
Multiprecision Multiplication on ARMv8

Zhe Liu∗, Kimmo Järvinenädl†, and Weiqiang Liu‡ Hwajeong Seo§

∗APSIA, Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg.
sduliuzhe@gmail.com

†Department of Computer Science, University of Helsinki,Helsinki, Finland.
kimmo.u.jarvinen@helsinki.fi

‡College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics.
liuweiqiang@nuaa.edu.cn

‡Department of IT, Hansung University.
hwajeong@hansung.ac.kr

Abstract—Multiplication of large integers is a fundamental
operation for public key cryptography. In contemporary public
key cryptography, the sizes of integers are typically from
more than one hundred bits to even several thousands of bits.
Because these sizes exceed the bit widths of all general-purpose
processors, these multiplications must be performed with a
multiprecision multiplication algorithm which splits the oper-
ation into multiple partial products and accumulation steps.
To ensure efficiency, multiprecision multiplication algorithms
must be designed with special care and optimized for the
instruction sets of specific processors. Consequently, developing
efficient multiprecision multiplication algorithms and optimiz-
ing them for specific platforms has been an active research
topic. In this paper, we optimize multiprecision multiplication
and squaring specifically for the 64-bit ARMv8 processors
which are widely used, for example, in modern smart phones
and tablets. We combine the subtractive Karatsuba algo-
rithm, operand-scanning techniques (for multiplication) and
sliding-block-doubling methods (for squaring) to accelerate
the performance of the 256-bit multiprecision multiplication
and squaring by 7.6 % and 7.0 % compared to the OpenSSL
implementations. We focus particularly on the multiprecision
multiplications that are required in elliptic curve cryptography.
Our implementation supports general elliptic curves of various
sizes and all source codes are available in public domain.

Keywords: Multiprecision multiplication, public key cryptog-
raphy, elliptic curve cryptography, 64-bit processor, ARMv8

1. Introduction

Integer multiplication is the most commonly used oper-
ation in public key cryptography (PKC) and, at the same
time, amongst the most time-consuming ones. Generally,
PKC utilizes integer multiplications with very large inte-
gers of several hundreds of bits. They are computed with
multiprecision multiplication algorithms that break down the
operation into several small partial products which are small

enough to be computed with the multiplication instructions
of the processor. The partial products are then accumulated
in a special way to get the correct product of the large
integer multiplication. Because of the frequency and com-
plexity of multiprecision multiplication, its efficiency largely
determines the efficiency of the whole PKC implementation.
In this paper, we concentrate mostly on multiprecision mul-
tiplications that are required for elliptic curve cryptography
(ECC) [1], [2] over fields of large prime characteristic, but
the techniques may have importance also for other pre-
quantum cryptosystems including RSA [3] and cryptosys-
tems based on discrete logarithms (e.g,. El-Gamal [4]) as
well as future post-quantum cryptosystems such as Ring
Learning with Errors (RLWE) based cryptosystems [5] or
Super-Singular Isogeny Diffie-Hellman (SIDH) [6].

The efficiency of multiprecision multiplication is deter-
mined mostly by two factors: (1) the size of the partial
products, which depends on the bit-width of the processor
(e.g., 8 bits for an 8-bit AVR or 32 bits for a 32-bit ARM
processor) and also determines the number of partial prod-
ucts that need to be computed and (2) the instructions used
for computing the partial products and accumulating them.
In particular, certain instruction set architectures (ISA) can
include special instructions (e.g., multiply-and-accumulate)
that make certain multiprecision multiplication algorithms
more efficient. Besides pure efficiency, it is also crucial
that multiprecision multiplication algorithm has a constant
latency in order to prevent timing side-channel attacks. By
combining all the above, we can summarize that optimizing
multiprecision multiplication specifically for specific proces-
sor architectures is of great importance.

