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Code generators for mathematical functions
Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, Christoph Lauter

Abstract—A typical floating-point environment includes sup-
port for a small set of about 30 mathematical functions such
as exponential, logarithms and trigonometric functions. These
functions are provided by mathematical software libraries (libm),
typically in IEEE754 single, double and quad precision.

This article suggests to replace this libm paradigm by a more
general approach: the on-demand generation of numerical func-
tion code, on arbitrary domains and with arbitrary accuracies.

First, such code generation opens up the libm function space
available to programmers. It may capture a much wider set
of functions, and may capture even standard functions on non-
standard domains and accuracy/performance points.

Second, writing libm code requires fine-tuned instruction selec-
tion and scheduling for performance, and sophisticated floating-
point techniques for accuracy. Automating this task through code
generation improves confidence in the code while enabling better
design space exploration, and therefore better time to market,
even for the libm functions.

This article discusses, with examples, the new challenges of
this paradigm shift, and presents the current state of open-source
function code generators.

Index Terms—elementary functions, code generator, range
reduction, reconstruction, interpolation.

I. INTRODUCTION & MOTIVATION

A. Standard Mathematical Libraries

The standard mathematical library (libm) provides, in a
small set of precisions (simple and double precision), a small
set of mathematical functions:
• elementary functions [1] such as exponential and loga-

rithm, sine, cosine, tangent and their inverses, hyperbolic
functions and their inverses;

• and other “special” functions useful in various computing
contexts, such as the power function xy , erf, Γ or the Airy
function [2].

Strictly speaking, the libm is specified in the C language
standard (currently ISO/IEC 9899:2011). Among the other
languages, some (C++, Fortran, Python) use the same library,
and some redefine it in a more or less compatible way. The
2008 revision of the IEEE 754 floating-point standard [3]
has attempted a common standardization. In addition, lan-
guage standards also specify elementary functions on complex
numbers, but for historical reasons not in the “mathematical
library” section. Also, many operating systems or libraries
offer, for convenience, more functions than strictly required
by the libm. In this work we understand the term “libm” in
its widest sense and address all these functions.

B. Performance of a libm

Performance of libm functions is of critical importance, in
particular in scientific and financial computing. For example,
profiling the SPICE electronic simulator shows that it spends

most of its time in the evaluation of elementary functions [4].
The same holds for large-scale simulation and analysis code
run at CERN [5]–[7].

The problem is that the optimal implementation of each
function is very dependent on the technology. Mathemati-
cal support is provided by a combination of hardware and
software, and the optimal repartition between hardware and
software has evolved with time [8]. For instance, the first
80287 mathematical coprocessor, in 1985, included support
for a range of elementary functions (albeit in microcode)
in addition to the basic operations. It was later found that
software could outperform such microcode. For instance, as
memory got cheaper, large tables of precomputed values [9],
[10] could be used to speed-up the computation of a func-
tion. Furthermore, progress in compiler technology allowed
for a deeper integration of elementary functions software
in the overall compilation process [11]–[13], another case
for software-based functions. Today, even the relevance of
hardware division and square root is disputed. However, at
the same time, the table-based algorithms of the 90s are being
replaced with high-degree polynomials [12] that behave better
in the context of current highly parallel, memory-constrained
multicores.

C. Limits of the library approach

1) Productivity of libm development: Writing a libm re-
quires fine-tuned instruction selection and scheduling for
performance, and sophisticated floating-point techniques for
accuracy. Re-optimization of these mutually dependent goals
for each new processor is a time-consuming and error-prone
task. Besides, it is desirable that each function comes in several
variants corresponding to a range of constraints on perfor-
mance (e.g. optimized for throughput or optimized for latency)
or accuracy. Some processor and system manufacturers (Intel,
AMD, ARM, NVIDIA, HP, Apple) therefore employ large
teams of engineers dedicated to libm maintenance.

With more limited manpower, the open-source mathematical
libraries (most notably in the GNU glibc [14] and in
Newlib1) lag behind in performance, all the more as they
have to support a much wider range of processors. However,
the most accurate implementations are found in open-source
efforts, with several correctly rounded functions provided by
libraries such as IBM LibUltim [15] (now in the glibc) and
more recently CRLibm [16].

