
Relation collection for the Function Field Sieve

Jérémie Detrey, Pierrick Gaudry and Marion Videau
CARAMEL project-team, LORIA, INRIA / CNRS / Université de Lorraine, Vandœuvre-lès-Nancy, France

Email: {Jeremie.Detrey, Pierrick.Gaudry, Marion.Videau}@loria.fr

Abstract—In this paper, we focus on the relation collection
step of the Function Field Sieve (FFS), which is to date the best
algorithm known for computing discrete logarithms in small-
characteristic finite fields of cryptographic sizes. Denoting such
a finite field by Fpn , where p is much smaller than n, the
main idea behind this step is to find polynomials of the form
a(t) − b(t)x in Fp[t][x] which, when considered as principal
ideals in carefully selected function fields, can be factored into
products of low-degree prime ideals. Such polynomials are
called “relations”, and current record-sized discrete-logarithm
computations need billions of those.

Collecting relations is therefore a crucial and extremely
expensive step in FFS, and a practical implementation thereof
requires heavy use of cache-aware sieving algorithms, along
with efficient polynomial arithmetic over Fp[t]. This paper
presents the algorithmic and arithmetic techniques which were
put together as part of a new public implementation of FFS,
aimed at medium- to record-sized computations.

Keywords-function field sieve; discrete logarithm; polynomial
arithmetic; finite-field arithmetic.

I. INTRODUCTION

The computation of discrete logarithms is an old problem
that has received a lot of attention after the discovery
of public-key cryptography in 1976. Indeed, together with
integer factorization, it is the most famous computationally
hard problem on which the security of public-key algorithms
relies. We are interested here in the case of discrete loga-
rithms in finite fields of small characteristic, for which the
best algorithm known is the function field sieve (FFS) first
introduced by Adleman [1] in 1994. Since then, and until
2005, there have been several works on this algorithm, both
on the theoretical side [2], [3], [4] and on the practical
side [5], [6], [7]. This culminated with a record set by
Joux and Lercier who computed discrete logarithms in F2613

and surpassed the previous record set by Thomé [8] in
2001 using Coppersmith’s algorithm [9]. A long period with
essentially no activity on the topic has followed; it ended
recently with a new record [10], [11] set over F36×97 , which
took advantage of the fact that the extension was composite;
this particular case is of practical interest in pairing-based
cryptography.

The FFS algorithm can be decomposed into several steps.
Two of them are by far the most time-consuming: the
relation collection step and the linear algebra step. While
the latter is not specific to FFS—it is a sparse-matrix kernel
computation that is essentially the same as for other discrete-
logarithm algorithms based on combining relations—the re-
lation collection, on the other hand, is specific to each family

of algorithms. The purpose of this paper is to present a new
implementation of this important step for FFS, targeting
in our case finite fields of small characteristic with no
special Galois structure. We choose two benchmarks in the
cases of characteristic 2 and 3, that are the most interesting
for cryptographic applications. The extension degrees were
chosen so as to match the “kilobit milestone”: we consider
F21039 and F3647 . Note that the factorization of 21039 − 1
has been completed only recently [12]. This is relevant
to our benchmark as, among others, an 80-digit (265-bit)
prime factor was exhibited: had 21039− 1 been a product of
only moderately large primes, there would have been better
algorithms than FFS for computing discrete logarithms in
F21039 .

In the literature, many implementation details about the
relation collection are merely sketched. In this article, we
wish to explain as many of them as possible. Some of them
are “folklore” or easy adaptations of techniques used in
the Number Field Sieve (NFS) for integer factorization. For
instance, the notion of skewness, or the use of bucket sorting
during sieving that we describe below will come as no
surprise to the NFS cognoscenti. However, to the best of our
knowledge, some techniques go beyond what was previously
known. We mention two of them. The sieving step starts
with a phase called norm initialization, where a large array is
initialized with the degree of a polynomial, which is different
for each cell. In several implementations, only an approxi-
mation of the size of the norm is used, in order to save time.
We propose several strategies that allow us to get an exact
result in this step, at a very reasonable computational cost.
This includes using an analog of floating-point arithmetic
for polynomials. Another original contribution lies in the
heart of the relation collection, during a sieving step, which
is similar in essence to the sieve of Eratosthenes: in the
same large array as above, we have to visit all the positions
that verify a specific arithmetic property. In FFS, the set of
these positions forms a vector space for which we give the
general form of a basis, along with a method to compute it
quickly following some Euclidean algorithm. We also adapt
the well-known Gray code walk to our case where we are
only interested in monic linear combinations.

To complement the description of our implementation,
we make it freely available as part of the CADO-NFS
project [13]. It is used to propose runtime estimates for
the relation collection step in the two kilobit-sized finite
fields that we target. It reveals that these sizes are easily



reachable with moderate computing resources; it is merely
a matter of months on a typical 1000-core cluster. The
question of the subsequent linear algebra step is however
left open for future research. Still, it is already fair to claim
that the cryptosystems whose security relies on the discrete-
logarithm problem in a small-characteristic finite field of
kilobit size provide only marginal security. Even more so,
because the relation collection and the linear algebra steps
are to be done just once and for all for a given finite field.

Outline: The paper is organized as follows. A short
overview of the function field sieve, along with a focus on
its relation collection step, is first given in Section II. Sec-
tion III then highlights several key aspects of the proposed
implementation, while low-level architectural and arithmetic
issues are addressed in Sections IV and V, respectively.
Timing estimates for two kilobit-sized finite fields are pre-
sented in Section VI, before a few concluding remarks and
perspectives in Section VII.

II. COLLECTING RELATIONS IN FFS

A. A primer on the FFS algorithm

The principle of the Function Field Sieve algorithm is
very similar to that of the Number Field Sieve algorithm
for computing discrete logarithms in prime fields, where the
ring of integers Z is replaced by the ring of polynomials
K[t], with K a finite field of size #K = κ.

Assume that we want to compute discrete logarithms in
K, a degree-n algebraic extension of the base field K, of car-
dinality #K = κn. We consider two polynomials f and g in
K[t][x] such that their resultant in the x variable contains an
irreducible factor ϕ(t) of degree n. The following diagram,
where all maps are ring homomorphisms, is commutative:

K[t][x]/f(x, t)
K[t][x] K[t]/ϕ(t) ∼= K

K[t][x]/g(x, t)

The key to FFS is to study the behavior of an element of the
form a(t)− b(t)x in this diagram. Along the two paths, or
sides, the element is tested for smoothness in the appropriate
algebraic structures. Pushing the factored versions into the
finite field K, we get a linear relation between the discrete
logarithms of “small” elements. Once enough relations have
been collected, they are put together to form a matrix for
which a kernel element gives the discrete logarithms of
these “small” elements. Finally, the logarithm of a given
element is obtained by a procedure called special-q descent
that uses again the diagram to produce a relation between the
logarithm of the given element and the logarithms of smaller
elements, and recursively so until we can relate them to the
known logarithms of the “small” elements.

