. Bipartite:

The Bipartite multiplication was designed to run in paral-
lel on two cores, with a parallel complexity of M(n/2) +
2M(n, n/2). However, if more than two arithmetic units are
available, the integer multiplications in PMR and PBR can
also be parallelized, using the strategies discussed above.
On T = θ1θ2 cores, splitting the operands in θ1 and θ2/2
chunks, the cost becomes M(n/2θ1, n/θ2)+2M(n/θ1, n/θ2),
or equivalently 2.5M(n/θ1, n/θ2) using (7) (assuming θ2 is
even). As for Montgomery, the bipartite algorithm requires 6
synchronizations.

4.3. Tripartite:

As seen in Section 2.4, the complexity of the tripartite
multiplication is 3M (n/2) for X0, X1, X2 plus 2M (n/2) +
2M (n, n/2) for the two reductions. X0, X1, X2 can be
computed in parallel on three cores in M(n/2). After a
synchronization, the two reductions can also be computed in
parallel in M(n/2) + M(n, n/2); each reduction involving
an extra synchronisation. As for the bipartite algorithm,
the integer multiplications can be parallelized if more units
are available at the cost of some extra synchronizations. On
T = θ1θ2 cores, splitting the operands in θ1 and θ2/3 chunks,
the cost becomes 2M(n/2θ1, 3n/2θ2) + M(n/θ1, 3n/2θ2),
or equivalently 3M(n/θ1, n/θ2) using (7) (assuming θ2 is
divisible by 3). The tripartite algorithm requires a total of
6 synchronizations. In [11] a variant with 5 tasks using two
levels of Karatsuba is also presented. Although potentially
of interest for hardware implementations, the number of syn-
chronizations makes it unsuitable in software for the targeted
operand sizes.

4.4. k-ary multipartite:

The k-ary multipartite multiplication offers more flexibility.
A naive implementation would require k2 threads, one for each

AiBjβ
di,j , with a parallel complexity equivalent to the cost

of the most expensive of them. That is, the computations of
A0B0β

−n/2 mod P using PMR or that of Ak−1Bk−1 mod P
using PBR of exact same cost. Although feasible for small
values of k, this strategy requires many cores and is very
unbalanced.
As pointed out in Section 3.1, it is more efficient to com-

bine the partial products of identical weight together and to
compute only one Q-value per weight as in Algorithm 3.
Indeed, we reach the same parallel complexity while reducing
the number of threads. This is achieved by observing that
the instructions in the foreach block of Algorithms 4 are
independent and can therefore be computed in parallel. To
further reduce the complexity, we postpone and reduce all
the products by P appearing in each PBR and PMR of
Algorithm 3 into a unique multiplication QP done, in parallel,
at the end. In order to do so, each thread computes Cdi,j
(as in Algorithm 3) together with the corresponding Q-value.
All these Q-values are then added together after a thread
synchronization. This is illustrated in Algorithm 4.

Algorithm 4: k-ary multiplication
Input: integers k, P,A,B, µ, ν such that k ≥ 2, 0 < P < βn,

