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Abstract—We propose an hybrid representation of large in-
tegers, or prime field elements, combining both positional and
residue number systems (RNS). Our hybrid position-residues
(HPR) number system mixes a high-radix positional represen-
tation and digits represented in RNS. RNS offers an important
source of parallelism for addition, subtraction and multiplication
operations. But, due to its non-positional property, it makes
comparisons and modular reductions more costly than in a
positional number system. HPR offers various trade-offs between
internal parallelism and the efficiency of operations requiring po-
sition information. Our current application domain is asymmetric
cryptography where HPR significantly reduces the cost of some
modular operations compared to state-of-the-art RNS solutions.

Index Terms—number representation; large integer; finite
field; modular arithmetic; residue number system.

I. INTRODUCTION

In computer arithmetic, representations of numbers strongly
impact algorithms and implementations performances for basic
operations. Redundant number systems (see for instance [1])
allow limited carry propagations during additions, and then
fully parallel addition. Logarithmic number system (LNS,
see for instance [2]) swaps the cost of addition/subtraction
by the cost of multiplication/division, but it still leads to
a large cost difference between these two operations cate-
gories. Furthermore LNS is difficult to use in asymmetric
cryptography applications with large numbers. Residue num-
ber system (RNS, see for instance [3], [4]) allows internal
parallelism for both addition/subtraction and multiplication.
Then RNS is commonly used in asymmetric cryptography
(see for instance [5], [6], [7], [8], [9], [10]). But RNS is
a non-positional representation with reduced efficiency for
comparisons, modular reductions and modular multiplications.

We propose a new number system, denoted hybrid position-
residues (HPR) number system for large integers and prime
field elements (Fp). HPR “mixes” a high-radix positional
representation of numbers and RNS digits. It can be seen
as a sort of compromise between a positional representation
and RNS. Our hybrid number system offers a good level of
internal parallelism for addition, subtraction and multiplication
operations (even if it is slightly reduced compared to standard
RNS). But it also allows much more efficient comparisons,
modular reductions and modular multiplications due to the
available position information in the representation.

After the presentation of notations and definitions in Sec-
tion II, Section III briefly presents the state-of-the-art. Our
HPR number system is detailed in Section IV. Applications
to modular multiplication and exponentiation for asymmetric

cryptography are presented in Sections V and VI respectively.
Finally, Section VII concludes the paper.

II. NOTATIONS AND DEFINITIONS

The definitions and notations used in the paper are:
• Capital letters, e.g. X , denote large integers or field

elements of ` bits (in our applications ` > 100)
• |X|P is X mod P
• B = (m1, . . . ,mn) is an RNS base composed of n

moduli where all mi are pairwise co-primes of w bits
• 〈X〉 represents X in the RNS base B and defined by:

〈X〉 = (x1, . . . , xn) where xi = |X|mi (1)

• M =
∏n
i=1mi and Mi =

M
mi

• EMM a w-bit elementary modular multiplication |xi ·yi|mi
used as complexity unit for cost analysis as in all works
of the literature

• n = d`/we, i.e. the minimal number of moduli to
represent an `-bit value

• the word “base” is used in the RNS context
• the word “radix” is used in the positional context
• LSD/MSD denote least/most significant digit
We will use two or three small RNS bases denoted

Ba,Bb, etc. In Ba, composed of na < n moduli (w-bit
integers), X is represented by 〈X〉a. Same notations apply
for the other bases. The base concatenation is denoted Ba|b
and 〈X〉a|b is the RNS representation of X using na + nb
moduli.

III. STATE-OF-THE-ART

A. Residue Number System (RNS)

The RNS representation, proposed in the late 50s in [3],
[4], is increasingly used for large modular arithmetic compu-
tations and asymmetric cryptography implementations, see for
instance [11], [12], [13], [9], [14], [10], [8].

The integers X and Y are represented in the RNS base B by
〈X〉 and 〈Y 〉. Multiplications, additions and subtractions are
very efficient and natural in RNS. If one wants to perform the
� operation in RNS, with � ∈ {+,−,×}, one just computes
in parallel over the moduli:

〈X〉 � 〈Y 〉 =
(
|x1 � y1|m1

, . . . , |xn � yn|mn
)
. (2)

Computations are performed independently on each modulo
mi without carry propagation. RNS multiplication requires n
independent EMMs. Moreover, if Z is an integer coprime with



all mi, then exact division by Z is computed by multiplying
by 〈Z−1〉 =

(
|Z−1|m1 , . . . , |Z−1|mn

)
.

We assume 0 6 X < M to be able to convert back using
the CRT (Chinese remainder theorem) formula:

X = |X|M =

∣∣∣∣∣
n∑
i=1

∣∣xi ·M−1i ∣∣
mi
×Mi

∣∣∣∣∣
M

.