The smoothness notion is as follows. The element a(t)−
b(t)x is mapped to an element of K[t][x]/f(x, t) (substitute
g for f for the other side), which is viewed as a principal

ideal in the ring of integers of the corresponding function
field K(t)[x]/f(x, t). Since this is a Dedekind domain,
there is a unique factorization in prime ideals. And if these
prime ideals have degrees less than a parameter called the
smoothness bound, we say that the principal ideal is smooth.
Just like with NFS, complications arise from the fact that
the ring of integers is not necessarily principal and that
there are non-trivial units. The Schirokauer maps and the
notion of virtual logarithms [14] are the tools to solve these
complications; we do not need to worry about this here,
since it does not interfere with the relation collection step.

B. Overview of the relation collection step

In this paper, we focus on this so-called relation collection
step: given a smoothness bound—which might be different
for each side—the goal is to produce (a, b) pairs, called
relations, that simultaneously yield smooth ideals for both
sides. Solving the resulting linear system requires finding at
least as many relations as there are prime ideals of degree
less than the smoothness bound.

The relation collection step is independent of the other
steps in the FFS algorithm as long as we allow for any kinds
of polynomials f and g. This is the most time-consuming
part, both in practice and in theory: optimizing the pa-
rameters for this step will optimize the overall algorithm.
We remark however that the linear algebra step has a high
space complexity that can become a practical issue. The
usual approach to circumvent this problem is to let the
relation collection run longer than what theory alone would
recommend. This produces a larger set of relations, and
there exist algorithms for selecting among them a subset
that is better suited for linear algebra than the original set
of relations obtained without this oversieving strategy.

Ideals and norms: The highbrow description of the
smoothness notion deals with ideals. Without loss of gener-
ality, we focus here on the side of the diagram corresponding
to the polynomial f , the other side being similar. For our
purposes, it is enough to see a prime ideal p as a pair of
polynomials (p(t), r(t)), where p(t) is a monic irreducible
polynomial and r(t) is a root in x of the polynomial f(x, t)
modulo p(t). More formally, the notation p = (p(t), r(t))
represents the ideal 〈p(t), x− r(t)〉. Restricting to ideals of
that form means that, in this article, we ignore the places at
infinity and the problems that ramification can cause. Our
implementation takes care of these more complicated cases,
but we prefer to keep the presentation simple.

An element (a, b) that potentially leads to a relation
must be tested for smoothness. It means that we want the
corresponding principal ideal on the f side to be the product
of “small” prime ideals. Here, we face a terminology issue,
since in our setting the good notion of size of a prime ideal
is the degree of its p polynomial. Therefore, we are going
to talk about the degree of a prime ideal p = (p, r) as the
degree of p (even though, formally, the degree of p is one).



The factorization of the principal ideal is dictated by the
factorization of its norm which, in our case, takes a simple
form. Denoting by F (X,Y, t) the polynomial obtained by
homogenization of f(x, t) with respect to x, the norm
corresponding to a pair (a, b) is F (a, b), a polynomial in t.
Then, to each irreducible factor p of F (a, b) corresponds a
prime ideal p = (p, r) that divides the principal ideal, and
such that r ≡ a/b (mod p). (We have dropped the variable
t to keep our notation simple.) As a consequence, a simple
restatement of the relation search task is to find (a, b) pairs
for which the two norms F (a, b) and G(a, b) have all their
irreducible factors in K[t] of degree less than a given bound.

An important remark is that only primitive pairs are
interesting, in the sense that if (a, b) gives a valid relation,
then multiplying both a and b by the same small factor yields
another relation which, however, is essentially the same and
is of no use to the next steps of the algorithm. Therefore,
we are only interested in the case where gcd(a, b) = 1
and, furthermore, where (say) b is monic to take care of
multiplications by constants.

Sieving and cofactorization: In order to test the smooth-
ness of the norms corresponding to a pair (a, b), we chose
a two-pass strategy as is now usual for NFS. The first pass
consists in using a sieving process à la Eratosthenes in order
to efficiently remove the contribution of the prime ideals
of degree up to a given factor base bound—chosen to be
smaller than the actual smoothness bound—to the norm of
the principal ideals that they divide. All of those (a, b) pairs
such that what then remains of their norm is small enough
will have better chances to completely factor as products of
prime ideals of degree less than the smoothness bound. As
such, the promising pairs which have survived sieving on
both sides are selected to undergo a full-blown smoothness
test in the second pass of the algorithm, which is sometimes
called cofactorization or large prime separation.

Note that there is no need to keep track of the actual norm
of the principal ideal in the first pass. In fact, it is enough
to consider only the degree of the norm here, to which
we simply subtract deg p for every prime ideal p = (p, r)
which divides the corresponding principal ideal. Also note
that, because of the sieving techniques used in the first pass,
we cannot process each pair (a, b) one after the other: the
sieving region has to be considered as a whole and allocated
a priori as a large array, delimited by upper bounds on the
degrees of a and b, and in which all the (a, b) positions will
be considered simultaneously by the sieving process.

III. ORGANIZATION OF THE COMPUTATION

A. Sieving by special-q

Since the set of (a, b) pairs that are tested for smoothness
is very large, we have to subdivide this search space into
pieces that are handled separately. Following the current
trend for NFS and FFS, we split the (a, b) space according to
so-called special-q lattices. A special-q is just a prime ideal

q = (q, ρ) corresponding to either the f or the g side, and
the q-lattice is exactly the set of (a, b) pairs for which the
principal ideal on this side is divisible by q. This corresponds
to the set of (a, b) pairs such that bρ ≡ a (mod q), which is
a K[t]-lattice of dimension 2 and determinant q. The relation
search is then seen as a set of independent tasks, each task
consisting in finding relations in a given q-lattice.

Basis of the q-lattice: Let q = (q, ρ) be a special-q. A
basis of the q-lattice is given by the two vectors (q, 0) and
(ρ, 1). It is a very unbalanced basis, and we can improve
it using Gaussian lattice reduction to obtain two vectors u0
and u1 whose coordinates have a degree about half of the
degree of q. We then look for relations coming from (a, b)
pairs of the form iu0 + ju1, with i of degree less than I
and j of degree less than J . This leads to a and b of degree
approximately equal to max(I, J) + 1

2 deg q.
Skewness: There are cases where the polynomials f and

g are skewed, in the sense that the degree in t of the
xi coefficients decreases when i increases. In that case, a
relevant search space for (a, b) that yields norms of more or
less constant degree is a rectangle: the bound on the degree
on a must be larger than the bound on the degree of b.
The difference of these two bounds on the degrees is called
the skewness. In the q-lattice, to obtain the target skewness
adapted to f and g, the Gaussian lattice reduction is modified
so that both vectors u0 and u1 have a difference of degrees
between their coordinates that is close to the skewness. In
the implementation, this translates into a minor change in
the stopping criterion of the lattice reduction.