Advanced Reduced Instruction Set Computing (RISC)
Machine (ARM) is an ISA for high-performance embedded
applications. The most advanced ARM processors, the 64-
bit ARMv8 processors, support both 32-bits (AArch32) and
64-bits (AArch64) architectures. The processor includes 31
64-bit registers, which are accessible at any time, and, at
the same time, support a new instruction set (A64) with 64-
bit operands. Compared to its predecessor, ARMv7, it has a
more powerful instruction set and more registers to optimize

LOW(A× B)-

A

×

B

MUL(A, B)

-HIGH(A× B)

A

×

B

UMULH(A, B)

Figure 1: ARMv8 instructions for the 64-bit multiplication:
MUL and UMULH

memory access performance. The ARMv8 processors started
to dominate the smartphone market soon after the release in
2011 and nowadays they are widely used in various smart
phones (e.g., in iPhone and Samsung Galaxy series). Since
the processor is used primarily in embedded systems and
smart phones, efficient and compact implementations are of
special interest. ARMv8 provides two 64-bit multiplication
instructions, MUL and UMULH, both of which carry out one
half of a 64×64-bit multiplication (see Figure 1). In both
cases, the inputs are 64-bit registers. MUL computes the
lower 64-bit half of the results while UMULH computes the
higher 64-bit half.

Recently, many papers have been published about imple-
mentations of cryptography on ARMv8. Gouvêa et al. [7]
presented an optimized constant-time implementation of
AES-GCM utilizing this instruction set. It achieved very
competitive performance: 1.71 cycles per byte for GCM
authenticated encryption, 0.51 cycles per byte for GCM
authentication and 1.21 cycles per byte for AES-128 en-
cryption. In [8], Seo et al. presented efficient implementa-
tions of binary field multiplication in ARMv8. They op-
timized the multiplication for ARMv8 by combining the
Karatsuba algorithm with a 64-bit polynomial multiplica-
tion instruction (PMULL). Also they achieved very good
performance: 57 and 153 cycles for the 251-bit and 571-
bit binary fields (B-251 and B-571), respectively. The same
authors presented further improvements in [9] by presenting
efficient elliptic curve cryptography over B-571 in ARMv8.
They improved the binary field multiplication in B-571
from [8] by combining finely aligned multiplication and
incomplete reduction techniques with the advantages of the
PMULL instruction of ARMv8. Despite the fact that ECC
over fields of large prime characteristic (e.g., over prime
fields) is nowadays significantly more popular than ECC
over binary fields, academic papers on efficient implemen-
tation of multiprecision integer multiplication for ARMv8
are still missing. The latest OpenSSL library [10] includes
the most advanced multiprecision multiplication implemen-
tations for the ARMv8 architecture. Even in OpenSSL, only
the 256-bit arithmetic required for ECC over the NIST P-256
curve [11] is implemented for the ARMv8 instruction set.
The OpenSSL implementation for multiprecision multipli-
cation follows the operand-scanning (schoolbook) approach
while multiprecision squaring (multiplication of an operand

by itself) follows the sliding-block-doubling method.
In this paper, we study multiprecision multiplication on

ARMv8 and introduce several optimizations that lead to
significant improvements over the state-of-the-art (i.e., the
OpenSSL implementation). We exploit good practices avail-
able in the literature and make advantage of the new features
in the ARMv8 ISA in order to optimize the multiprecision
multiplication for ARMv8. Specifically, we employ the sub-
tractive Karatsuba algorithm and optimize the use of general
purpose registers. The detailed implementation techniques
are given in Section 3. Our implementations of multipreci-
sion multiplication provide better performance compared to
the OpenSSL implementations in ARMv8. For example,
we are 7.6 % and 7.0 % faster for 256-bit multiplications
and squarings, respectively. For 512-bit multiplications, we
already show improvements of 14.9 % and 10.7 % for mul-
tiplication and squaring, respectively.

The remainder of the paper is structured as follows: We
review the related work on multiprecision multiplication in
Section 2. We present our contributions and implementations
in Section 3 and present the results in Section 4. We end
with conclusions in Section 5.

2. Related Work

2.1. Multiprecision Multiplication

Multiprecision multiplication as well as it efficient im-
plementation have been deeply studied in the past few
decades. The n-bit integers A and B are represented in
radix-w: A =

∑N−1
i=0 A[i]2iw and B =

∑N−1
j=0 B[j]2jw so

that both integers decompose into N = ⌊n/w⌋ + 1 partial
operands A[i] and B[j] which are integers from 0 to 2w−1
(w-bit words). Multiprecision multiplication computes the
product A ·B by computing partial products A[i] ·B[j] with
different i and j and adds them appropriately to get the final
result.