An important consequence of the CRT is that each RNS
operation performed in base B is automatically reduced mod-
ulo M . As described in Sec. III-C, it is used to compute
modular reduction in state-of-the-art.

However, RNS is a non-positional representation: com-
parisons, general divisions and modular reductions are much
harder than multiplications in RNS (for instance see [15]).

B. RNS Base Extension

In order to compute more complex operations like RNS
modular reduction, the base extension (BE) has been pro-
posed in [15]. BE converts 〈X〉a into 〈X〉b, avoiding costly
conversions to the classical representation. In this paper, we
consider only the BE algorithm from [6], which is used
in state-of-the-art implementations due to its high level of
parallelism. Nonetheless, our propositions are independent
of the choice of the BE algorithm, one can choose an-
other algorithm such as [16], [17]. The principle of the BE
proposed in [6] is to approximate q in the CRT formula,
X =

∑na
i=1

(∣∣xa,i ·M−1a,i ∣∣ma,iMa,i

)
− qMa where the com-

putations are performed modulo each mb,i. The result of this
approximated conversion is either 〈X〉b or 〈X + Ma〉b but
this is easily managed in state-of-the-art implementations (see
details in [6]). This algorithm requires (na nb + na) EMMs.

C. RNS Modular Reduction and Multiplication

The state-of-the-art RNS modular reduction (RNS-MR) for
a generic modulus, proposed in [18] (and optimized in [5],
[6], [10]), is based on the Montgomery modular reduction [19]
(initially proposed for radix-2).

To perform all required operations in the Montgomery
reduction, one needs two bases: Ba for computing modulo
Ma; and Bb for dividing by Ma (which is not possible in
Ba). Algorithm 1 requires two BEs. In most state-of-the-
art solutions both bases have n moduli (na = nb = n).

Algorithm 1: RNS Montgomery Reduction from [18].
Input: 〈X〉a|b
Precomp.: 〈P 〉a|b, 〈−P−1〉a, 〈M−1a 〉b
Output: 〈S〉a|b = 〈

∣∣XM−1∣∣
P
〉a|b + δ〈P 〉a|b in Ba and

Bb with δ ∈ {0, 1, 2}
1 〈Q〉a ← 〈X〉a × 〈−P−1〉a
2 〈Q〉b ← BE (〈Q〉a,Ba,Bb)
3 〈R〉b ← 〈X〉b + 〈Q〉b × 〈P 〉b
4 〈S〉b ← 〈R〉b × 〈M−1a 〉b
5 〈S〉a ← BE (〈S〉b,Bb,Ba)
6 return 〈S〉a|b

Using the optimization from [10], the RNS-MR total cost is
2na nb + na + nb = 2n2 + 2n EMMs.

In RNS, the modular multiplication (RNS-MM) is com-
posed of a simple RNS multiplication, on both bases, followed
by a RNS-MR and costs 2n2 + 4n EMMs.

D. Close and Related Representations

The mixed-radix system (MRS [4]) uses, as RNS, a base of
moduli to represent integers but is a positional representation
with very limited internal parallelism compared to RNS.

The polynomial RNS (PRNS [20]) uses small polynomials
for the moduli instead of integers, and as RNS is a non-
positional representation.

In the standard radix-2 positional representation, the use of
Mersenne and pseudo-Mersenne primes significantly reduces
the cost of modular reductions. The representation proposed
in [21] generalizes the idea of pseudo-Mersenne primes for
any radix but not in the RNS context. Recently, [13] proposes
an equivalent to pseudo-Mersenne primes in RNS where the
RNS-MR cost is more or less divided by 2.

IV. PRESENTATION OF THE HPR NUMBER SYSTEM

A. Definition and Properties

In this section, we define our hybrid position-residues
(HPR) representation and describe its properties. The main
idea is to define a representation which makes a link between
RNS and the standard positional representation. On the one
hand RNS representation is very efficient for some operations,
as multiplications, but is not for some others as comparisons.
On the other hand, a positional number system allows cheaper
comparisons but more costly multiplications than RNS.

Definition 1 (Hybrid Position-Residues Number System
(HPR)): Let us assume two coprime RNS bases Ba and
Bb with Ma =

∏na−1
i=0 ma,i, the degree d ∈ N∗,

βmin and βmax ∈ R such that βmax − βmin > 1 and
βmax + βmin > 0. The integer X is represented in HPR,
with parameters (Ba,Bb, βmin, βmax), in a high-radix Ma

positional representation by

XHPR =
(
〈Xd−1〉a|b, . . . , 〈X0〉a|b

)
HPR

where the digits 〈Xi〉a|b, represented in RNS, are such that

X =

d−1∑
i=0

XiM
i
a

where βminMa 6 Xi 6 βmaxMa.