gcd(P, β) = 1, 0 ≤ A,B < P , µ = −1/P mod βn/2,
ν =

⌊
β3n/2/P

⌋
where A =

∑k−1
i=0 Aiβ

in/k and

B =
∑k−1
i=0 Biβ

in/k

Output : R ≡ ABβ−n/2 (mod P) with 0 ≤ R < P

1: foreach di,j from −n/2 to 3n/2− 2n/k by n/k do
2: Cdi,j ←

∑
AiBj such that di,j = n(i+ j)/k − n/2

3: if di,j < 0 then
/* Compute Qdi,j as in PMR of Algo 3 */

4: Qdi,j ← −(Cdi,jµ mod βti,j)βn/2+di,j ,
where ti,j = −di,j

5: else if di,j > n− 2n/k then
/* Compute Qdi,j as in PBR of Algo 3 */

6: Qdi,j ←
⌊⌊
Cdi,jβ

di,j−n
⌋ ⌊
νβti,j−n/2

⌋
/βti,j

⌋
βn/2,

where ti,j = di,j + 2n/k − n
7: else
8: Qdi,j ← 0

9: Q←
∑
Qdi,j

10: R←
(∑

Cdi,jβ
n/2+di,j −QP

)
β−n/2

11: while R ≥ P do R← R− P
12: return R

Before stating our main theorem which gives an upper
bound on the parallel complexity of Algorithm 4, we present
the scheduling principle leading to this bound on two small
examples. Starting with k = 2, it is easy to see that computing
A0B0 plus its corresponding Q-value costs 2M(n/2); the
same applies for A1B1. This is equivalent to the cost of
computing the two products A0B1 and A1B0. Hence, the
2-ary multipartite can be implemented on three threads in
2M(n/2), plus the cost of computing QP in parallel after

a thread synchronization. For k = 3 (see Figure 2), A0B0

and its corresponding Q-value costs c0 =M(n/3)+M(n/2)
= 13M(n/6) according to (7). The cost is identical for A2B2

and its corresponding Q-value. Computing A0B1+A1B0 and
the corresponding Q-value costs c1 = 2M(n/3) +M(n/6)
= 9M(n/6). Symmetrically, evaluating A2B1+A1B2 and its
Q-value costs c1 as well. Since c1 < c0, those computations
can be performed in parallel on four cores in c0 = 13M(n/6).
The three remaining products A0B2, A1B1, A2B0 can be
computed on one thread in 3M(n/3) = 12M(n/6) < c0.
(Although it does not change the number of threads for
k = 3, those remaining partial products should be considered
independently as it allows a finer task scheduling for larger
values of k.) Hence, the 3-ary multipartite multiplication can
be implemented on five threads in 13M(n/6), plus the cost
of computing QP in parallel after a thread synchronization.
Using the same idea, Theorem 2 below gives an upper bound
on the parallel complexity of the k-ary multipartite algorithm
given in Algorithm 4. This theorem assumes that k|n, θ1|n and
θ2|n, which can always be achieved with padding.

Theorem 2: Let us assume that M(n1 + n2, n) =
M(n1, n) +M(n2, n). If T = θ1θ2 cores are available, then
using a quadratic scheme with k > 3 and T ≥ 3 dk/2e, the
parallel complexity of the k-ary multipartite multiplication is
at most

M
(n
k

)
+M

(
n

2
,
2n

k

)
+M

(
n

θ1
,
n

θ2

)
(8)

Proof: The term M (n/θ1, n/θ2) comes from the final
product QP , computed in parallel on θ1θ2 cores. So, let us
focus on the other terms. We start by proving that any of the
following computations can be computed in at most M(n/k)+
M(n/2, 2n/k):

(i) A0B0 and its corresponding Q-value,
(ii)

∑
`=i+j AiBj and its corresponding Q-value plus ` non-

reduced AiBj for 1 ≤ ` ≤ dk/2e − 1,
(iii) k + 1 partial products AiBj .

According to (1), the computation of A0B0 and its corre-
sponding Q-value costs M

(
n
k

)
+M

(
2n
k ,

n
2

)
, proving (i). Us-

ing (1) again, computing
∑
`=i+j AiBj for 1 ≤ ` ≤ dk/2e−1,

and the corresponding Q-values costs

(`+ 1)M
(n
k

)
+M

(
n

2
− `n

k
,
2n

k

)
(9)

Under our assumption on M(n), we have M
(
n
2 − `

n
k ,

2n
k

)
=

(k − 2l)M
(
n
k

)
. Adding the cost of ` products AiBj gives a

total of (k + 1)M
(
n
k

)
, whence (ii). Finally, using (7), it is

easy to see that M
(
2n
k ,

n
2

)
= kM

(
n
k

)
, so (iii) is proved too.