The simplest and most intuitive multiprecision multi-
plication algorithm is the operand-scanning method (also
known as the schoolbook method). As its name suggest,
it iterates two nested loops that originate directly from the
following equation:

C = A ·B =

N−1∑
i=0

N−1∑
j=0

(A[i] ·B[j])2(i+j)w. (1)

The operand-scanning method performs a multiplication in
a row-wise manner so that, first, A[0] is multiplied with all
partial operands B, then, the same is done with A[1], etc.
Because each partial operand of A is multiplied with all
partial operands of B, N2 partial products are computed
in total. Adding all partial products to the corresponding
positions produces the final result.

Comba [12] proposed a multiprecision multiplication
called product-scanning method where partial products of
(1) are computed in a column-wise manner in the order
in which they affect the result. I.e., all partial products

belonging to the same result word are computed at once:
one iterates an index k from 0 to 2N − 2 and computes
partial products A[i] · B[j] for which i + j = k on each
iteration. Because of this, all partial products of an iteration
are accumulated to the same register and the computation
proceeds as follows: A[0] ·B[0] is computed first giving the
lowest part of the result, then A[0] ·B[1] and A[1] ·B[0] are
computed next and accumulated together with the higher
word of the result of A[0] · B[0] to get the next word of
the result, etc. This has several advantages. First, since all
partial products of each word of the result are computed
and added consecutively, the final result word is obtained
directly and no intermediate results have to be stored or
loaded in the algorithm. Second, only five working registers
are needed to perform the multiplication: two registers for
the operands and three registers for the accumulation. This
makes the method very suitable for low-resource devices
with limited registers.

Gura et al. in [13] proposed a hybrid scanning method
that combines the two aforementioned methods. Specifically,
the product-scanning and operand-scanning methods are
used in the outer and inner loops, respectively. The method
uses more registers to store intermediate operands at every
iteration of the outer loop which decreases the number of
READ operations from the memory as a consequence. The
performance of the method is determined by a parameter
d, which represents the number of READ operations in an
iteration of the outer loop. Obviously, the method is equal
to the product-scanning method if d = 1 and to the operand-
scanning method if d = N .

Scott et al. [14] made an improvement to the original
hybrid-scanning method from [13] by employing a set of
registers called the carry-catcher. They allow to significantly
reduce the number of MOV instructions which saves the total
number of CPU cycles. In the original hybrid method of
[13], carry propagations happen in every iteration of the
inner loop when row-wise partial products occur. In the
hybrid-scanning method of [14], they happen only in every
iteration of the outer loop which results in an increase in
performance. The method is particularly useful for squaring
(see Section 2.2) where it results in the fastest schemes
available so far.

A variant of the product-scanning method called the
operand-caching method was proposed by Hutter et al.
in [15]. It follows the principles of the product-scanning
method but divides the calculations into several rows. By
reordering the sequence of inner and outer row sections,
previously loaded operands in working registers are reused
for the next partial products. This adds a few WRITE
instructions, but reduces the number of READ instructions
and leads to better overall performance. The number of row
sections is given by r = ⌊n/e⌋, where e denotes the number
of words used to cache the words of the operands.

Seo et al. [16] made a further improvement on the
operand-caching method from [15]. The improved version
named the consecutive operand-caching method uses a
caching technique to further reduce the number of memory
accesses (READ instructions). The key observation was that

several memory accesses can be saved because different
rows in the operand-caching method use common operands
and it is not necessary to replace all cached values between
the rows.

2.2. Multiprecision Squaring

Squaring is a special case of multiplication where both
operands are the same, i.e., A = B. All methods discussed
above naturally apply for squaring, too. However, there is
room for optimizations in multiprecision squaring because
certain partial products become the same and need to be
performed only once. E.g., A[0] ·B[1]+A[1] ·B[0] becomes
2A[0] ·A[1] if A = B.

Lee et al. [17] proposed another optimization especially
for squaring. In this optimization, the partial products which
need to be added twice to the intermediate results, are
doubled after they are collected to the accumulator registers
at the end of the computation of each column.

In [18], Seo et al. gave a further optimization for squar-
ing. By using sliding-block-doubling method, the squar-
ing algorithm executes doubling operation by delaying the
operation to the end of the process. The doubling pro-
cess is conducted on fully accumulated intermediate results
with one-bit shift operations. Later, they proposed another
method called sliding-middle-block-doubling in [19], which
computes the middle parts of the duplicated partial products
first and then computes the remaining parts with a doubling
process. The technique reduces the number of accesses to
the intermediate result.