2) Limited choice: Another problem is that the libm
functions do not match all the needs of users.

First, the choice is limited. For instance, the web
page http://project-mathlibs.web.cern.ch/project-mathlibs/
mathTable.html mentions all the functions that are used by

1https://sourceware.org/newlib/
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Figure 1: The proposed tool suite.

CERN simulations. Only a fraction of this list is offered by
the standard libm. The rest is programmed when needed,
sometimes by programmers who lack the expertise of libm
developers. This leads to duplicated efforts and, often, poorer
quality (performance- or accuracy-wise) than libm function.

Second, even the functions in the libm are often too good
(and therefore slower than they could be) for an application.
In recent standards, range is specified as “as far as the input
and output formats allow”, while accuracy is specified as
“as accurate as the output format allows”. This is the best
possible specification for a generic library function, but is
overkill for many applications. If a programmer knows that the
input to a cosine will remain within a period, and that about
three decimal digits of accuracy will be enough considering
the accuracy of the inputs, the libm cosf function is too
accurate (7 decimal digits) on too large a range.

The present article claims that the solution to both previous
issues (productivity, and limited choice) is to automate libm
development so that functions can be generated on-demand for
a wider set of contexts. This solution has already proven effec-
tive for other classes of mathematical software, most notably
the ATLAS [17] project for linear algebra, and the FFTW [18]
and SPIRAL [19] projects for fast Fourier transforms.

D. Use cases for generators of mathematical functions

We are currently focusing on two main use cases where we
need a libm generator, both illustrated by Figure 1.

The first one targets the widest audience of programmers.
It is a push-button approach that will try to generate code
on a given domain and for a given precision for an arbitrary
univariate function with continuous derivatives up to some
order. The function may be provided as a mathematical
expression, or even as an external library that is used as a
black box. We call this approach the open-ended approach, in
the sense that the function that can be input to the generator is
arbitrary – which does not mean that the generator will always
succeed in handling it. Section III will describe how this
generator has evolved from simple polynomial approximations
to the generation of more sophisticated evaluations schemes,
including attempts to range reduction. Here, the criterion of

success is that the generated code is better than whatever other
approach the programmer would have to use (composition
of libm function, numerical integration if the function is
defined by an integral, etc). “Better” may mean faster, or more
accurate, or better behaved in corner cases, etc.

Ideally, we wish we could have a generator where we have a
clear separation (as on Figure 1) between a front-end building
an approximation scheme, and a back-end implementing it on
a given target technology. A first challenge is that the front-
end itself must be directed by the target context. This is easy
to understand with table-based range reduction techniques,
for instance: their relevance and efficiency greatly depents on
the context. Formally capturing this complexity is currently
out of reach. Fortunately, it is always possible to perform an
empirical exploration of the parameter space: generate several
variants, compile and time then, and pick up the best.

We believe that the techniques presented in Section III can
eventually be extended to capture all the functions of C11 on
their whole range. However, it is currently not the case. There
is a lot of human expertise in libm development that we
are not yet able to automate. In particular, bivariate functions
such as atan2 or pow, as well as some special functions,
are currently out of reach. The second use case therefore
focuses on assisting people who have this expertise, not yet
on replacing them. It targets a much narrower audience of
programmers, those in charge of providing the actual libm
functionality to an operating system or compiler. Here the
criterion of success is that the generated code is of comparable
quality to hand-written code, but obtained much faster.

The chosen approach, reviewed in Section IV, consists in
giving to the libm developer the keys to the back-end. We
thus aim at offering him/her a development framework in
which he/she may describe the relevant evaluation schemes.
The challenge here is to find a proper balance between
two incompatible goals: 1/ This framework should be able
to capture every trick that libm developers use, otherwise
they will not adopt it. 2/ It should nevertheless raise the
level of abstraction, so that a single description generates
code for the variety of code flavors and targets we want to
address. And it should be fully scriptable to enable design-
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space exploration, but always under full control of the libm
developer. Section IV reviews a technical solution that matches
these goals.