From now on, we consider that the sieving space for a
given special-q is a κI by

(
κJ−1
κ−1 + 1

)
rectangle in the (i, j)

plane, covering all the polynomial pairs of degrees less than
I and J , respectively, and such that the j coordinate is either
0 or monic. Indeed, if both i and j are multiplied by the same
constant, so are a and b and we get duplicate relations. The
correspondence with (a, b) is of the form a = ia0 + ja1 and
b = ib0 + jb1, where u0 = (a0, b0) and u1 = (a1, b1) is the
skew-reduced basis of the q-lattice.

In our current implementation, I and J are fixed and
equal. It could make sense to let them vary, for instance
giving them a smaller value for larger special-q’s so as to
keep more or less always the same bound on the (a, b) pairs.

B. Initializing the norms

Initializing the norm at a given position is a simple task;
however it can become costly if done naively. One could use
an estimate of the degree (e.g., an upper bound) but it would
impact the number of positions to test for smoothness by
either losing or keeping too many positions. To avoid these
drawbacks, we decided to work on being precise and even
exact on the degree computation at a reasonable cost.

We present our method with the polynomial f ; it works
similarly for the polynomial g. Recall that F denotes the
homogenization of the polynomial f . For each special-q, we



start by computing a linear transformation on f to get fq
such that Fq(i, j) = F (a, b). We then have to compute the
degree (in t) of Fq(i, j) and put it into the array to initialize
the corresponding position. We assume from now on that the
loop is organized by rows, i.e., that j is fixed and i varies.

Saving many degree computations: Recall that, for a pair
(i, j), the norm that has to be tested for smoothness is given
by Fq(i, j) =

∑
0≤k≤d fq,ki

kjd−k, where each term is a
polynomial in t of degree deg fq,k +k deg i+ (d−k) deg j.
When a position (i0, j0) has been initialized, it is possible to
deduce the initialization of many following positions (i0 +
i′, j0) since for small values of i′ the degree of the norm
does not change. To precisely characterize these i′, we define
the notion of gap.

Definition 1. With the previous notation, the gap of Fq at
(i0, j0), denoted by γ, is defined by γ = −1 if only one term
fq,ki

k
0j
d−k
0 has maximal degree and, otherwise, by

γ = max
0≤k≤d

deg
(
fq,ki

k
0j
d−k
0

)
− deg (Fq(i0, j0)) .

If there is only one term fq,ki
k
0j
d−k
0 of maximal degree,

this property will not change as long as (i0 + i′) has the
same degree as i0. Thus, if we enumerate the polynomials
in an order that respects the degree, we get the degree of
the norm for free until the degree of (i0 + i′) increases.

If there are several terms of maximal degree, a change
in the degree of the norm only depends on the γ + 1 most
significant coefficients of (i0 + i′). Therefore, for all i′ such
that deg i′ < deg i0− γ, we also get the degree of the norm
for free. (Note that the case γ = 0 can occur.)

Since computing the gap comes at almost no additional
cost when computing the degree of the norm, this method
saves many computations.

Computing the degree of the norm: If there is only
one term, let say fq,k0i

k0
0 j

d−k0
0 , of maximal degree, then

deg(Fq(i0, j0)) = deg fq,k0 + k0 deg i0 + (d − k0) deg j0,
γ = −1 and we do not have to actually compute the norm
to obtain its degree.

If there are several terms of maximal degree, we need
to take care of the possible cancellations. As a cheaper
alternative to computing the actual norm, we resort to an
adaptive-precision approximation, using an analog of the
floating-point number system for polynomials. We define
the precision N representation of a polynomial p(t) =∑
pkt

k by the pair (deg p,mantN (p)), where the mantissa
mantN (p) = pdeg pt

N−1 + · · ·+ pdeg p−N+1 is the polyno-
mial of degree N−1 corresponding to the N most significant
coefficients of p.

Starting from an initial precision N = N0, we compute
the “floating-point” approximations of the terms fq,kik0j

d−k
0 ,

using truncated high products for the multiplications. Before
summing those terms, we first align them to the maximal de-
gree, as is the case for regular floating-point additions. This
can be seen as a conversion to a fixed-point representation.

Finally, from the degree of the sum of the terms, we deduce
the degree of the norm and the gap, unless the result is
zero, meaning that the precision N was not high enough
to conclude. Therefore, the computation takes the form of
a loop where the precision N increases iteratively until the
computation of the norm with N significant coefficients is
enough to infer its degree.

A few more improvements can be added to this strategy.
When the precision N is small, it might happen that several
terms have a degree that is too small to contribute to the
final sum, so that their computation can be skipped from
the beginning. Also, when summing the terms, it can make
sense to do so starting with the terms of highest degrees. If
there are not too many cancellations, it can be the case that
we can then guess the final degree before having to take the
remaining terms into account.

We finally remark that the first step where we consider
only the degrees of the terms can be seen as the particular
case N = 0 of the subsequent loop.

C. Bases for the p-lattices

Let p = (p, r) be a prime ideal. The goal of this section
is to describe the set of (i, j) positions for which the
corresponding ideal is divisible by p (hence whose norm
is divisible by p). We recall that in terms of (a, b) position,
it translates into the condition a − br ≡ 0 (mod p), and
therefore, the set of such (a, b) positions is a K[t]-lattice
for which (p, 0) and (r, 1) is a basis. Using the definition
of a and b in terms of i and j, the condition becomes
i(a0 − rb0) ≡ −j(a1 − rb1) (mod p). This is a K-linear
condition on the polynomials i and j, and therefore the set
of solutions is a K-vector space which is of finite dimension
since the degree of i must be less than I and the degree of j
less than J . More precisely, the linear system corresponding
to the condition has I + J unknowns and deg p equations,
so that the dimension of the space of solutions is at least
I + J − deg p. We will present a basis for this vector space
that takes a different shape, depending on whether deg p is
smaller or larger than I .

As a warm-up, we deal with the case where p divides
a0− rb0. The main condition on i and j simplifies to j ≡ 0
(mod p). A basis is then given by the set of vectors µk =
(tk, 0) for 0 ≤ k < I , and ν` = (0, t`p) for 0 ≤ ` <
J − deg p. The dimension is then I + J − deg p.