2.3. Karatsuba-Ofman Algorithm

We have discussed several improvements for multipreci-
sion multiplication above. All of them optimize the memory
access required for computing (1) in some way, but the
number of partial products is N2 for all of them.

Already in the early 1960s, Karatsuba and Ofman [20]
proposed a novel method (called Karatsuba-Ofman or sim-
ply Karatsuba algorithm) that reduces the number of par-
tial products at the expense of extra additions. Hence, the
Karatsuba algorithm has the potential to perform well in
platforms where multiplications are more expensive than
additions. The algorithm is based on the remarkable ob-
servation that the product C = A · B of two n-bit integers
A = AL+AH2n/2 and B = BL+BH2n/2 can be computed
as follows:

C = AH ·BH2n+

((AL +AH) · (BL +BH)−
AL ·BL −AH ·BH)2n/2+

AL ·BL

(2)

As shown above, the Karatsuba algorithm computes a mul-
tiplication with only three partial products compared to four
that are required by the standard schoolbook multiplication
(and the algorithms discussed previously), but requires two
additions and two subtractions compared to one addition

to compute the middle term (the term corresponding to
2n/2). For large values of n, the cost of additions and
subtractions is insignificant compared to the cost of the mul-
tiplications. The procedure may be applied recursively to the
intermediate values until some appropriate threshold (e.g.,
the word size of the processor), after which the classical
multiplication (or other method) is employed. The number
of partial products can be estimated by N log2 3, which is
a great improvement compared to N2 of the schoolbook
method.

A subtractive variant of the Karatsuba method relies on
the fact that the middle term can be expressed by using
absolute values as follows:

(AL +AH) · (BL +BH)−AL ·BL −AH ·BH =

AL ·BL +AH ·BH − |AH −AL| · |BH −BL|
(3)

The advantage of the subtractive Karatsuba algorithm is
the constant size of operands (n/2) for computing partial
products, which leads to fast constant-time multiplications.
However, the absolute values should implemented with care
in two’s complement representation. Algorithm 1 gives an
algorithm for the subtractive Karatsuba multiplication and
Algorithm 2 shows the corresponding algorithm for squar-
ing.

Recently, Scott [21] denoted that, for the Karatsuba algo-
rithm to be competitive, the actual radix must be a few bits
less than the word size in order to facilitate additions without
carry processing and, at the same time, to support the ability
to distinguish positive and negative numbers. However, this
requires an arbitrary degree variant of Karatsuba (ADK)
algorithm that allows a non-word size split. The author
shows that the total number of multiplications and additions
for ADK is less than the numbers required by the operand-
scanning method when N ≥ 12.

3. Our Contributions
In this section, we give our optimized implementations

of multiprecision multiplication and squaring on ARMv8
by making the best use of the algorithms discussed above
in Section 2 and the specific hardware features of ARMv8.

We begin the description of our implementations with
128-bit multiplication and squaring. Then, we proceed to
constructing efficient implementations of 256-bit, 384-bit,
and 512-bit multiplication and squaring routines. These bit
sizes are relevant, especially, for ECC based PKC which is
popular in many applications where ARMv8 is in frequent
use. The implementations may have importance also in
efficient implementations of, e.g., RSA and post-quantum
PKC (e.g., in SIDH) in the future.

3.1. 128-bit Operations

ARMv8 is a 64-bit processor, but it does not provide
a full 64-bit multiplication instruction. The multiplication
needs to be carried out with two instructions: MUL and
UMULH. Therefore, some special tricks are needed when
implementing multiprecision multiplications with these two
instructions.