This second use case can be viewed as a pragmatic, bottom-
up approach, where we embed existing hand-crafted code in
a framework to make it more generic. The first, open-ended
use case is more ambitious, more high-level, and top-down
from the most abstract mathematical description of a function.
These two approaches do meet as illustrated on Figure 1, and
we do not claim that there is a clear border between them. For
instance, the libm developer working directly with the back-
end will nevertheless invoke the evaluation scheme generator,
to solve sub-problems, typically after range reduction.

II. BACKGROUND IN ELEMENTARY FUNCTION
IMPLEMENTATION

In order to understand the challenge of writing a code
generator for mathematical functions, it is useful to know
how they are implemented manually. To evaluate a function
at some point, we may use a finite number of additions, mul-
tiplications, floating-point number manipulations,comparisons
and precomputed tables. A generic technique along these rules
is to approximate a function by tables and polynomials or
piecewise polynomials. After filtering out special values like
NaNs and infinities [3], there are usually three steps: argument
reduction, polynomial approximation and reconstruction [1].
The following details these steps.

A. Polynomial approximation

There are many ways to compute an approximation poly-
nomial for a given function. The minimax polynomial p for a
function f on a given interval I minimizes the approximation
error

εappr = ‖f − p‖I∞ = max
x∈I
|f − p|

among all the polynomials of a given degree d. Remez
algorithm converges to a minimax polynomial. However, this
algorithm produces real coefficients, which may not be rep-
resentable with finite-precision numbers. Rounding these co-
efficients to floating-point numbers entails a loss of accuracy.
This problem is solved in [20] by a modified Remez algorithm
that finds a minimax-like polynomial among polynomials with
floating-point coefficients.

These algorithms input f , I and the degree d, and return
p and εapprox. For a given f and I , the larger the degree
d, the better the approximation (the smaller εappr). When
implementing a libm-like mathematical function, we have
an upper bound constraint on εappr, and we look for the
smallest d that satisfies this bound. This approximation error -
driven decision of finding d is slightly harder to compute then
classical polynomial approximation.

B. Argument reduction

When it is not possible to compute a polynomial of a small
enough degree, the implementation domain I may be reduced.
There are two basic techniques for this: split the domain into
smaller subdomains, or use specific properties of the function

to be implemented. In both cases the approximation problem
is reduced to approximating a (possibly different) function fr
on a smaller domain.

1) Domain splitting: The main idea here is to partition
I into subdomains, so that on each of them we can find
a minimax polynomial approximation of small degree. The
splitting can be uniform, logarithmic [21], or arbitrary [22].
In the two first cases the polynomial is selected based on a
few bits from the input x. In the last case, several if-else
statements are needed.

2) Function-specific argument reduction: For some ele-
mentary functions, specific algorithms of argument reduction
may be applied [1], [23]–[25]. They are based on mathematical
properties such as bx ·by = bx+y . For example, the exponential
function can be computed as follows [23]

ex = 2E · 2k−E · 2x log2 e−k,

with a parameter w ∈ N, k = b2wx log2 ec2−w and E = bkc.
Thus, E ∈ Z, k ∈ 2−wZ.

Finally, taking a small r = x log2 e− k, we get

ex = 2E2k−Eer,

where the values of 2k−E are stored in a table of size 2w.
Finally, the task is reduced to an approximation of er, where
r takes values from a small range. This approximation can be
computed with one polynomial or with an additional splitting
if needed.

C. Existing libm development tools

The two use cases mentioned in Section I-D generate code
with guaranteed accuracy. For this, they rely on two external
tools that have been used for manual libm development.

Sollya [26] is a numerical toolbox for libm developers
with a focus on safe floating-point computations. In particular
it provides state-of-the-art polynomial approximation [20] and
safe algorithms to compute εapprox = ‖f − p‖I∞ [27]. It also
provides a scripting language.

Gappa [16] is a formal proof assistant that is able to manage
the accumulation of floating-point errors in most of libm
codes. Compared to [16], in the present work the Gappa proof
scripts are not written by hand, but generated along with the
C code. Interestingly, Gappa is itself a generator (it generates
Coq or HOL formal proofs).

III. APPROXIMATION TECHNIQUES FOR BLACKBOX
FUNCTIONS

A. Overview

This section describes an open-source code generator writ-
ten in Sollya. It inputs a parametrization file and produces
corresponding C code. The parametrization file includes the
function f , its implementation domain I , the desired accuracy
ε̄, maximum degree dmax for approximation polynomials, etc.