From now on, we will assume that a0 − rb0 is invertible
modulo p, and we define

λp = −(a1 − rb1)/(a0 − rb0) mod p,

so that the main condition becomes i ≡ λpj (mod p).
1) Case of small primes:

Lemma 2. Let p = (p, r) be a prime ideal of degree
L < I . The vector space of (i, j) positions for which the
corresponding ideal is divisible by p is of dimension I+J−L



and admits the basis given by the vectors µk = (tkp, 0) for
0 ≤ k < I − L, and ν` = (t`λp mod p, t`) for 0 ≤ ` < J .

Proof: The given vectors are indeed in the target set
of positions, and they are linearly independent, due to their
echelonized degrees. To see that it is a basis, let us consider
(i, j) with deg i < I , deg j < J , and i ≡ jλp (mod p). Let
then i0 be the polynomial of degree less than p such that
i0 ≡ jλp (mod p). Then the vector (i0, j) can be obtained
by combining the ν`’s with the coefficients of j. Furthermore
i and i0 differ by a multiple of p of degree less than I , so that
(i, j) can be written as a linear combination of the claimed
basis which, consequently, is indeed a basis.

2) Case of large primes: We assume now that p is of
degree L greater than or equal to I . In fact, we can assume
furthermore that its degree is also greater than or equal to
J . Indeed, the symmetric role of I and J makes it possible
to write a similar basis as before if the degree of J is larger
than the degree of p. In practice, this would raise memory
locality issues when traversing a vector space given by a
basis of this shape, but for the moment, we always take
I = J in our code.

The K[t]-lattice of the valid (i, j) positions corresponding
to p is generated by (p, 0) and (λp, 1). To study this
lattice, we consider the sequence computed by the Euclidean
algorithm starting with these two vectors: let v` = (σ`, τ`),
defined by v0 = (p, 0), v1 = (λp, 1) and, for all ` ≥ 1,
σ`+1 = σ`−1 − σ`q` and τ`+1 = τ`−1 − τ`q`, where q` is
the quotient in the Euclidean division of σ`−1 by σ`. Since
p is prime, λp is coprime to p and the final vector of the
sequence is (0, p). The finite family of vectors (v`) is a K-
free family of vectors with the degrees of both coordinates
less than or equal to L. In the following lemma it is shown
how to complete it to form a basis of such vectors.

Lemma 3. Let p = (p, r) be a prime ideal of degree L and
(v` = (σ`, τ`)) the corresponding Euclidean sequence. The
vector space of (i, j) positions for which the corresponding
ideal is divisible by p with degrees at most L in each
coordinate has dimension L + 2 and admits the basis
{v0} ∪ (∪`≥1 {tsv` | 0 ≤ s < deg σ`−1 − deg σ`}).

Proof: With the convention that the degree of 0 is
−1, the claimed basis is such that the degree in the first
coordinate takes all values from −1 to L exactly once,
and the same for the second coordinate. Indeed, since, by
induction, the degrees of the σ`’s are strictly decreasing,
and those of the τ`’s are strictly increasing, we have that
deg τ`+1− deg τ` = deg q`, which is itself, by construction,
equal to deg σ`−1 − deg σ`. Therefore, when iterating from
v`−1 to v`, a drop δ in the degree of σ` is directly followed
by an identical increase in the degree of τ` in the next
iteration, thus showing that the vectors tsv`, for 0 ≤ s < δ,
bridging the gaps between v`−1, v` and v`+1, will all have
distinct degrees in both of their coordinates, as illustrated in

Figure 1. The vectors obtained during the Euclidean algorithm (black
dots), completed with some of their multiples (gray dots) to form the full
K-basis of vectors of the p-lattice with coordinates of degree at most deg p.

deg τ`

deg σ`
v0

v1

I

tv1

v2

v3

tv3

t2v3

v4

J v5
0

L

L

Figure 1. Consequently, the proposed family of vectors is
K-free and contains L+ 2 elements.

In order to get the exact dimension of the vector space, we
just count its elements. Consider the vector space {(i, j) |
i ≡ λpj (mod p), with deg i ≤ L, deg j ≤ L}, and split
it into κL+1 disjoint subsets Sj , one for each possible value
of j with deg j ≤ L. For any j, Sj has the same cardinality
as the set of polynomials i of degree at most L such that
i ≡ jλp (mod p). Since L is precisely the degree of p, this
set has the same cardinality κ as the base field K. Adding
up the contributions, we obtain a vector space of cardinality
κL+2, thus of dimension L+ 2 as claimed.

For our purposes, we are only interested in those elements
for which the degrees of their coordinates are (strictly)
bounded by I and J respectively. Due to the echelonized
form of the basis, it is enough to keep only those basis
elements whose degrees satisfy these constraints in order to
generate all the relevant p-lattice elements.

D. Enumerating the elements of a p-lattice

Once the K-basis of a p-lattice is known, the next step
is to enumerate all the (i, j) pairs in this lattice and to
subtract deg p to the degree of the norm of the corresponding
ideals. Obviously, this task can be achieved by considering
all the possible K-linear combinations of the basis vectors.
However, attention must be paid to a few details.

In order to address these issues for all possible types
of p-lattices at once, whether p be a small or a large
prime ideal, or even when a0 − rb0 ≡ 0 (mod p), we
introduce the following notations, designed to cover all
cases without loss of generality: given a prime ideal p,
we denote the basis of the corresponding lattice seen as
a K-vector space, as constructed in Section III-C, by the
vectors (µ0, . . . , µd0−1, ν0, . . . , νd1−1), where the µk’s and
the ν`’s are of the form µk = (γk, 0) and ν` = (α`, β`), for
0 ≤ k < d0 and 0 ≤ ` < d1, respectively, and where
the degrees of the γk’s and of the β`’s are echelonized:
0 ≤ deg γ0 < deg γ1 < · · · < deg γd0−1 < I and
0 ≤ deg β0 < deg β1 < · · · < deg βd1−1 < J .



As we impose j to be monic (see Section III-A), we first
normalize the ν` vectors of the basis so that their second
coordinate β` is monic. Using the fact that the β`’s are
echelonized and sorted by increasing degree, enumerating
only those lattice vectors whose j-coordinates are monic
boils down to considering only monic linear combinations
of the ν`’s, that is to say, K-linear combinations whose
last nonzero coefficient, if any, is 1. On the other hand,
since the j-coordinates of the µk’s are all zero, all K-linear
combinations of these vectors should be considered. We first
explain this easy case and come back to the ν`’s later.

Assuming that K is a prime field, the enumeration of
all K-linear combinations can be carried out by means
of a κ-ary Gray code, as already suggested by Gordon
and McCurley in the binary case [15]. Let us consider
the infinite sequence ∆ = (δi)i≥1 of the t-adic valuations
of the nonzero polynomials of K[t] sorted by increasing
lexicographic order. For a given integer d ≥ 0, the prefix
sequence ∆d = (δ1, . . . , δκd−1) can be computed via a
recursive definition as ∆0 = () (the empty sequence),
and ∆i+1 = (∆i, i,∆i, i, . . . , i,∆i), where ∆i and i are
repeated κ and κ − 1 times, respectively. For instance,
over the base field K = F3, one would have ∆ =
(0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, . . . ).