Figure 1 illustrates the behavior of basic operations in HPR
compared to standard positional and RNS representations.
The positional representation (top part) has limited internal
parallelism due to the carries propagation (arrows), but the
implicit weights of the digits provide very accurate information
on the magnitude of X (leading to simple comparisons). RNS
(bottom part) has significant parallelism due the independent
computations on the residues (±,× are fully parallel), but its
non-positional characteristic makes comparisons (and related
operations) more complex. HPR (middle part) is a trade-off
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Fig. 1. HPR seen as trade-off between positional and RNS representations.

between these two representations. It still provides internal
parallelism at the digit level (〈Xi〉), and it provides coarse
grain information of the integer magnitude.

HPR can be a redundant representation when the digits
bounds βmin and βmax are chosen such that βmax−βmin > 1.
It also allows negative digits when βmin < 0.

HPR is a generalization of both RNS and positional repre-
sentations (in radix 2w, w ∈ N). In the case d = 1, βmin = 0
and βmax = 1, HPR is the standard RNS representation
XHPR = (〈X0〉a|b) with na+nb moduli. In the case Ba = (2w)
(only one modulo in base Ba) and no second base (nb = 0),
HPR is the standard radix-2w positional representation with
d digits (with or without redundancy depending on the values
βmin, βmax like in [1]). In this paper, we only deal with “true”
HPR representations where d > 1 and nb > 1.

B. Basic Operations

In all HPR operations, there are two levels of computations:
the digit level using standard positional algorithms and the
residue level using RNS algorithms (inside the digits).

a) Addition-Subtraction: At residue level, additions and
subtractions are performed in parallel over all moduli
〈Xi〉a|b = 〈Ai〉a|b + 〈Bi〉a|b and over all the digits (0 6
i 6 d − 1). In some cases, a digit value Xi can be slightly
larger than Ma, then a small carry propagation is required.
This carry propagation is detailed in Sec. IV-C. In practice,
we use a redundant form of HPR (with appropriate digit
bounds βmin, βmax) to avoid as much as possible such carry
propagations. This type of redundancy is widely used in
software multi-precision libraries (e.g. on a 64-bit machine,
a radix “only” equal to 253 is used to allow, most of the time,
fully parallel additions).

b) Multiplication: At the digit level, one can use any
multiplication algorithm for positional representation (school-
book, Karatsuba-Ofman [22], etc.). During the multiplication
of two digits (at the residue level) 〈Xi〉a|b = 〈Ai〉a|b×〈Bi〉a|b,
one must use a large enough RNS base Bb (i.e. Mb > Ma)
to represent the product. The product Xi is very often larger
than Ma, the “high” part of Xi must be propagated to Xi+1.
Extracting the “high” part of Xi is very simple in a standard

positional representation (truncation), this is more tricky in
RNS. To compute the “high” part, one needs to get the
actual value Xi from the residues 〈Xi〉a|b = (xi,0, xi,1, . . .)
using the CRT formula (this can be optimized). Then use the
euclidean division of Xi by Ma to get the quotient-remainder
representation Xi = QiMa+Ri. The remainder Ri is kept at
this position, and Qi is added to the next digit Xi+1.

The quotient-remainder representation of product X is
(〈Q〉, 〈R〉) computed using the Split function proposed
in [23] and presented in Algo. 2. Lines 4–6 are only re-
quired when using the approximated BE from [6]. One has
Q < β2

maxMa as required for propagating the “high” part of
the product but R < 2Ma instead of R < Ma (due to the
approximation from [6]) and this is handled using redundancy
at digit level (like in additions) thanks to Mb > β2

maxMa.
Thanks to the analysis presented in [23], the cost of Split
is 2na×nb+na+nb EMMs. In our applications, na = nb =

n
d

leads to 2n
2

d2 + 2nd EMMs. This algorithm is parallel over n
d

channels.

Algorithm 2: Decomposition algorithm (Split) [23].

Input: 〈X〉a|b with X < (βmaxMa)
2 and

Mb > β2
maxMa

Precomp.: 〈M−1a 〉b
Output:

(
〈Q〉a|b, 〈R〉a|b

)
1 〈R〉a ← 〈X〉a (virtual operation)
2 〈R〉b ← BE (〈R〉a,Ba,Bb)
3 〈Q〉b ← (〈X〉b − 〈R〉b)× 〈M−1a 〉b
4 if 〈Q〉b = 〈−1〉b then
5 〈Q〉b ← 〈0〉b
6 〈R〉b ← 〈R〉b − 〈Ma〉b
7 〈Q〉a ← BE (〈Q〉b,Bb,Ba)
8 return 〈Q〉a|b , 〈R〉a|b

The Split function can be used to propagate the “high”
parts of the digits in parallel as described in Algo. 3. The loop
in lines 2–3 is as parallel as the standard RNS since we have
dnd = n independent computations (same thing for lines 4–5).
The cost of Algo. 3 is the cost of d Splits.