3.1.1. Multiplication. We implemented the 128-bit mul-
tiplication by using the subtractive Karatsuba multiplica-
tion combined with our implementation tricks. Suppose
A = (A[1], A[0]) and B = (B[1], B[0]) are the 128-bit
multiplicand and multiplier, respectively, and they are loaded
into four 64-bit registers. First, we compute the lower 64-
bit partial product RL ← A[0] · B[0]. A 64-bit partial
product requires one MUL and one UMULH instruction in
order to obtain the full 128-bit result. Second, we com-
pute the higher 64-bit multiplication RH ← A[1] · B[1].
Third, we compute the absolute values and perform the
subtractions to obtain |A[0] − A[1]| and |B[0] − B[1]|. In
the subtraction, we capture a borrow bit through the SBC
instruction after the SUB instruction. If the borrow bit is
captured, the register is set to 232 − 1. Otherwise, the
register is set to 0. The borrow bit indicates whether the
sign of the variable is positive (0) or negative (232 − 1).
Afterwards, we perform a two’s complement operation on
the subtracted value with the borrow bit by using the EOR,
AND and ADD instructions (see Section 3.5.2). The step
is performed on both operands and the obtained borrow
bits are combined to determine the sign of the last 64-bit
multiplication (RM ← |A[0]−A[1]| · |B[0]−B[1]|) through
the two’s complement operation. Finally, the result of the
128-bit multiplication is computed via the accumulation step
RH ·2128+(RL+RH−RM) ·264+RL. In total 13 registers
are used in the above process and, hence, the callee-saved
registers (X19 ∼ X30) are not used.

As will be seen in Section 4, the above process using the
Karatsuba algorithm does not achieve performance enhance-
ments compared to the quadratic variant of the OpenSSL in
this case (see Table 1). The detailed assembly source code
for the above 128-bit Karatsuba multiplication is available
in the Appendix in Algorithm 3.

3.1.2. Squaring. We use a similar approach also for squar-
ing. Suppose the 128-bit operand is stored into two 64-bit
registers. First, we compute the lower 64-bit partial product
RL ← A[0]·A[0] and, then, the higher 64-bit partial product
RH ← A[1] ·A[1]. Second, the subtraction and the absolute
value are computed resulting |A[0] − A[1]|. The third 64-
bit multiplication RM ← |A[0] − A[1]| · |A[0] − A[1]| is
performed next followed by the the final accumulation step
RH ·2128+(RH+RL−RM)·264+RL. The process requires
in total 12 registers. Similarly to the 128-bit multiplication,
Karatsuba does not give performance enhancements in the
case of 128-bit squarings either (see Section 4 and Table 1).

3.2. 256-bit Operations

3.2.1. Multiplication. For the 256-bit multiplication, the
operands A = (A[3], . . . , A[0]) and B = (B[3], . . . , B[0])
are stored into eight 64-bit registers. We first compute the
lower 128-bit multiplication RL ← A[1 ∼ 0] · B[1 ∼ 0])
using the schoolbook method that requires four MUL, four
UMULH and certain additional instructions for accumulating
the partial products. Second, we compute the higher 128-
bit multiplication RH ← A[3 ∼ 2] · B[3 ∼ 2] similarly.

Algorithm 1 Subtractive Karatsuba Multiplication

Require: n-bit operands A = AL +AH · 2
n
2 , B = BL +BH · 2

n
2

Ensure: 2n-bit result C ← A ·B
1: L = LL + LH · 2

n
2 ← AL ·BL {n2 -bit multiplication}

2: H = HL +HH · 2
n
2 ← AH ·BH {n2 -bit multiplication}

3: T ← LH +HL {n2 -bit addition}
4: LH ← T + LL {n2 -bit addition}
5: HL ← T +HH {n2 -bit addition}
6: AD ← |AL −AH | {n2 -bit subtraction}
7: BD ← |BL −BH | {n2 -bit subtraction}
8: M = ML +MH · 2n ← AD ·BD {n2 -bit multiplication}
9: C ← L−M · 2n

2 +H · 2n {n-bit subtraction and n
2 -bit addition}

10: return C

Algorithm 2 Subtractive Karatsuba Squaring

Require: n-bit operand A = AL +AH · 2
n
2

Ensure: 2n-bit result C ← A ·B
1: L = LL + LH · 2

n
2 ← AL ·AL {n2 -bit multiplication}

2: H = HL +HH · 2
n
2 ← AH ·AH {n2 -bit multiplication}

3: T ← LH +HL {n2 -bit addition}
4: LH ← T + LL {n2 -bit addition}
5: HL ← T +HH {n2 -bit addition}
6: AD ← |AL −AH | {n2 -bit subtraction}
7: M = ML +MH · 2n ← AD ·AD {n2 -bit multiplication}
8: C ← L−M · 2n

2 +H · 2n {n-bit subtraction and n
2 -bit addition}

9: return C

Third, we compute the subtractions and absolute values
|A[1 ∼ 0] − A[3 ∼ 2]| and |B[1 ∼ 0] − B[3 ∼ 2]|
and proceed to the last 128-bit multiplication RM ←
|A[1 ∼ 0] − A[3 ∼ 2]| · |B[1 ∼ 0] − B[3 ∼ 2]|. Finally,
we obtain the result by performing the accumulation step
RH · 2256 + (RL + RH − RM) · 2128 + RL. One 256-bit
multiplication uses in total 25 registers so that six callee-
saved registers (X19 ∼ X24) are stored into the stack. As
will be shown in Section 4, the Karatsuba algorithm shows
higher performance than quadratic complexity multiplication
for the 256-bit multiplication (see Table 1).