In fact, ∆d corresponds to the transition sequence of
a d-digit κ-ary Gray code: starting from the polynomial
π1 = 0, and repeating the construction πi+1 = πi + tδi ,
we end up after κd−1 iterations with the set {π1, . . . , πκd}
covering precisely all the polynomials of K[t] of degree
less than d. Additionally, given a K-free family of vectors
(µk)0≤k<d, we can use the iteration πi+1 = πi + µδi
instead, this way enumerating the whole set of K-linear
combinations of the µk’s, at the cost of only one vector
addition per combination. This technique can therefore be
used to efficiently go through all the κd0 linear combinations
of the µk basis vectors.

However, as far as the ν`’s are concerned, this method
cannot be applied directly, as only the monic linear combi-
nations of these basis vectors need be considered. To that
intent, we define a so-called monic variant of κ-ary Gray
codes by considering the infinite sequence ∆′ = (δ′i)i≥1
defined as the t-adic valuations of the nonzero monic poly-
nomials of K[t] sorted by increasing lexicographic order. As
for ∆, the prefix sequence ∆′d = (δ′1, . . . , δ

′
(κd−1)/(κ−1)) can

be computed, for any nonnegative integer d, as ∆′0 = () and
∆′i+1 = (∆′i, i,∆i). For instance, over K = F3, one would
have ∆′ = (0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, . . . ).

As in the non-monic case above, ∆′d can also be in-
terpreted as the transition sequence of a so-called d-digit
κ-ary monic Gray code. Starting from 0, the construction
πi+1 = πi + tδ

′
i would indeed end up, after κd−1

κ−1 iterations,
enumerating all the monic polynomials in K[t] of degree less
than d. Alternatively, the iteration πi+1 = πi + νδ′i would
instead enumerate all the monic K-linear combinations of

any K-free family of monic vectors (ν`)0≤`<d.

E. Cofactorization

We did not put a lot of efforts in the implementation of this
step. The classical approach, coming back to Coppersmith
and Davenport [9] has been used. To test whether a poly-
nomial P (t) is smooth with respect to a smoothness bound
B, we compute P ′(t)

∏B
k=d(B+1)/2e(t

κk − t) mod P (t). If
P (t) is B-smooth, this quantity is zero, and the converse
is true, unless we are in the unfortunate case where there
is a large irreducible factor that occurs with a multiplicity
that is a multiple of κ. To speed-up the reductions modulo
P (t), its preinverse is precomputed once and for all. Then,
each product modulo P (t) can be done at a cost of one
polynomial product in degree degP , one low short product
and one high short product (see for instance [16]). For the
time being, the short products are implemented as regular
products, which leaves room for improvement.

Finally, at least in characteristic 2, the overall cost of
cofactorization is small compared to the sieving step. There-
fore, we did not yet fully implement a resieving step. For
the moment, the input given to the cofactorization step
is the full norm, in which we do not remove the small
irreducible factors that have been detected during the sieving
step. Again, this leaves room for improvement, especially in
characteristic 3 where the cofactorization step takes a much
larger share of the total runtime (see Section VI below).

F. Sub-lattices

Since we want to consider only primitive (i, j) pairs,
a classical improvement [7] is to consider the congruence
class of i and j modulo one or a few small irreducible
polynomials. Let h be an irreducible polynomial of degree
d; the probability that it divides both i and j is κ−2d. This
probability gives the proportion of the sieving space that
is useless. To save some sieving time, we can therefore
decompose the sieving space into the κ2d translates of the
sub-lattice corresponding to h, and sieve all but one of them.

The efficient enumeration of the elements of the p-lattices
can easily be modified to consider only its intersection with
(i, j) pairs that are congruent to some prescribed (i0, j0)
modulo h. The key observation is that once a first point has
been found, the others are obtained by adding the elements
of the vector spaces that have been described in Lemmata 2
and 3. The modifications to make are therefore mostly
concerned with the initial position for the enumeration that is
no longer the point (0, 0) but a point that is deduced thanks
to a few computations modulo h. These computations of the
starting point are cheap, but they are to be done for each
p and for each of the κ2d − 1 translates of the sub-lattice
that we consider. As a consequence, only polynomials h of
small degree must be considered. However, it is possible to
combine several h of small degrees.



The case where this strategy gives the best practical
improvement is when the base field K is F2. Then the
two irreducible polynomials of degree 1 are t and t + 1.
Using them, we need only sieve 9/16 of the original sieving
space at the price of a reasonable overhead in the arithmetic
cost of the initialization. Going further would require to
consider the only irreducible polynomial of degree 2, namely
t2 + t+ 1. In theory, this would allow us to further decrease
the sieving space by a 1/16 factor. On the other hand, this
would multiply by 15 the overhead and, with our current
implementation, we estimate that it is not worth the effort.

The next interesting case is when K = F3. The irreducible
polynomials of degree 1 are t, t+1 and t+2. Each of them
can be used to avoid sieving 1/9 of the (i, j) pairs. Using
the three of them in conjunction would thus allow us to
sieve only (8/9)3 = 512/729 of the original sieving space.
Again, we consider that with our current implementation
the potential gain would be cancelled by the overhead. This
could however change in the future with further optimization
of the small arithmetic building blocks.

For larger base fields, the overall probability for a polyno-
mial to be divisible by an irreducible polynomial h of degree
1 decreases. It makes this strategy less and less attractive.
For instance, in [11] where the authors took K = F27, it is
not considered.

IV. MEMORY LOCALITY ISSUES

When enumerating the elements of a given p-lattice, the
visited positions are scattered across the (i, j) plane. It
results in random accesses to the array containing the degree
of the norm. For instance, for a kilobit-sized field K, the
number of visited positions lies between a few hundreds
of millions and a few billions, meaning that data locality
rapidly becomes an important issue on typical modern-
day computers with strongly hierarchized memory. We thus
detail in the following paragraphs two techniques designed
to improve the spatial locality of memory accesses, one for
small primes and the other for large primes.

A. Sieving by rows

Let us first consider the case of small prime ideals p,
of degree L < I . From Lemma 2, the first I − L vectors
(µk)0≤k<I−L of the basis of the corresponding p-lattice all
have their second coordinates equal to 0. Consequently, all
the κI−L linear combinations of these vectors lie in the same
horizontal line of the (i, j) plane. Therefore, if this (i, j)
plane is stored as a row-major array, and assuming that at
least a single row—i.e., κI elements—can fit into the L1 data
cache, then memory locality can be drastically improved by
sieving row by row. This technique was first described by
Pollard in the case of the Number Field Sieve [17].