To complete the proof, we need to show that there exists
a scheduling with 3 dk/2e cores satisfying (8). According
to point (ii), all Cdi,j and Qdi,j such that di,j < 0 or
di,j > n − 2n/k can be computed in M

(
2n
k ,

n
2

)
+M

(
n
k

)
on 2dk/2e cores (this of course includes A0B0, Ak−1Bk−1
and their respective Q-values). This is achieved by assigning
one core per Cdi,j , Qdi,j . Furthermore, the same scheduling
allows to perform ` extra AiBj per core without increasing

the cost. (Note the `-values depends on i+j, hence are not the
same for all the cores.) The remaining terms correspond to the
products AiBj such that 0 ≤ di,j ≤ n− 2n/k. Their number
is exactly Nk = k2 − 2

∑dk/2e−1
l=0 2l + 1 = k2 − 2 dk/2e2.

According to (iii), one can handle k+1 partial products AiBj
on one core in the given time. Replacing k by dk/2e+ bk/2c
in the previous equation, gives Nk ≤ k bk/2c < (k+1) bk/2c.
Hence, bk/2c cores are needed for the Nk remaining products,
which concludes the proof.

Corollary 1: Let T = θ1θ2. Let k = 2T/3. Then, assuming
M(n1+n2, n) =M(n1, n)+M(n2, n), the parallel complex-
ity of the k-ary multipartite algorithm is bounded by

(2.5 +
9

4θ1θ2
)M

(
n

θ1
,
n

θ2

)
(10)

and the number of thread synchronizations is exactly 3.
Proof: Using (8) with k = 2θ1θ2/3, the proof is imme-

diate.
As illustrated in Section 5, we observed that synchroniza-

tions are very expensive and should be limited. In particular for
small operands, when the relative cost between a synchroniza-
tion and a product is very large. In those cases, one may prefer
not to gather all Q-values together before computing QP .
Each thread then has to compute its own product QP which
costs M

(
n
2 − `

n
k , n

)
. This, of course drastically increases

the parallel complexity but saves 1 synchronization, possibly
leading to significant speed-ups in practice (see Section 5).
For completeness, the parallel complexity of this approach
is (1.5 + 9

4θ1θ2
+ θ1θ2

2)M
(
n
θ1
, nθ2

)
. In the next section, we

refer to Algorithm 4 as k-ary multipartite version 1, and
to Algorithm 3 as version 2. In Table 1 we summarize the
parallel complexities and the number of synchronizations of
the presented parallel modular multiplication algorithms.

Algorithm Parallel complexity on θ1θ2 cores # synch.

Montgomery/Barret 3M
(
n
θ1
, n
θ2

)
6

Bipartite 2.5M
(
n
θ1
, n
θ2

)
(∗) 6

k-ary multipartite v1 (2.5 + 9
4θ1θ2

)M
(
n
θ1
, n
θ2

)
3

k-ary multipartite v2 (1.5 + 9
4θ1θ2

+ θ1θ2
2

)M
(
n
θ1
, n
θ2

)
2

Table 1: Parallel complexity of various modular multiplication
algorithms. (∗) when θ1θ2 = 2, the bipartite algorithm requires
only 2 synchronizations

5. Comparisons

As already mentioned, software parallelism induces a cost
that is only amortized when computation time is important.
This extra cost comes from thread launching (clone(),
fork()), thread synchronization (wait()) and memories
operations (placement, transfers and cache misses). This fact
motivates our study of a parallel modular multiplication algo-
rithm which minimize this impact.

In order to validate our theoretical study, we developed
a C++ library implementing the algorithms presented in the
previous sections on a shared memory MIMD architecture.

In the following, we discuss some benchmarks of this library
on an architecture embedding two Intel Xeon processors
X5650 Westmere, with six cores each, running at 2.66 GHz.
Our implementation is based on the GNU multiple precision
(GMP) library version 5.0.2 [14] and the OpenMP API frame-
work. Compilation was done with the Intel C++ compiler
version 10. Our implementation is generic in the operands’
sizes. The sequential integer operations computed by each
parallel task are the ones from GMP (e.g. product is done
with mpn_mul). For each algorithm and number of cores, we
optimized the task scheduling in order to minimize the parallel
complexity and to reduce the number of synchronizations.
When possible, parallel tasks were gathered on the same
processor to avoid data movement through the system bus.
Our timings are summarized in Table 2.