3.2.2. Squaring. The 256-bit operand A = (A[3], . . . , A[0])
is stored into four 64-bit registers. The computation proceeds
as above. First, we compute the lower 128-bit multiplication
RL ← A[1 ∼ 0] · A[1 ∼ 0] followed by the higher 128-bit
multiplication RH ← A[3 ∼ 2]·A[3 ∼ 2]. Then, we compute
the subtraction and absolute value |A[1 ∼ 0] − A[3 ∼ 2]|
and the 128-bit multiplication RM ← |A[1 ∼ 0] − A[3 ∼
2]| · |A[1 ∼ 0] − A[3 ∼ 2]|. Finally, the accumulation step
RH ·2256+(RL+RH−RM)·2128+RL returns the result. The
256-bit squaring requires in total 19 registers. Similarly as
before, the Karatsuba algorithm shows higher performance
than quadratic complexity multiplication (see Section 4 and
Table 1).

3.3. 384-bit Operations

3.3.1. Multiplication. The 384-bit operands A =
(A[5], . . . , A[0]) and B = (B[5], . . . , B[0]) are stored into
twelve 64-bit registers. We again begin with the lower and
higher 192-bit multiplications RL ← A[2 ∼ 0] · B[2 ∼ 0]
and RH ← A[5 ∼ 3] · B[5 ∼ 3], which both require 9
MUL and 9 UMULH instructions. Also the rest of the multi-
plication proceeds similarly as before: the subtractions and
the absolute values are computed |A[2 ∼ 0]−A[5 ∼ 3]| and
|B[2 ∼ 0]−B[5 ∼ 3]| followed by the 192-bit multiplication
RM ← |A[2 ∼ 0]−A[5 ∼ 3]|·|B[2 ∼ 0]−B[5 ∼ 3]| and the
accumulation step RH ·2384+(RL+RH−RM) ·2192+RL.
The 384-bit multiplication requires in total 31 registers with
12 callee-saved registers (X19 ∼ X30) which are stored
into the stack.

3.3.2. Squaring. The 384-bit operand A = (A[5], . . . , A[0])
of the squaring is stored into six 64-bit registers. First, we
compute the lower 192-bit multiplication RL ← A[2 ∼
0] · A[5 ∼ 3] and the higher 192-bit multiplication RH ←
A[5 ∼ 3]·A[5 ∼ 3]. The computation proceeds with the sub-
traction |A[2 ∼ 0]−A[5 ∼ 3]| and the last 192-bit multipli-
cation RM ← |A[2 ∼ 0]−A[5 ∼ 3]| · |A[2 ∼ 0]−A[5 ∼ 3]|.
Finally, the accumulation step RH ·2384+(RL+RH−RM)·
2192 + RL ends the computation. In total 31 registers are
used in the 384-bit squaring and 12 callee-saved registers
(X19 ∼ X30) are stored into the stack.

3.4. 512-bit Operations

3.4.1. Multiplication. The operand A = (A[7], . . . , A[0])
and B = (B[7], . . . , B[0]) of the 512-bit multiplication are
stored into 16 64-bit registers. Unlike the previous cases, we
use 2-level Karatsuba multiplication for the 512-bit multi-
plication. First, we compute the lower 256-bit multiplication
RL ← A[3 ∼ 0] · B[3 ∼ 0] using the 1-level Karat-
suba multiplication of two 256-bit operands as described
in Section 3.2.1. This 256-bit partial product requires 12
MUL and 12 UMULH instructions. Second, we compute the
higher 256-bit multiplication RH ← A[7 ∼ 4] · B[7 ∼ 4]
similarly. Third, we compute the subtractions and absolute
values |A[3 ∼ 0] − A[7 ∼ 4]| and |B[3 ∼ 0] − B[7 ∼ 4]|
and the last 256-bit multiplication RM ← |A[3 ∼ 0] −
A[7 ∼ 4]| · |B[3 ∼ 0] − B[7 ∼ 4]| using the 256-bit
1-level Karatsuba multiplication. Finally, the accumulation
step RH · 2512 + (RL + RH − RM) · 2256 + RL gives the
result of the full 512-bit multiplication. The above process
requires in total 31 registers with 12 callee-saved registers
(X19 ∼ X30) which are stored into the stack. Additionally,
16 bytes of the stack are used for intermediate results.