Furthermore, since the remaining J vectors (ν`)0≤`<J of
the basis have their j-coordinates equal to t`, sieving rows by
increasing lexicographic order on their second coordinates

is simply a matter of enumerating in the same order monic
polynomials over K of degree less than J , then using their
coefficients for computing linear combinations of the ν`’s.

However, directly using the monic Gray code technique
presented in Section III-D to speed up the enumeration
process would break the lexicographic ordering of the j-
coordinates. In order to maintain this ordering, we propose
a simple change of basis which would allow us to still benefit
from the efficiency of Gray code enumeration at the expense
of a slight overhead.

Thus, let (ν′`)0≤`<J be the family of vectors defined by
ν′` =

∑`
i=0 νi. For any 0 ≤ ` < J , the second coordinate

of ν′` is
∑`
i=0 t

i, from which it follows that the ν′`’s form
a K-free family, and that (µ0, . . . , µI−L−1, ν

′
0, . . . , ν

′
J−1) is

also a K-basis of the p-lattice.
One can already note that a non-monic Gray code enu-

meration of the ν′`’s would go through all linear combi-
nations thereof, sorted by increasing lexicographic order
in their j-coordinates. Indeed, intuitively, the second co-
ordinate

∑`
i=0 t

i of ν′` emulates the propagation of the
“carry” through the low-weight coefficients of j, just as a
lexicographic enumeration would do right before reaching
a polynomial j of t-adic valuation `. For instance, over
K = F3, the sequence (0, ν′0, 2ν

′
0, ν
′
1+2ν′0, ν

′
1, ν
′
1+ν′0, 2ν

′
1+

ν′0, 2ν
′
1 + 2ν′0, 2ν

′
1, ν
′
2 + 2ν′1, . . . ), obtained thanks to a

ternary Gray code enumeration, corresponds in fact to a
lexicographic enumeration in the j-coordinates.

However, this change of basis is not sufficient when
only monic j-coordinates should be considered. One can
easily verify that, when applying the previous technique with
monic Gray codes, the first enumerated vector to have its
second coordinate of degree equal to ` will be ν` + 2ν`−1,
and not ν` as required by the lexicographic order. Since this
happens only J−1 times throughout the whole enumeration
of the p-lattice, a simple fix to tackle this issue is to subtract
2ν`−1 from the current vector whenever the degree of its j-
coordinate has just increased from `− 1 to `.

Note that sieving by rows is also compatible with the case
a0− rb0 ≡ 0 (mod p), in which the p-lattice is the rows of
the (i, j) plane whose j-coordinates are multiples of p.

B. Bucket sieving

When the degree L of the ideal p increases, the corre-
sponding lattice positions are much more sparsely scattered
over the (i, j) plane, since at most one hit per row can
be expected when L ≥ I . A different strategy is therefore
necessary in the case of large prime ideals.

The main idea is to coalesce the norm updates in the (i, j)
array according to their j-coordinates, using an algorithm
inspired from bucket sorting. Partitioning the sieving area
into small groups of consecutive rows, or bucket regions,
it is possible to go through all the large prime ideals and
fill buckets with all the hits falling into each corresponding
bucket region. The actual updating of the norms in the (i, j)



array is deferred to a second phase, where the buckets are
processed individually and sequentially. This ensures that all
the norm updates corresponding to a same bucket region are
applied before moving to the next region, therefore enforcing
spatial locality of the memory accesses. This method was
described in details by Aoki and Ueda in [18].

There is however a trade-off to consider when dimen-
sioning the buckets: if smaller bucket regions will fit better
in the data cache during the norm update phase, this also
implies more buckets to fill when enumerating the hit posi-
tions, which might end up exhausting the TLB (Translation
Lookaside Buffer) of the CPU. Careful tuning is therefore
necessary to balance cache misses against TLB misses.

Finally, since this technique forces the sieving area to be
processed one bucket region at a time, it is possible to split
the other steps of the relation collection algorithm (norm
initialization, sieving by rows and cofactorization) so that
they also operate on only one bucket region at a time. This
way, there is no need to store the whole (i, j) array in
memory, but only one bucket region.

V. A LIBRARY FOR POLYNOMIAL ARITHMETIC

Were it be for computing the bases of the q-lattices,
for initializing the degrees of the norms of the principal
ideals in the (i, j) array, for enumerating the elements of
the p-lattices, or for testing promising ideals for smoothness,
polynomial arithmetic over K[t] plays a central role through-
out the whole relation collection phase in FFS. Efficient
implementation of this arithmetic is therefore crucial, and
should not be overlooked. However, compared to existing,
general-purpose libraries such as NTL [19], ZEN [20], or
gf2x [21], we have the following specific constraints:

Memory footprint: We need types for polynomials of
various fixed sizes, and we cannot accept to loose too much
in term of memory. I.e., no padding to 64 bits, no additional
integer storing the degree, etc..

Efficiency: The library should have a reasonably fast
fallback for all operations, while also allowing one to write
specific code for critical operations.

Compile-time optimization for a given base field K: Even
if the library should be able to support different base fields,
the chosen field is known at compile time. This knowledge
must be exploited so as to properly inline and optimize all
the field-specific low-level primitives.

To meet all these requirements, we have developed our
own library for polynomial arithmetic. Written in C, it
defines types and related functions for 16-, 32-, and 64-
coefficient polynomials, along with multiprecision polyno-
mials. Most of the provided functions are independent of the
size of K, and only a few field-specific core functions, such
as addition or multiplication by an element of K, should be
defined in order to add support for another base field to the
library. For the time being, only F2 and F3 are supported.

A. Representation

The current version of the library only supports bitsliced
representation of the polynomials. Therefore, if a single
element of K can be represented on k bits (typically,
k = dlog2 κe), then an `-coefficient polynomial will be
represented as an array of k `-bit words.

For K = F2, this is equivalent to evaluating the corre-
sponding integer polynomial at 2. Over F3, an `-coefficient
polynomial p(t) =

∑`−1
i=0 pit

i will be represented by an
array p of two `-bit words p[0] and p[1] such that
pi = 2p[1]i + p[0]i, where p[j]i denotes the i-th bit of
word p[j]. Note that p[0]i = p[1]i = 1 is not allowed.

B. Basic operations

On top of being quite a compact format (as opposed to
packed representations, where extra zeros have to be inserted
between coefficients), bitsliced representation allows us to
use bitwise CPU instructions to perform coefficient-wise
operations on the polynomials.

The default implementation of the polynomial multipli-
cation follows a simple serial/parallel (also known as shift-
and-add) scheme. It is however possible to plug in optimized
functions to accelerate this critical operation. For instance,
over K = F2, one can build the library against gf2x and
use the faster gf2x_mul1 function as a drop-in replacement.