Algorithm 3: “High” part propagation in HPR.
Input: XHPR = (〈Xd−1〉, . . . , 〈X0〉) with

Xi < (βmaxMa)
2

Output: XHPR = (〈Xd〉, . . . , 〈X0〉) with
Xi < (β2

max + 1)Ma

1 〈C−1〉 ← 〈0〉, 〈Xd−1〉 ← 〈0〉
2 for i from 0 to d− 1 parallel do
3 (〈Ci〉, 〈Xi〉)← Split(〈Xi〉)
4 for i from 0 to d parallel do
5 〈Xi〉 ← 〈Xi〉+ 〈Ci−1〉
6 return (〈Xd〉, . . . , 〈X0〉)

The output of Algo. 3 is such that Xi < (β2
max + 2)Ma

instead of Xi < βmaxMa. In our applications, βmax is a small
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integer (βmax 6 3), and these extra bits are managed through
the redundancy of the digits.

c) Comparison(s): Based on the position of the most-
significant (non-zero) digit, a coarse grain comparison is very
simple. In RNS such an approximate comparison is very costly
(at least n2 EMMs).

If the two compared operands have the same MSD weight,
we can use an iterative process digit by digit. For each position,
the comparison requires at least one BE but on n

d moduli
instead of n. If the digits at rank i are equal, this process is
process repeated on digits at rank i − 1 (until the LSD). In
the worst case, an HPR comparison costs d(nd )

2 = n2

d EMMs
instead of n2 for standard RNS.

d) Conversions: The conversion from a standard po-
sitional representation to HPR is performed by successive
divisions by Ma, and then at the digit level the classical RNS
conversion is used. The opposite conversion is performed using
the CRT for each digit and multiplications by Ma using a
Horner scheme. Conversion from RNS to HPR is achieved
using iterative divisions by Ma implemented using BEs with
a decreasing number of moduli. The opposite conversion uses
iterative multiplications by Ma implemented using complete
BEs. In our target applications, very few conversions are
required, and their costs are negligible compared to the cost
of a ECC scalar multiplication or RSA exponentiation.

C. Small Carry Propagation

In the “high” part propagation algorithm 3, the “high” and
“low” parts have similar magnitudes (e.g., in the product of
2 digits) and require full BEs from Ba to Bb with nb > na.
However, after HPR additions, the magnitude of the “high”
part is very small. As in [17], and other RNS works, we use
BEs with a second base only composed of a single and small
modulo mγ (handled in a small parallel specific unit). Then
Algo. 4 costs d(na+nb) EMMs (at lines {2, 5}) and d(na+1)
small multiplication modulo mγ (of cost less than 1 EMM).

Algorithm 4: HPR Small Carry Propagation.
Input: XHPR with Xi < (mγ − 2)Ma ∀i ∈ [0, d− 1]
Precomp.:

∣∣M−1a ∣∣
mγ

Output: XHPR, Xi < 2Ma + (mγ − 2) ∀i ∈ [0, d− 1]

1 for i from 0 to d− 1 do
2 |Ri|mγ ← BE (〈Xi〉a,Ba,mγ)
3 |Ci|mγ ←

∣∣(Xi −Ri)M−1a
∣∣
mγ

4 if |Ci|mγ = mγ − 1 then |Ci|mγ = 0
5 〈Xi〉b ← 〈Xi〉b − |Ci,H |mγ × 〈Ma〉b
6 for i from 1 to d− 1 parallel do
7 〈Xi〉a|b ← 〈Xi〉a|b + 〈Ci−1〉a|b
8 return XHPR

In practice, there is a trade-off between the width of mγ and
the application frequency of Algo. 4. Due to the approximation
in the BE from [6] at line 4, we choose mγ such HPR
digits verify Xi < (mγ − 2)Ma. The additional modulo mγ

limits how frequently Algo. 4 can be used. In case of a large
sequence of successive additions, mγ must be large enough.

In our applications, as modular multiplication in Sec. V-A,
mγ is a small power of two (4–8 bits).

D. A More Complex Operation: (A×B)× (C ×D)

In the (artificial) operation R = (A×B)×(C×D) over l-bit
integers (with l 6 n×w), we can show how HPR outperforms
RNS in some computations. In a positional representation, a
product is obviously twice larger than its operands. RNS is
efficient for fixed-size operations (such as finite field ones), but
it is not the case when the operands/results sizes vary inside
the sequence of operations. In an RNS product, the operands
must be represented using the same RNS base than the result,
i.e., twice more moduli.

Then in RNS, A,B,C and D are represented by 2n moduli
of w bits to be able to represent the sub-products AB and
CD. Each sub-product costs 2n EMMs. To compute R, each
sub-product is extended from 2n to 4n moduli using a BE
of cost (2n)2 + (2n) EMMs. The full product AB ×CD costs
4n EMMs. The total cost for computing R in standard RNS is
then 2

(
(2n) + ((2n)2 + (2n))

)
+ 4n = 8n2 + 12n EMMs.