3.4.2. Squaring. The 512-bit operand A = (A[7], . . . , A[0])
of the squaring is stored into eight 64-bit registers. For this
case, we also use the 2-level Karatsuba approach. First, we
compute the lower and higher 256-bit multiplications RL ←
A[3 ∼ 0] · A[3 ∼ 0] and RH ← A[7 ∼ 4] · A[7 ∼ 4]
with the 1-level 256-bit Karatsuba algorithm described in
Section 3.2.1. We obtain the result of the 512-bit squaring
by computing the subtraction and absolute value |A[3 ∼ 0]−
A[7 ∼ 4]|, the final 256-bit multiplication RM ← |A[3 ∼
0]−A[7 ∼ 4]| · |A[3 ∼ 0]−A[7 ∼ 4]|, and the accumulation
step RH ·2512+(RL+RH −RM) ·2256+RL. The 512-bit
squaring requires in total 31 registers and 12 callee-saved
registers (X19 ∼ X30) which are stored into the stack.

3.5. Optimizations

3.5.1. Generation of the Carry Register. In the accumu-
lation of partial products, the most significant word can
generate a carry bit, which should be stored into the higher
word. We initialize and use a zero register in order to store
the carry bit. The general approach is as follows: MOV x0,
#0; ADDS x1, x1, x2; ADCS x3, x0,x0. In the first
instruction, we initialize the zero register x0. The second
instruction computes the addition and the third instruction
captures its carry to the register x3 with the help of the zero
register. Algorithm 3 in the Appendix shows how the carry
register is used in the 128-bit Karatsuba multiplication.

3.5.2. Two’s Complement. In order to generate a two’s
complement value, we perform a subtraction and logical
operations. The general approach to obtain the two’s com-
plement is as follows: SBCS x2, x2, x2; EOR x0,
x0, x2; AND x2, x2, #1; ADD x0, x0, x2. Algo-
rithm 3 in the Appendix shows how the two’s complement
is computed in the 128-bit Karatsuba multiplication.

4. Evaluations

We programmed our implementations by using Xcode
and benchmarked them on iPad mini 2. The device is
equipped with an Apple A7 (APL0698) system-on-chip
including a 64-bit ARMv8-A dual-core processor running
at the frequency of 1.3 GHz. The programs were written
in mixed C and assembly for deep optimizations using
the ARMv8-specific features. The code was compiled with
-Ofast optimization level. The timings are acquired as the
number of clock cycles required to execute the codes on a
real device.

Table 1 shows a comparison with previous works. To
the best of our knowledge, there are no academic papers
that have presented implementations of multiprecision mul-
tiplication and squaring on ARMv8. Therefore, we com-
pared our results with the implementation in the OpenSSL
library [10] which includes implementations of the 256-bit
multiplication using the operand-scanning method and the
256-bit squaring using the sliding block doubling method.

For the 128-bit case, the operand-scanning method
shows better performance. The reason is that the Karat-
suba algorithm reduces only two multiplication instructions
but adds several other instructions, as shown in Table 2
that provides details about the instruction counts. Already
for the 256-bit case, the asymptotically faster Karatsuba
multiplication and squaring show higher performance than
the previous works. For multiplication, we achieved 7.6 %,
14.8 %, and 14.9 % performance enhancements for the 256-,
384-, 512-bit cases, respectively. For squaring, we achieved
7.0 %, 3.4 %, and 10.7 % performance enhancements for
the 256-, 384-, 512-bit cases, respectively. The stack sizes
are slightly larger than for the previous methods since the
Karatsuba algorithm requires a larger number of registers
for the intermediate results. However, the additional stack
size is reasonable and, typically, does not present a problem
in applications of the advanced ARMv8 processors which
often include a lot of RAM (e.g., 1–4 GB).