Other supported functions include degree computation
(using fast leading-zero counting primitives such as GCC’s
__builtin_clz), conversions between types of different
sizes, division, modular reduction, GCD, and so on.

C. Enumeration and κ-ary Gray codes

As already mentioned in the previous sections, enumerat-
ing (monic) polynomials by increasing lexicographic order is
required at various stages of the relation collection process.
If, over F2, this operation boils down to incrementing
the `-bit word representing the polynomial, it rapidly be-
comes trickier over larger base fields. For instance, given
p(t) ∈ F3[t], computing the next polynomial r(t) requires 7
operations:
t0 = p[1] + 1; t1 = p[1] ^ t0; t2 = (t1 >> 1) ^ t1;
r[0] = p[0] ^ t2; r[1] = (r[0] & t2) ^ t0;

Enumerating (monic) polynomials in such a way also
computes the transition sequence ∆ (∆′, respectively) of
the corresponding (monic) κ-ary Gray code, as it is the
sequence of the t-adic valuations of the successive (monic)
polynomials taken in that order. In the previous example,
the sequence ∆ can be retrieved simply by computing the
number of trailing zeros of the successive values of t2.

D. Addressing the (i, j) array

When sieving by rows or when applying norm updates
from a bucket, the accesses to the (i, j) array are mostly
random, albeit restricted to a few rows. Converting a given
position in the (i, j) plane to an integer offset in the memory



representation of this plane is thus critical to the sieving
process.

Over the binary field K = F2, this conversion is trivial,
since the bitsliced representation of a polynomial p(t) ∈
K[t] already corresponds to the integer p̃(2), where p̃(t) ∈
Z[t] denotes the corresponding integer polynomial. One can
then simply address the (i, j) array by offsets of the form
p̃(i,j)(2), with p(i,j)(t) = i(t) + tIj(t).

The situation is however not as simple over K = F3.
Given the representation p of a polynomial p(t) ∈ F3[t]
as two `-bit words, interleaving the bits of p[0] and p[1]

would correspond to evaluating p̃(t) at 4, which would
then result in only (3/4)` of the 2`-bit integers being
valid representations of polynomials. On the other hand, if
evaluating p̃(t) at 3 would provide us with a compact integer
representation, it would be far more expensive to compute.

In the current version of our library, we have settled for
an intermediate solution between those two extremes: noting
that 35 = 243 / 256 = 28, we can split p(t) into 5-
coefficient chunks (or pentatrits) and, thanks to a simple
look-up table, convert the 10 bits representing each chunk
into its evaluation at 3, which then fits on a single octet (8
bits). A ternary polynomial of degree less than d can then be
represented using at most 8dd/5e bits, which is much more
compact than using 2 bits for each trit. It is also possible to
easily adapt this method to account for monic polynomials
by using a specific look-up table for the most-significant
pentatrit. Addressing the (i, j) array is then just a matter of
converting p(i,j)(t) = i(t) + tIj(t) in the same manner.

VI. BENCHMARKS AND TIME ESTIMATES

We propose two finite fields K as benchmarks for our
implementation: F21039 and F3647 . The extension degrees are
prime, so that the improvements of [22], [11] based on the
Galois action are not available. The sizes of both problems
are similar and correspond to the “kilobit” milestone.

We performed a basic polynomial selection, based on an
exhaustive search of a polynomial with many small roots.
This step would benefit from much further research but this
is not the topic of the present paper. We thus give without
further details the polynomials used for this benchmark,
where hexadecimal numbers encode polynomials in F2[t]
(resp. F3[t]) represented by their evaluation at 2 (resp. 4):

F21039
f = x6 + 0x7x5 + 0x6x+ 0x152a

g = x+ t174 + 0x1ef9a3

F3647
f = x6 + 0x2x2 + 0x11211

g = x+ t109 + 0x1681446166521980

It can be checked that the resultants of f and g are
polynomials in t that have irreducible factors of degree 1039
and 647, respectively, and are therefore suitable for discrete-
logarithm computations in the target fields.

Parameters: For our choices of polynomials, when taking
special-q’s on the g side (the so-called rational side), norms

have more or less similar degrees on both f and g sides. We
thus take the parameters given in the following table:

F21039 F3647

Sieving range I = J 15 9
Skewness 3 1
Max. deg. of sieved primes (factor base bound) 25 16
Max. deg. of large primes (smoothness bound) 33 21
Threshold degree for starting cofactorization 99 63

Timings: We give the running time of our code with these
parameters on one core of an Intel Core i5-2500. The code
was linked against the gf2x library version 1.1 so that we
can take advantage of the available PCLMULQDQ instruction
for polynomial multiplication over F2. For various degrees
of special-q’s, we give the average time to compute one
relation and the average number of relations per special-
q. Since the number of special-q’s of a given degree is
close to the number of monic irreducible polynomials of this
degree, this gives enough information to deduce how many
relations can be computed in how much time. The yield
and the number of relations vary a lot from one special-q
to the other, even at the same degree. The average values
given in the following table have been obtained by letting
the program run with special-q’s of the same degree until
we reach a point where the measured yield is statistically
within a ±3 % interval with a confidence level of 95.4 %.

F21039

deg q 26 27 28 29 30 31 32
Yield (s/rel) 0.59 0.71 0.88 1.07 1.31 1.70 2.05

Rels per special-q 32.6 26.2 20.6 16.5 13.3 10.2 8.3

F3647

deg q 17 18 19 20
Yield (s/rel) 2.24 2.88 3.52 4.71

Rels per special-q 23.5 15.7 11.8 8.0

For F21039 , since the smoothness bound is set to degree
33, we can give a rough estimate of 2×234/33 ≈ 1.04 ·109

for the number of ideals in both factor bases. Collecting
relations up to special-q’s of degree 30 will provide about
1.19·109 relations in about 28 600 days. Taking into account
the fact that not all ideals are involved but that there are
duplicate relations, this should be just enough to get a full
set of relations. Collecting relations for all special-q’s up to
degree 31 will provide about 1.90 · 109 relations in about
51 000 days, which will give a lot of excess and plenty of
room to decrease the pressure on the linear algebra. The
tuning of this amount of oversieving cannot be done without
a linear algebra implementation and is, therefore, out of the
scope of this paper. Nevertheless, we expect that in practice
the relation collection will be done for a large proportion of
special-q’s of degree 31. For F3647 , similar estimates based
on the large prime bound give a theoretical number of ideals
of 1.53 ·109. Collecting relations up to special-q’s of degree
19 will provide about 1.24 · 109 relations in about 45 300
days while going to degree 20 will yield about 2.63 · 109

relations in about 121 000 days.
To convert these large numbers into more practical no-

tions, let us assume that we have a cluster of 1000 cores
similar to the one we used. Then a full set of relations with



enough redundancy can be computed in a bit more than a
month for F21039 , and in about 4 months for F3647 .