In HPR, we assume AHPR = (〈Ad−1〉, . . . , 〈A0〉) and
na = nb = n/d (the same for B,C,D). First, we perform AB
and CD using the schoolbook multiplication algorithm as the
worst case one (faster multiplication algorithms would slightly
increase HPR benefit) with d2 sub-products 〈Ai〉×〈Bj〉. Each
sub-product is computed in RNS on na+nb moduli and costs
2n/d EMMs. AB and CD both costs d2 × 2n

d = 2dn EMMs. At
this point, we have (2d − 1) pairs (“high” and “low” parts)
where the “high” parts have to be propagated to the next digits
using Algo. 3. This requires (2d− 1) Splits and costs

(2d−1)
(
2
n2

d2
+ 2

n

d

)
=

(
4d− 2

d2

)
n2−

(
2

d
+ 4

)
n EMMs.

Finally, the computation of AB×CD costs (2d)2× 2n
d = 8dn

EMMs. The total cost for computing R in HPR is

2

((
4d− 2

d2

)
n2 −

(
2

d
+ 4

)
n

)
+ 12dn EMMs.

R is fully computed in RNS and HPR but it cannot be
used in a new multiplication. But, the redundancy provided by
βmin and βmax parameters allows efficient additions in HPR
(same thing applies for RNS). To use R as new multiplication
operand, a new large BE is required in RNS (from 4n to 8n
moduli) or a “high” parts propagation is required in HPR (over
4d digits). In such a case, HPR will lead to a significantly
smaller cost.

Fig. 2 reports the R computation cost for RNS and HPR
with d ∈ {2, 3, 4} both for various n. For d = 2, there is a
cost reduction of 20 % for n = 6, 30 % for n = 10 and 50 %
for n = 22 in favor of HPR. The gain is even better for larger
d when n increases. Replacing the schoolbook multiplication
algorithm by a faster one may slightly increase the benefit for
HPR (since d is small in practice).

4



E. Validation

We used two levels of validation. First, HPR is based on
well known and robust properties of RNS and positional
arithmetic algorithms. The most “complex” parts in HPR
algorithms are the “high” part and small carry propagations
for which we have proofs of the main elements. Second, we
performed millions of random tests for cryptographic sizes for
all our basic and more advanced algorithms and for various
sets of parameters in Maple and Sage. We also performed
millions of random tests for the applications presented in
Sections V and VI.

V. APPLICATION 1: ECC MODULAR MULTIPLICATION

This section shows that HPR is interesting for specific
finite field applications when the characteristic of the prime
field P can be selected as in elliptic curve cryptography
(ECC, see [24]). In the standard positional representation, the
selection of the field characteristic as a (pseudo-)Mersenne
prime (P = 2`−1 or 2`−c with c < 2`/2 for some `) allows to
significantly speed-up the modular reduction (based on a short
sequence of additions in the field instead of multiplications).

There was no equivalent characteristic for RNS up to very
recently. In [13], the specific characteristic P = M2

a − 2
was proposed to reduce the computation cost of modular
arithmetic. HPR reduces the cost of modular reductions thanks
to available position information, and it offers a significantly
larger set of primes for the selection of the field characteristic
compared to [13].

A. Algorithm Presentation

We propose to use a prime characteristic of the form P =
Q(Ma) where Q ∈ Z[X] is irreducible of degree d. In practice,
we choose Q = Xd −Q′ where Q′ is sparse. Our finite field
elements are `-bit large then na × d = n (with n =

⌈
`
w

⌉
).

Algo. 5 presents our modular multiplication.
In line 1, a degree-d positional product is performed (it is

similar to a polynomial one, see for instance [25]).
Line 2 performs a first modular reduction using the identity

Md
a ≡ Q′(Ma) mod P . The HPR digits Xi with i > d

are multiplied by Q′(Ma) (which is small and sparse), then
aligned and added with low-degree digits. Selecting good
values of Q is important for efficiency purpose (see Sec. V-D).
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Fig. 2. Cost comparison of HPR and RNS for (A×B)× (C ×D).

Algorithm 5: HPR Modular Multiplication.
Parameters: Ba with P = Q(Ma) and Q of degree d
Input: XHPR, YHPR
Output: ZHPR with Z = XY mod P

1 ZHPR ← HPR Product(XHPR, YHPR)
2 ZHPR ← Positional Modular Reduction(ZHPR, Q)
3 ZHPR ← HPR “High” Part Propagation (ZHPR)
4 ZHPR ← Positional Modular Reduction(ZHPR, Q)
5 ZHPR ← HPR Small Carry Propagation (ZHPR)
6 return ZHPR

For instance, if Q′ = 2, the positional reduction consists in
Zi ← Zi + 2Zi+d for i ∈ [0; d− 1].