The function may be specified as a mathematical expression,
or an external library. An important feature of this approach
is that the tool does not need an explicit formula for the
specified function. It only accesses the function as a numerical
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blackbox. All the tool requires from this blackbox is to be able
to return an arbitrarily accurate numerical evaluation of the
function and its first few derivatives over interval. This way,
the tool will work for functions described not only as closed-
form expressions, but also as integrals, inverse functions, etc.
It should however be reasonably fast to evaluate.

This blackbox encapsulation of the function will not pre-
vent the tool to exploit the function-specific range reductions
presented in Section II-B. The following will show that the
required mathematical properties can be detected and exploited
from a blackbox function.

The tool also supports higher-than-double accuracy, using
double-double and triple-double arithmetic.

B. Different levels of code generation

We can structure function generation process in Metalibm-
open in three levels.

a) First level (polynomial approximation): Relatively
“simple” function flavors are treated on the first level. The
generator starts with checking if the maximum degree dmax

is sufficient to approximate the function f by a polynomial
with an error bounded by ε̄. If so, C code and its Gappa proof
are generated. Otherwise, the second or third levels are used.

b) Second level (piece-wise polynomial approximation):
This level uses domain splitting and piecewise polynomial
approximation. More details can be found in [22].

c) Third level (exploiting algebraic properties): On the
third level of function flavors generation we try to detect math-
ematical properties and to use them for argument reduction.
The properties currently detected include

f(x+ y) = f(x)f(y)

f(x+ C) = f(x)

f(x) + f(y) = f(xy)

f(x) = f(−x)

f(x) = −f(x)

They respectively correspond to exponential functions bx+y =
bxby , periodic functions, e.g. sin(x + 2πk) = sin(x), loga-
rithms logb(x) + logb(y) = logb(xy) and symmetrical func-
tions (both even and odd). When such a property is detected,
the tool uses the corresponding argument reduction. Then it
needs an approximation scheme in the reduced domain. For
this it performs a recursive call to the first or second level.

As the tool only accesses the function as a blackbox, it is
unable to prove that the property is actually true. However, all
it needs is to ensure that it is true up to some accuracy (the
accuracy needed for the range reduction to work). This can be
done purely numerically.

As an example, let us show how to detect the property f(x+
y) = f(x)f(y), which corresponds to a family of exponential
functions bx+y = bxby for some base b ∈ R.

First, two different points x and y are chosen in I , and
the tool checks if there exists |ε| < ε̄ such that f(x + y) =
f(x)f(y)(1 + ε). If not, the property is not true. If yes, the
tool deduces a candidate b = exp

(
ln(f(x))

x

)
for some random

x ∈ I . Only in this case does it check that the property is true
to the required accuracy, by computing

ε̃ =

∥∥∥∥ bx

f(x)
− 1

∥∥∥∥I
∞

and checking if ε̃ ≤ ε̄.
Other properties can be detected in the same way. However,

handling the error bound ε̃ requires some analysis for certain
function properties.

C. Reconstruction

The final step in mathematical functions implementation
is reconstruction, i.e. the sequence of operators (or just a
formula) needed to be executed to evaluate the function at
some point x from the initial domain I . The reconstruction
may be tricky if the generation was done on the second level
and the produced code has to be vectorizable. To make the
reconstruction vectorizable, a solution is to exhibit some map-
ping function m(x), that returns an index of the corresponding
interval [28].

D. Several examples of code generation

The two first examples correspond to f = exp with the
target accuracy ε̄ = 2−53, polynomial degree is bounded by
dmax = 9. Then we test a toy composite function and a
sigmoid function as used in neural networks.

1) For f = exp on the small domain I = [0, 0.3], the
first level is enough. The generated code only consists of
polynomial coefficients and polynomial evaluation function.
Function generator does not handle special cases for the mo-
ment (infinities, NaNs, overflows, etc.), so for larger domains
this filtering has to be added manually, this is addressed in
Section IV. This function flavor is about 1.5 times faster than
the standard exp function from the glibc libm.