Runtime breakdown: For F21039 (resp. F3647), we give
details on where the time is spent for special-q’s of degree
30 (resp. degree 19), in percentage and in average number
of cycles per (a, b) candidate.

F21039 , deg q = 30 F3647 , deg q = 19
Step Cycles/pos Percentage Cycles/pos Percentage

Initialize norms 1.10 2.04 % 43.65 6.17 %
Sieve by rows 9.73 18.15 % 180.11 25.45 %

Fill buckets 31.73 59.21 % 211.23 29.84 %
Apply buckets 2.74 5.12 % 4.53 0.64 %

Cofactorization 7.43 13.87 % 266.53 37.66 %
Total 53.59 100.00 % 707.77 100.00 %

From this table, it is clear that we have not yet spent as
much time on optimizing the case K = F3 as we have for
F2. We expect that there is a decent room for improvement
in characteristic 3. On the other hand, the arithmetic cost
is intrinsically higher over F3 than over F2: the addition of
two polynomials requires at least 6 instructions [23] instead
of just one, and the multiplication in characteristic 2 is
implemented in hardware whereas in characteristic 3 this
is a software implementation based on the addition. This
difference is due to our choice to implement on general
purpose CPUs, but would decrease or even disappear if we
allowed ourselves to resort to specific hardware.

VII. CONCLUSION

We have presented in this paper a new implementa-
tion of the relation collection step for the function field
sieve algorithm, which combines state-of-the-art algorithmic,
arithmetic and architectural techniques from previous works
on both FFS and NFS (where applicable), along with original
contributions on several key steps of the algorithm. The
source code of our implementation is released under a public
license. To the best of our knowledge, this is the first FFS
public code for handling record sizes. We hope this will
serve as a reference point for future developments on this
subject as well as for dimensioning key-sizes for DLP-based
cryptosystems.

Of course, this project is still under heavy development,
especially for base fields K larger than F2. Among other
perspectives, we plan to investigate the relevance of dele-
gating some parts of the computation to dedicated hardware
accelerators such as GPUs or FPGAs. Finally, we plan to
integrate our code for the relation collection step into a full
implementation of FFS, in order to complete the ongoing
computations of discrete logarithms over F21039 and F3647 ,
whence setting kilobit-sized records as new landmarks.

Acknowledgements. The authors wish to thank the other
members of the CARAMEL group for numerous interesting
discussions regarding preliminary versions of this work,
in particular Razvan Barbulescu, Cyril Bouvier, Emmanuel
Thomé and Paul Zimmermann.

REFERENCES

[1] L. M. Adleman, “The function field sieve,” in ANTS I, LNCS
877, pp. 108–121, 1994.

[2] L. M. Adleman and M.-D. A. Huang, “Function field sieve
method for discrete logarithms over finite fields,” Inf. Com-
put., 151(1–2):5–16, 1999.

[3] R. Matsumoto, “Using Cab curves in the function field sieve,”
IEICE Trans. Fund., E82-A(3):551–552, 1999.

[4] R. Granger, “Estimates for discrete logarithm computations
in finite fields of small characteristic,” in Cryptography and
Coding, LNCS 2898, pp. 190–206, 2003.

[5] R. Granger, A. J. Holt, D. Page, N. P. Smart, and F. Ver-
cauteren, “Function field sieve in characteristic three,” in
ANTS VI, LNCS 3076, pp. 223–234, 2004.

[6] A. Joux and R. Lercier, “Discrete logarithms in GF (2607)
and GF (2613),” Posting to the Number Theory List, 2005.

[7] ——, “The function field sieve is quite special,” in ANTS V,
LNCS 2369, pp. 343–356, 2002.

[8] E. Thomé, “Computation of discrete logarithms in F2607 ,” in
ASIACRYPT 2001, LNCS 2248, pp. 107–124.

[9] D. Coppersmith, “Fast evaluation of logarithms in fields of
characteristic two,” IEEE Trans. Inf. Theory, 30(4):587–594,
1984.

[10] T. Hayashi, N. Shinohara, L. Wang, S. Matsuo, M. Shirase,
and T. Takagi, “Solving a 676-bit discrete logarithm problem
in GF (36n),” in PKC 2010, LNCS 6056, pp. 351–367.

[11] T. Hayashi, T. Shimoyama, N. Shinohara, and T. Takagi,
“Breaking pairing-based cryptosystems using ηT pairing over
GF (397),” in ASIACRYPT 2012, LNCS 7658, pp. 43–60.

[12] K. Aoki, J. Franke, T. Kleinjung, A. Lenstra, and D. A.
Osvik, “A kilobit special number field sieve factorization,”
in ASIACRYPT 2007, LNCS 4833, pp. 1–12.

[13] S. Bai, A. Filbois, P. Gaudry, A. Kruppa, F. Morain,
E. Thomé, and P. Zimmermann, “CADO-NFS: Crible
algébrique: Distribution, optimisation – Number field sieve,”
http://cado-nfs.gforge.inria.fr/.

[14] O. Schirokauer, “Discrete logarithms and local units,” Phil.
Trans. R. Soc. A, 345(1676):409–423, 1993.

[15] D. M. Gordon and K. S. McCurley, “Massively parallel
computation of discrete logarithms,” in CRYPTO ’92, LNCS
740, pp. 312–323.

[16] L. Hars, “Applications of fast truncated multiplication in
cryptography,” EURASIP J. Embed. Syst., 2007:061721, 2007.

[17] J. M. Pollard, “The lattice sieve,” in A. K. Lenstra and H. W.
Lenstra, eds., The development of the number field sieve,
LNM 1554, pp. 43–49, 1993.

[18] K. Aoki and H. Ueda, “Sieving using bucket sort,” in ASI-
ACRYPT 2004, LNCS 3329, pp. 92–102.

[19] V. Shoup, “NTL: A library for doing number theory,” http:
//www.shoup.net/ntl/.

[20] F. Chabaud and R. Lercier, “ZEN: A toolbox for fast com-
putation in finite extension over finite rings,” http://zenfact.
sourceforge.net/.

[21] R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmermann, “gf2x:
A library for multiplying polynomials over the binary field,”
http://gf2x.gforge.inria.fr/.

[22] A. Joux and R. Lercier, “The function field sieve in the
medium prime case,” in EUROCRYPT 2006, LNCS 4004,
pp. 254–270.

[23] Y. Kawahara, K. Aoki, and T. Takagi, “Faster implementation
of ηT pairing over GF(3m) using minimum number of
logical instructions for GF(3)-addition,” in Pairing 2008,
LNCS 5209, pp. 282–296.