In order to provide a universal reference, we give the time
to perform one modular multiplication on one thread, i.e. a
sequential implementation. The row entitled “Best seq.” in
Table 2 always corresponds to the fastest option between
our sequential implementation of Montgomery and GMP
(mpn_mul, mpn_mod). For parallel integer multiplications,
we implemented both the quadratic scheme and Karatsuba
whenever possible, and observed that the later was only
advantageous when the number of cores is a multiple of 3.
In the other cases, the quadratic scheme was always faster.
As in the sequential case, our implementations always call the
best parallel integer multiplication strategy available.

The bound given in the corollary of Theorem 2 assumes
that k = 2T/3, where T is the number of cores. For 3 and 6
cores, and inputs of size less than 12000 bits, the best timings
were indeed obtained with the k-ary multipartite algorithm
with k = 2 and k = 4 respectively. When the number of
cores did not allow an optimal mapping, we observed that
choosing k > 2T/3 allows a finer scheduling resulting
in faster implementations. On 4 and 8 cores, our timings
correspond to the 4-ary and 8-ary multipartite algorithms
respectively, where extra AiBj have been scheduled by hand.

For the larger operands, we also observed that the bipartite
algorithm was the fastest. This is not surprising since the
parallel complexity given in Table 1 is always better than the
other algorithms and since the parallelism overhead (a constant
factor) becomes negligible. The fact that the k-ary multipartite
catches up with the bipartite for increasing T is not surprising
either, this reflects the complexity given in Table 1.

For the smaller operands, however, the cost induced by
the parallelism is important. This explains why the k-ary
multipartite version 2 which only needs 1 synchronization is
faster than version 1 which requires 2.

Finally, one should observe that it may be advantageous not
to use all the cores available. For example, if one considers
2048-bit operands and if 8 cores are available, one can observe
that the 2-ary multipartite version 2 on 3 cores is faster.

sizes (in bits)

Algorithm 1024 1536 2048 3072 4096 6144 8192 12288 16384

1 Thread Best seq. 1.32 2.53 4.13 8.18 13.06 26.03 41.10 79.76 125.18

3 Threads Montgomery 3.63 4.15 4.95 6.71 8.84 13.42 20.11 33.96 50.50
2-ary multi. v1 2.59 3.23 3.83 5.49 7.43 12.24 18.26 32.17 48.40
2-ary multi. v2 1.47 2.04 2.86 4.84 7.45 12.91 19.95 37.59 58.48

4 Threads Montgomery 3.73 4.34 4.94 6.54 9.60 13.05 19.09 33.09 49.77
Bipartite 3.93 4.08 4.69 6.27 7.94 12.13 17.12 29.60 44.65
4-ary multi. v1 2.75 3.05 3.68 5.06 7.07 11.40 17.38 31.04 48.16
4-ary multi. v2 1.68 2.14 2.90 4.74 7.20 13.43 20.60 37.88 60.99

6 Threads Montgomery 4.66 5.10 5.71 6.70 8.72 12.18 17.30 26.82 41.94
Bipartite 4.82 5.20 5.39 6.45 7.88 10.99 15.16 22.92 34.58
4-ary multi. v1 3.32 3.47 3.83 5.13 6.56 9.72 14.48 24.13 36.22
4-ary multi. v2 1.95 2.42 3.03 4.96 6.91 12.00 17.82 32.08 49.84

8 Threads Montgomery 7.62 7.99 8.59 10.51 13.01 16.39 20.18 30.59 42.36
Bipartite 10.12 9.98 10.33 11.05 12.25 15.45 18.90 26.61 36.58
8-ary multi. v1 5.85 6.03 6.44 7.57 8.87 12.18 16.06 25.43 37.80
8-ary multi. v2 3.98 4.29 4.92 6.59 8.84 13.81 19.88 33.92 51.10