2) For exponential flavors with larger domains table-driven
algorithm for argument reduction mentioned in Section II is
performed [23]. We enlarge the domain from the previous
example to I = [0, 5] and set w = 4 for table (the table size
is 2w). The generation is performed on the third level, the
family of exponential functions is detected and the domain
is reduced to [− log(2)/2w+1, log(2)/2w+1]. Then a recursive
call to the first level of code generation is performed. The
generated code for this flavor is executed in a range between 10
and 60 machine cycles, while the upper bound for libm code
is 80 machine cycles. However, the generated code computes
most inputs in less than 25 cycles, while libm’s exponential
is executed in a range between 15 and 35 cycles.

3) A more interesting example is f(x) = sin(cos(x/3)−1)
on the domain I = [−1, 1] with 48 bits of accuracy. The
standard libm does not support composite functions, there
will be two function calls (both with special cases handling)
and a division performed. In the generated code the composite
function is approximated by polynomials. Even though the tar-
get error is less than the mantissa length for double precision,
the generated code wins both in accuracy and performance.
Due to cancellation at zero, the error for libm’s composite
function explodes (Figure 3) while the error of generated
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Figure 2: Logarithmic relative error of generated code on
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Figure 3: Logarithmic relative error of the libm call on
domain [−2−20;−2−30] for sin(cos(x/3.0) - 1.0) .

function stays bounded (Figure 2). Execution of the generated
code takes between 8 and 470 machine cycles, while execution
of the libm’s analog of this flavor takes more than 150 cycles
and may reach 650 cycles in the worst case.

4) Another example is thesigmoid function f(x) = 1
1+e−x

on the domain I = [−2; 2] with 52 correct bits. No algebraic
property is detected; so the generation is done on the second
level. The generated code and the libm’s code are both
of comparable accuracy and performance: execution takes
between 25 and 250 cycles with most cases done within 50
cycles. The polynomial degree for the generation is bounded
by dmax = 9, the domain was split to 22 subintervals.

E. Open-ended code generation: wrap up and outlook

As demonstrated with the examples shown in the last
Section and with its own 10300 lines of code, open-ended
code generation has reached a certain level of maturity. It is
able to quickly generate code for functions defined by various
means, including black-box definitions. The produced codes
do not yet reach the performance manual implementation
would eventually reach but they are available now, at reduced
cost. Final accuracy is bounded by construction and in the case
of composite functions better than for plain libm function
composition.

However, open-ended code generation is currently limited
in some ways. We wish to remove these limitations. First of
all, unless an argument reduction can be detected, which is not
always possible as the function might not suit one, open-ended
code generation currently is reduced to small domains. Domain
splitting can offset this limitation only up to some point.
For instance, splitting domains like [1;∞] or just [1; 21024]
is hopeless. A reasonable way to address this limitation is to
transform f over a large domain I = [a; b], a ≥ 1 into f(1/x)
over [1/b; 1/a]. Performing black-box static error analysis for
this case is hard, though.

In addition, open-ended code generation is currently limited
to certain IEEE754 precisions for legacy reasons and has
trouble exploiting other framework’s back-ends as a remplace-
ment of its own. This question however mainly relates to re-
engineering the software tools behind the existing open-ended
code generation, for instance by modularizing it more.

IV. A CODE GENERATION FRAMEWORK ASSISTING LIBM

DEVELOPERS

We now turn to libm developers, and describe a develop-
ment framework that will enable them to address the produc-
tivity issue. This framework could be used to implement the
previous techniques and manage the back-end code generation.
However, we mostly present it from the point of view of a
developer of classical libm. As already mentionned, there
is no clear boundary between the two approaches depicted
on Figure 1.

Due to space restrictions, we essentially present and mo-
tivate various technical choices. A reader interested in more
details is invited to look at (and experiment with) the open-
source code.

A. General overview

All the framework is implemented in Python, a language
chosen to ensure that the framework is fully scriptable. More
importantly, an evaluation scheme is itself described in Python.
Technically, one first defines a Python variable as being the
output of the generated code, then all computations that
eventually affect this variable are considered as belonging to
the evaluation scheme.