Line 3 propagates the “high” part of the digits using Algo. 3.
Line 4 reduces the highest degree digit Zd (of weight

Md
a ) propagated by line 3. This new reduction is very cheap

compared to the one at line 2.
Finally, line 5 propagates the very last small carries.
The cost of Algo. 5, detailed in section V-B, depends on

various parameters, the most important ones are: the number
of moduli na and the form of polynomial Q.

B. Cost Analysis

In ECC applications, the typical field size is ` ∈
[160, . . . , 600] bits. For hardware implementations, the typical
width of the moduli is w ∈ [16, . . . , 64] bits (DSP blocks
in FPGAs commonly have operands from 9 to 25 bits). We
assume field elements represented in HPR with d digits and
na = nb = n/d. We set βmin = 0 and βmax = 3 since the
small carry propagation algorithm 4 guarantees output digits
less than 3Ma. As d is small in practice, and to keep simple
this case study, we assume that the choice of the positional
multiplication algorithm is the schoolbook one.

We explored various forms of the characteristic P . A very
interesting one is P =Md

a − 2, i.e. Q = Xd − 2 and Q′ = 2.
Obviously to find a such P , Ma must be odd as all its modulo,
see Sec. V-D which presents the selection of P . Below the
reported cost analysis is for this specific form of P .

Let us now analyze the cost of each line of Algo. 5. The
positional multiplication at line 1 costs d2 × (2n/d) = 2nd
EMMs (with schoolbook algorithm). The positional reductions
at lines 2 and 4 just compute d additions (Zi + 2Zi+d) and 1
addition (Z0+2Zd) respectively. The “high” part propagation
at line 3 (Algo. 3) is more costly:

d×
(
2
n2

d2
+ 2

n

d

)
= 2n

(n
d
+ 1
)
EMMs.

Using na = nb = n/d, the small carry propagation at line 5
costs 2n EMMs (we neglect here the n small multiplications
modulo mγ).

Then the complete cost of Algo. 5 is 2n
(
n
d + d+ 2

)
EMMs.

Choosing d = 2, we recover the result reported in [13] with
n2 + 8n EMMs using the schoolbook multiplication algorithm
(or n2 + 7n EMMs using Karatsuba-Ofman method [22]).
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Table I reports the cost of the HPR modular multiplication
from Algo. 5 for various d using schoolbook multiplication.
For larger d, it can be interesting to use other multiplication
algorithms.

Figures 3 and 4 illustrate the behavior of the HPR modular
multiplication for various parameters d and n. Fig. 3 shows
that for a fixed n, the minimum cost is reached for d ≈

√
n. It

comes from the derivative in d of the total cost: −2n
2

d2 +2n = 0
gives 2d2n = 2n2 thus d =

√
n (d > 1). Then in practice,

d is small. Fig. 4 shows that HPR is always faster than RNS
even if d is not so close from

√
n.

C. Sources of Parallelism in HPR

In RNS, the parallelism naturally comes from the indepen-
dence of the n residues computations which are often imple-
mented into n parallel units. HPR benefits of this parallelism at
the digit-level computations. For a given field size `, the digit-
level parallelism reduces when d grows due to fewer moduli
in the base.

Actually, using our modular multiplication algorithm 5, the
digit level is not the only source of parallelism. First, in the
product of two degree-d HPR values, there are d2 digit by
digit sub-products which can be computed in parallel. Each
sub-product costs 2nd EMMs performed in parallel (since each
digit is an RNS value). The total cost of a degree-d HPR

d 2 4 8 16

cost (EMM) n2 + 8n n2

2
+ 12n n2

4
+ 20n n2

8
+ 36n

TABLE I
COST OF DEGREE-d HPR MODULAR MULTIPLICATION WITH ALGO. 5.

product is 2dn parallel EMMs over n parallel units. Second, as
seen in Sec. IV-B, the HPR carry and “high” part propagations
can be performed over n parallel units. However the number of
additions grows with d, and thus introduces data dependencies.

As a conclusion, if d is sufficiently small compared to n,
HPR has a similar level of parallelism compared to RNS.
For implementations of ECC modular multiplication, a good
choice is, at most, d ≈

√
n.

D. Choice of Characteristic P

For hardware implementations one usually uses moduli
sizes w ∈ [16, . . . , 64] bits and (pseudo-)Mersenne moduli
mi (for fast internal reductions in the computations of the
individual residues). Generating characteristics of the form
P = Q(Ma) with Q = Xd − Q′ and Q′ with a very
small Hamming weight is not very difficult. In a first time,
we use a fast probabilistic primality test (such as the Maple
is_prime function). Then we select the most convenient
candidates with respect to implementation purpose. Finally,
one can test only the most relevant final candidate using a very
costly deterministic primality test. For the characteristic form
P =M4

a − 2 with 256-bit ECC, using the parameters na = 4
and w = 16, we can generate more than 1000 candidates in
less than 7 s using a simple laptop with an Intel I7 processor
running at 2.2 GHz. For 512 bits, na = 4 and w = 32, less
than 10 s are required to generate more than 1000 candidates.