Table 2: Timings (in µs) for several parallel modular multiplication algorithms on 1, 3, 4, 6 and 8 cores, for operands ranging
from 1024 to 16384 bits. For a given number of cores and a given size, the gray cells represent the fastest algorithm

6. Conclusions

The experiments presented in this article show that paral-
lelization of modular multiplication is relevant at a software
level. Increasing the number of core improves the performance
but a full usage of the cores may not be the better strategy
for certain sizes. For operands smaller than 213 bits, it seems
preferable to use synchronization-friendly algorithms rather
than the one with the best complexity. Our k-ary multipartite
algorithm, which is a synchronization-friendly generalization
of the bipartite and tripartite algorithms, is therefore a good
alternative.

For larger sizes, the bipartite method clearly offers the
best alternative since the arithmetic complexity dominates the
parallelism overhead. However, as soon as the number of core
increases, the gain of the bipartite over our k-partite algorithm
is postponed to larger integers.

The best results for the k-ary multipartite algorithm were
obtained thanks to the scheduling proposed in Theorem 2 com-
pleted with hand optimizations when the number of cores did
not allow a direct mapping. Generalizing these optimizations
would allow to provide an automatic scheduler for efficient
parallel modular multiplication on any number of cores.

It seems also interesting to consider the modular reduction
problem rather than modular multiplication. An idea would be
to use an heterogeneous splitting of the operand to be reduced.
Modular squaring should be also of interest since it is a major
operation for exponentiation.

Acknowledgments

We would like to thank the anonymous referees for their
careful reading and their very useful comments in the prepa-
ration of the final version of the manuscript. This work has

been supported by the ANR under the grants HPAC (ANR-
11-BS02-013), CATREL (ANR-12-BS02-001) and PAVOIS
(ANR-12-BS02-002).

References

[1] D. J. Bernstein, Algorithmic Number Theory. MSRI Publications, 2008,
vol. 44, ch. Fast multiplication and its applications, pp. 325–384.

[2] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” Soviet Physics—Doklady, vol. 7, no. 7, pp. 595–596, Jan.
1963.

[3] A. L. Toom, “The complexity of a scheme of functional element
realizing the multiplication of integers,” Soviet Mathematics, vol. 3, pp.
714–716, 1963.

[4] D. Zuras, “More on squaring and multiplying larges integers,” IEEE
Transactions on Computers, vol. 43, no. 8, pp. 899–908, Aug. 1994.

[5] A. Schönage and V. Strassen, “Schnelle multiplikation großer zahlen,”
Computing, vol. 7, pp. 281–292, 1971.

[6] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic. Cam-
bridge University Press, 2010.

[7] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Advances
in Cryptology, CRYPTO’86, ser. Lecture Notes in Computer Science, vol.
263. Springer, 1986, pp. 311–326.

[8] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, Apr. 1985.

[9] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr., “Analyzing and comparing
Montgomery multiplication algorithms,” IEEE Micro, vol. 16, no. 3, pp.
26–33, Jun. 1996.

[10] M. E. Kaihara and N. Takagi, “Bipartire modular multiplication method,”
IEEE Transactions on Computers, vol. 57, no. 2, pp. 157–164, 2008.

[11] K. Sakiyama, M. Knezevic, J. Fan, B. Preneel, and I. Verbauwhede,
“Tripartite modular multiplication,” Integration, the VLSI Journal, 2011,
in Press, Corrected Proof. DOI: 10.1016/j.vlsi.2011.03.008.

[12] A. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC Press, 1997.

[13] “The EPCC OpenMP microbenchmarks v3.0,” available at
http://www2.epcc.ed.ac.uk/computing/research activities/openmpbench/
openmp index.html.

[14] T. Granlund, “GMP, the GNU multiple precision arithmetic library,”
http://www.swox.com/gmp/.