A similar mechanism enables the designer to embed, in
the same Python code, the analysis and proof of numerical
properties of the evaluation scheme. First, intervals may be
described and manipulated directly in Python using interval
arithmetic. This is useful to script range and error analysis. The
fact that interval computations are scripted in Python is a non-
automatic, but practical way out of the correlation issues that
plague naive interval arithmetic. Second, pure mathematical
expression may also be described, still in the same classical
Python syntax. They can be used for describing what the code
is supposed to compute, thus enable delegation to Sollya of
the computation of εapprox, and to Gappa the accumulation of
rounding errors [16].

This may seem a lot of overloading for the Python syntax.
Below all this, we still also keep standard Python to script the
code generation, in several steps.
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First, the execution of the Python code describing the
evaluation scheme builds a corresponding abstract syntax
tree (AST). Variables and operations in the AST may be
annotated with all sorts of information, either explicitly by the
programmer, or automatically by the framework. Example of
annotations include: desired precision, intervals for ranges and
errors, probability of taking a branch, exactness of operations
(no rounding errors), dependency to floating-point environ-
ment (rounding mode, exception visibility).

More generally, the AST may be manipulated from within
the same Python code. The framework provides many opti-
mization steps for this. Some of them are similar to those
implemented in generic compilers (for instance if-conversion
or instruction selection). Some others are specific to the
libm context (for instance labelling the tree with range and
error intervals, or reparenthesing of arithmetic expressions to
express parallelism, similarly to the CGPE approach [29]). It
is also possible to write function-specific optimization steps.

An important feature is that these optimizations steps are
invoked from the same Python code where the evaluation
scheme is described. The libm designer may therefore chose
to apply them or not (depending on the context), and decide
on which part of the AST an optimization step is applied. This
provides much finer control than the optimization switches of a
compiler, while remaining easy to manage because elementary
function codes are small. It is therefore a practical way out of
the issue of conflicting compiler optimizations.

Among these optimization steps, instruction selection trans-
forms the AST into a form closer to the generated code.
It is dependent on the target hardware, as depicted in next
section. The generated C is often very close to assembly
code: Each line of C roughly matches one machine instruction,
sometimes explicitly thanks to intrinsics if the target decided
so. However we still leave a lot to the compiler: the detailed
scheduling of the instructions, the register allocation, and the
auto-vectorization.

It is in general a challenge to avoid reinventing the compiler.
We want to rely on existing compilers for what they are good
at. As compilers improve, some of the technical choices made
here will be reevaluated.

Python generic code:
k = NearestInteger(unround_k, precision = self.precision)

NearestInteger is a method of the generic Processor class, and generates the following
code for binary32:
k = rintf(unround_k);

When overloaded in the Kalray processor class, it generates the following code:
t = __builtin_k1_fixed(_K1_FPU_NEAREST_EVEN, unround_k, 0);
k = __builtin_k1_float(_K1_FPU_NEAREST_EVEN, t, 0);

The same Python also generates binary64 versions, here for for x86 with SSE2:
t = _mm_set_sd(unround_k);
t1 = _mm_round_sd(t, t, _MM_FROUND_TO_NEAREST_INT);
k = _mm_cvtsd_f64(t1);

Figure 5: Examples of processor-specific code generation

B. The processor class hierarchy

Modern processors, even within ISA families such as IA32
or ARM, exhibit a lot of variety in their instruction sets.
They differ in the basic arithmetic support (presence or not of
a fused multiply-and-add, of a divide instruction, of various
int/float conversion instructions). They also differ in the model
of parallelism and in the capabilities of the hardware to
extract this parallelism (some are VLIW, some are superscalar,
some support vector parallelism; all are pipelined but the
depth and width of the pipeline vary greatly). Finally, they
are all increasingly memory-starved, and may offer different
strategies to address this issue (caches, memory prefetching,
memory access coalescing, etc). Generating optimized elemen-
tary function code for such a variety of processors is very
challenging. Actually, we want to optimize the code not for
a processor, but for a context that includes the processor.
For instance, for the same processor, throughput-oriented or
latency-oriented code may be very different.

For this, we define for each processor a class that provides
information to optimization steps, and also provides code
generation services. As recent processors tend to inherit the
instruction set of their ancestors, the inheritance mechanism
of object-oriented languages works well for overriding old
techniques with newer ones when new instructions appear.