Using a pseudo-Mersenne prime for the characteristic in the
standard binary representation leads to very efficient reduc-
tions but a specific irreducible polynomial is required for each
field size (due to a very small number of efficient candidates,
see for instance [26]). This leads to dedicated (and different)
computation units for each field. HPR allows to use the same
characteristic form P =Md

a −2 for different field sizes or for
different primes of a given size `. Then the same type of units
architecture can be shared for various field sizes or primes
characteristics. Only the precomputations are specific to each
set of parameters (but the data-path remains the same for a
given w parameter).

VI. APPLICATION 2: RSA EXPONENTIATION

Below we propose an RSA exponentiation algorithm with
a reduced number of operations compared to the best state-
of-the-art RNS algorithm [10]. A more efficient RNS expo-
nentiation has been proposed in [23] but it only works for
specific modulus and then it cannot be used for RSA where the
modulus is the public key. For the same reason, the modular
multiplication proposed in Sec. V does not work for RSA.

Our exponentiation algorithm, detailed in Sec. VI-B, is
designed for operands and result represented in standard RNS
with intermediate computations performed using HPR.

A. Enlarged Conversion from RNS to HPR

Our exponentiation algorithm uses three internal bases Ba,
Bb and Bc with na = nb = n/d and nc = n. We perform
the RNS to HPR conversion using Algo. 6. This conversion is

6



enlarged because the digits are given in Ba|b but also in Bc,
as required by our exponentiation algorithm 7.

Algo. 6 iteratively produces the digits 〈Xi〉 of the HPR
result one by one with successive divisions Xi = Xi−Xi−1

Ma

using optimized BEs. At each iteration, the division by Ma

is not possible in base Ba. Then BE at line 3 converts the
current value from base Ba into the base Bb|c. The division
can be now computed at line 4. Lines 5 and 6 prevent errors
due to BE approximation from [6], as in HPR “high” part
propagation and small carry propagation in Sec. IV.

The second BE at line 7 converts back the current value
from base Bb|c into base Ba. In this BE, as the current value
decreases, less moduli from base Bc are required. Then Bc(i)
denotes the reduced base required at iteration i. At each
iteration, nd moduli are discarded at line 7 in base Bc.

Algorithm 6: RNStoHPR Conversion with 3 Bases.
Parameters: Ba,Bb,Bc with na = nb = n/d and nc = n
Parameters: Bc(i) = (mc,0, . . . ,mc,(d−i)n/d)
Precomp.: 〈M−1a 〉b|c
Input: 〈X〉a|b|c
Output: XHPR with digits in Ba|b|c

1 〈X0〉a ← 〈X〉a, 〈X1〉b|c ← 〈X〉b|c
2 for i from 1 to d− 1 do
3 〈Xi−1〉b|c ← BE(〈Xi−1〉a,Ba,Bb|c)
4 〈Xi〉b|c ←

(
〈Xi〉b|c − 〈Xi−1〉b|c

)
× 〈M−1a 〉b|c

5 if 〈Xi〉b|c = 〈−1〉b|c then
6 〈Xi〉b|c ← 〈0〉b|c
7 〈Xi〉a ← BE(〈Xi〉b,Bc(i),Ba)
8 return XHPR =

(
〈Xd−1〉a|b|c, . . . , 〈X0〉a|b|c

)
BE at line 3 costs n

d (
n
d + n + 1) EMMs and line 4

costs (n + n/d) EMMs. At iteration i, BE at line 7 costs
in2

d2 EMMs. Then the total cost of Algo. 6 is
(−1
2d −

1
d2 + 3

2

)
n2+(−2

d + 1 + d
)
n EMMs. The conversion cost grows with d, for

instance when d = 2 the cost is n2 + 2 EMMs, and for d = 3
it is 11

9 n
2 + 10

3 EMMs.

B. Exponentiation Algorithm

Our RSA exponentiation is detailed in Algo. 7 and computes
Z = Ge mod N . We use the RNS Montgomery reduction
(RNS-MR) with all values in the RNS Montgomery domain
(i.e. each is multiplied by M−1a|b ). The idea is to compute
Z2 ·C in HPR where C is fixed and then perform a “partial”
modular reduction using the precomputations |Mk

aC|N for
k ∈ [0, 2(d− 1)]. This adds (2d− 2) · (nw) bits to be stored,
which is small compared to the usual precomputations since
d is very small in practice. Then one computes the RNS
representation of this partially reduced value using

|Z2G|N ≡
2(d−1)∑
k=0

d−1∑
i=0

ZiZk−i|Mk
aC|N . (3)

Thanks to the precomputation of |Mk
aC|N , the right term

of equation 3 is partially reduced modulo N : its size is ` +

(2`/d) bits instead of 3` bits for Z2G. This explains why
n + (2n/d) = na + nb + nc moduli are required to contain
this partial reduction.

Algo. 7 is a variant of the square-and-multiply algorithm
(see [24] for instance). If the bit exponent is 0 then a square
is computed, otherwise a square and a multiplication by G
are performed. Our algorithm is regular and always computes
|Z2C|N with C = G or C = M−1a|b (the Montgomery repre-
sentation of 1). The “SubProducts” at lines 5 and 8 correspond
to the straightforward evaluation of equation 3. Lines 6 and 9
perform one RNS-MR using Ba|b as first base (2n/d moduli)
and Bc (n moduli). The regularity of exponentiation algorithms
is important in cryptographic implementations to protect them
against some side-channel attacks, as the SPA (simple power
analysis) attack.

Algorithm 7: Proposed Regular Modular Exponentiation.
Parameters: Ba,Bb,Bc with na = nb = n/d and nc = n
Input: 〈G〉a|b|c, e the exponent
Output: 〈Z〉a|b|c with Z = Ge mod N , Z < 3P

1 〈Z〉a|b|c ← 〈|M−1a|b |P 〉a|b|c
2 for i from `− 1 to 0 do
3 ZHPR ← RNStoHPR(〈Z〉a|b|c,Ba,Bb,Bc)
4 if ei = 0 then
5 〈Z〉a|b|c ← SubProducts(ZHPR, 〈|M−1a|b |P 〉)
6 〈Z〉a|b|c ← RNS-MR(〈Z〉a|b|c,Ba|b,Bc)
7 else
8 〈Z〉a|b|c ← SubProducts(ZHPR, 〈G〉)
9 〈Z〉a|b|c ← RNS-MR(〈Z〉a|b|c,Ba|b,Bc)

10 return 〈Z〉a|b|c

C. Cost Analysis

For the evaluation of Algo. 7, we start by evaluating one
iteration of the loop. The conversion step has already been
evaluated, so we evaluate the cost of the sub-products ZiZj .
Because a square is performed, ZiZj = ZjZi thus we do not
have d2 products but only d(d+1)/2 products to compute on
Ba, Bb and Bc. Then, after the addition of the sub-products
of the same weight, one computes the (2d − 1) products
|Mk

aC|N × (
∑
ZiZk−i) and add them. As an example, for

d = 2 one computes (Z2
1 )×|M2

aC|N +(2Z1Z0)×|MaC|N +
(Z2

0 ) × |C|N . The total cost of the sub-products part is(
d2

2 + 7d
2 −

2
d + 4

)
n EMMs.

It is possible to reduce the number of products using some
factorizations: for instance with d = 2 one can compute Z1×(
Z1|M2

aC|N + (2Z2)× |MaC|N
)
+(Z2

0 )×|C|N to save one
multiplication on the 3 bases, saving 2n EMMs.

The cost of RNS-MR is 2
(

2n2

d

)
+n EMMs, after optimization

of the first constant multiplication in RNS-MR which saves
2n/d EMMs. Then, one loop iteration costs(

7

2d
− 1

d2
+

3

2

)
n2 +

(
−4
d

+ 6 +
9d

2
+
d2

2

)
n EMMs.
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Fig. 5. Comparison of our regular exponentiation algorithm 7 based on HPR
and a regular version of the RNS state-of-the-art algorithm from [10].

For instance, it gives 3n2+15n EMMs for d = 2 (or 3n2+13n
with the previous factorizations), and 37

16n
2 + 31n EMMs for

d = 4 against 4n2+8n for state-of-the-art RNS. Fig. 5 presents
the gain of this exponentiation with d = 2, 3, 4 compared
to one RNS regular exponentiation, such as the Montgomery
ladder exponentiation from [27]. Values are presented up to
128 moduli, which can be applied for 64-bit implementations
of RSA-8192 or 32-bit implementations of RSA-4096. For
n = 32, the gain goes from 20 % to 23 % with d = 2 to 4.
For large n like 128, d = 2, 3 and 4 give a 24 %, 33 % and
38 % cost reduction respectively.

VII. CONCLUSION

Our hybrid position-residues (HPR) number system pro-
vides various trade-offs between internal parallelism and the
efficiency of operations requiring position information for
large integers and prime field elements. In asymmetric cryp-
tography applications, HPR leads to more efficient modular
multiplications compared to RNS. For 256–512 bits ECC,
HPR offers 40 to 60 % computation cost reduction. For 2048–
4096 bits RSA, the computation cost reduction is 20 to 40 %.

We will now work on the selection of the various parameters
and complete FPGA implementations for asymmetric cryptog-
raphy applications.
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