The current prototype generates core for four targets from
two very different families. The first is a recent x86 pro-
cessor, an out-of-order superscalar architecture. We consider
an SSE2-enabled version (using the modern SIMD FPU that
complements the legacy x87 unit), and a more recent AVX2-
enabled one (adding hardware support for the FMA). The
second family is the K1 core, developped by Kalray for its
MPPA manycore processor. It implements a 5-issue VLIW in-
order architecture, and comes in two versions: The first, K1A,
offers a mixed single precision / double precision floating point
unit. The second version, K1B, adds binary64 FMA capability
and two-way SIMD capabilities for binary32.

There is also a default processor target where no asumption
is made on the hardware support, except IEEE-754 compli-
ance. Support for the ARM family will be added in the near
future.

Figure 5 shows one example of code generation service
provided by the processor class: the rounding of a floating-
point number to an int.
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processor function speedup default libm

K1a

expf (binary32) 4.0

newlib

logf (binary32) 2.7
exp (binary64) 5.8
log (binary64) 5.8

K1b

expf (binary32) 4.0
logf (binary32) 2.7
exp (binary64) 1.8
log (binary64) 2.2

core i7, SSE2

expf (binary32) 1.7

glibc

logf (binary32) 1.02
exp (binary64) 1.7
log (binary64) 1.6

core i7, AVX2

expf (binary32) 1.1
logf (binary32) 0.96
exp (binary64) 1.9
log (binary64) 1.6

Table I: Speedups obtained with respect to default libm for
latency-optimized C11-compliant exp and log functions.
All the variants in this table are generated from the same
description of exp and log.

C. Some optimizations performed on the abstract syntax tree

1) Instruction selection: Instruction selection is a code
generation service provided by the processor class. We could,
in principle, delegate it to the compiler that does it well.
To illustrate why we want to keep control on it, consider a
simple example: fusing one addition and one multiplication
into an FMA. This is desirable most of the time, as it improves
both accuracy and latency. However, the very fact that it
is more accurate impacts the error computation. The code
generator therefore needs to know what FMA fusion will be
performed. The impact may be deep. Consider for instance
the classical Cody and Waite argument reduction [1], that
computes r = (x − kch) − kcl where k is an integer chosen
such that the first subtraction cancels. Without an FMA, we
need to keep k a small integer, on a few bits, and define ch as
having so many trailing zeroes in its mantissa, so that kch may
be computed exactly. The subtraction is then Sterbenz-exact.
With an FMA, this computation remains exact for much larger
k (as long as k may be represented exactly as floating point),
and there is no need for zero bits in ch, which provides more
accuracy in ch + cl. Here the FMA has an impact not only on
the accuracy of the result, but on the relevance domain of the
range reduction.

Similar argument apply to other instruction selection situa-
tions, such as float/int conversions.

Another interesting example is the fast reciprocal approxi-
mation. This instruction, offered by some processors to boot-
strap FMA-based division, can also be used in an efficient
range reduction for the logarithm [12]. In this case, it must be
emulated on processors that do not offer it.

In the near future, we intend to explore using SIMD
parallelism to speed-up polynomial evaluation. This requires
specific instruction to move data within a SIMD vector that
are extremely processor-dependent, and actually constrain the
evaluation scheme. This is another case for embedding instruc-
tion selection in our code generator framework.

2) Control path generation and vectorization: Modern
compilers are more and more able to auto-vectorize long,

computationally intensive loops. When there are libm calls
in such loops, these functions must be vectorized themselves.

One approach is to define vector types (which may be
exposed to the programmer, but also infered by the compiler),
and to provide vector versions of each libm function. This
solution is offered for instance by Intel and AMD, at con-
siderable development cost. Note that no standard exists for
functions with vector arguments.

Another approach is to write the libm code in such a way
that it will auto-vectorize well. Then, the vectorization itself
(i.e. the use of vector instructions) is delegated to the compiler.
The code must obey certain rules, essentially regarding the
tests: tests that translate to branches in the code should be
avoided, and replaced with tests that translate to data selection.
This entails speculative execution, which typically increases
the latency, as both branches of the test must be executed
before the selection. However vectorization makes up for this
by improving the throughput. Experiments with the Cephes
library [6] showed this approach to be extremely effective,
both in terms of computational efficiency and portability,
with recent versions of the GCC compiler. This approach is
therefore the one chosen here.

What it means is that there are optimization steps that
specifically rework the control path of the function, depending
on its intended use. For high-throughput, vectorizable code
with speculative execution must be generated. For low latency
code, the main objective is to make the common case fast
[30], while speculative execution may still be used to exploit
the ILP offered by the processor.

Initial experiments with our generator show that autovec-
torized code on 4-way SSE2 SIMD achieves speedups above
3 over the scalar version. This is consistent with [6].

D. A class for libm function

If the function is not a black box, but one of the C11 libm
functions, it comes with a more complete specification, for
instance including the management of exceptional numbers in
input or output, a significant amount of the function code in a
classical libm. This is not only a constraint, as it also enables
us to use well known techniques for a specific function.

Another advantage of having an explicit reference to the
function concerns its testing. It is possible to generate random
tests out of a black-box function, but we can do better if
the function is known. It is possible, for instance, to design
cornercase or regression tests (for instance to check that a
function overflows exactly when it should or handle subnor-
mals properly – the Gappa-based proof generation does not
cover special values). Also, for random testing, the default
random generator can be overriden with a function-specific one
that will stress the function on the parts of its domain where it
is most useful. This applies to functional testing, but even more
to performance testing. For instance, what matters to users of
exp is its average performance on the small domain where it
is defined, not on the full floating-point range where it mostly
returns 0 or +∞. Similarly, performance tests for log should
use a pseudo-random number generator strongly disbalanced
towards positive numbers. For sin it should concentrate on
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the first periods, but avoid over-testing the very small numbers
(which represent almost half the floating-point numbers) where
sinx ≈ x. Etc.

The proposed framework therefore defines a class for a C11
function with its test infrastructure. Instances of this class (one
per function) may overload some methods of this class, such
as the generator of regression tests (the defaults tests numbers
such as the signed zeroes, infinities and NaN, and extreme
threshold values of the subnormal and normal domains) and
one or few generators of random input.

E. Wrapping up: current state of the project

The backend code generator (processor classes, generic
optimization steps and proof generators) currently consists of
3800 lines of Python code (counted by the CLOC utility) for
the open-source part covering the generic and 86-optimized
processor classes. In addition there are also a few proprietary
files related to the Kalray processor.

The C11 function generators currently amount to 2482 lines
of code. This includes exp, log, log1p, log2, and sin/cos at
various degrees of completion (they generate working code,
but not always of performance comparable to handwritten
code). There are also inverse, division, inverse square root,
and square root implementations, essentially intended for
processors without a hardware divider, such as the IA64 or
Kalray. Inverse approximation is actually of more general use
and can replace standard division in situations where it is
needed with accuracy lower or higher than the floating-point
precision. A typical function generator typically consists of
200-300 lines of code. Considering that the generated code is
typically 100-200 lines, the Gappa proof about the same size,
and that one generator produces many code flavors, the code
generator approach should be much easier to maintain.

Near-term future work include adding ARM processors and
more functions. Medium-term future work include an OpenCL
backend to target GPUs (increasingly used as floating-point ac-
celerators), more evaluation scheme optimization using CGPE
[29], and the generation of correctly-rounded function flavors.

V. CONCLUSIONS AND FUTURE WORK

This article discusses two approaches to addressing the
challenges faced by libm developers. The first is automated
generation of evaluation schemes, to address the large number
of functions of interest. The second is a specific development
framework, to address the large number of hardware targets
of interest. These two approaches were developed indepen-
dently, and current work focuses on integrating them more.
A good case study for working on such integration is the
correct rounding of elementary functions. It presents several
challenges, such as function evaluation in larger-than-standard
precisions or less common formats, or vectorization of a
technique centered on a run-time test [15].

In addition, both approaches, as well as the final integrated
code generator should also integrate notions of code tuning
through code timing, as in software packages such as ATLAS.
This allows for simplification of modeling of processors or

handling of (out-of-order) processor architectures where the
processor behavior is too hard to model anyway.

Finally, even though the codes produced by our two ap-
proaches are already hardened through the use of Gappa as a
formal proof tool, integration of code generation into certified
FP code development suites such as Why, Frama-C or even
model checkers might become of some interest.
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