Table 2 gives a detailed comparisons of instruction
counts of multiprecision multiplication and squaring in
ARMv8. The main instructions include multiplication, mem-
ory access and other arithmetic operations. Particularly,
multiplication requires 6 clock cycles and memory access
requires 4 clock cycles each. The other arithmetic operations
need only 1 clock cycle. If we replace one multiplication
with one to five other arithmetic operations, the performance
should increase. However, as the results in Table 1 show,
the final latency is not a simple weighted sum of instruction
counts due to microarchitectural features such as multiple
levels of pipeline as well as parallelism of memory access
and arithmetic operations. Consequently, the performance
enhancements for particularly the 256- and 384-bit squaring
operations are slightly smaller than what could be expected
based on Table 1. Nonetheless, performance increases are
observed for all operations where the operands are at least
256 bits long. We emphasize that multiprecision multiplica-
tion and squaring are fundamental operations for PKC and

TABLE 1: A comparison of execution times (clock cycles) and stack sizes (bytes) of multiplication and squaring

Input size (bits)
Method 128 256 384 512

Multiplication
Operand-scanning [10] cycle 19 66 148 261

byte 0 32 96 96
This paper cycle 24 61 126 222

byte 0 48 96 112
Karatsuba 1-level 1-level 1-level 2-level

Squaring
Sliding Block Doubling [18], [10] cycle 17 43 87 149

byte 0 0 32 96
This paper cycle 20 40 84 133

byte 0 0 96 96
Karatsuba 1-level 1-level 1-level 2-level

TABLE 2: A comparison of instruction counts for multiplication and squaring

Operation ADD/ADC SUB/SBC MUL/UMULH MOV NEG EOR/AND ASR LDP STP

Previous operand-scanning multiplication [10]
128-bit 7 – 8 2 – – – 2 2
256-bit 32 1 32 4 – – – 6 6
384-bit 77 1 72 6 – – – 12 12
512-bit 158 1 128 24 15 – – 14 14

Proposed Karatsuba multiplication
128-bit 14 5 6 1 – 8 – 2 2
256-bit 45 8 24 1 – 11 1 7 7
384-bit 84 10 54 1 – 15 1 12 12
512-bit 182 33 72 2 – 52 4 32 21

Previous sliding block doubling squaring[18], [10]
128-bit 6 – 6 1 – – – 1 2
256-bit 27 – 20 4 – – – 2 4
384-bit 56 1 42 6 – – – 5 8
512-bit 94 1 72 9 1 – – 10 14

Proposed Karatsuba squaring
128-bit 7 5 6 1 – 2 – 1 2
256-bit 32 8 18 1 – 3 – 2 4
384-bit 60 12 36 1 – 4 – 9 12
512-bit 124 39 54 2 – 14 – 10 14

ADD/ADC (1 cycle): addition w/o carry / addition w/ carry
SUB/SBC (1 cycle): subtraction w/o borrow / subtraction w/ borrow
MUL/UMULH (6 cycles): multiplication (lower 64-bit)/ multiplication (higher 64-bit)
MOV/NEG (1 cycle): move / negation
EOR/AND/ASR (1 cycle): exclusive-or / logical and / arithmetic right shift
LDP/STP (4 cycles): load pair / store pair

even small improvements for them have significance for the
overall performance of cryptographic operations.

5. Conclusion

In this paper, we presented optimized multiprecision
multiplication and squaring implementations for the 64-
bit ARMv8 processors. Our implementations utilized the
subtractive Karatsuba algorithm and ARMv8 specific op-
timizations. This work shows that our implementations are
more efficient than the OpenSSL implementation already
for 256-bit operands. Our implementations achieved perfor-
mance enhancements of 7.6 % and 7.0 % for the 256-bit
multiplication and squaring, respectively, and even larger
improvements for larger operand sizes. These are signif-
icant improvements because multiprecision multiplication

and squaring are fundamental operations, e.g., in PKC and
have a very significant effect on their performance. Our
implementations also have constant execution times which
is essential in order to avoid side-channel attacks. Since our
codes are available in public domain, other cryptography
engineers can directly use them for their cryptography ap-
plications.

Possible directions for future work are to apply the
multiplication and squaring routines described in this paper
to ECC. For example, OpenSSL uses quadratic-complexity
multiplication and squaring on ARMv8 for operations on
the popular Curve25519 elliptic curve [22] and replacing
that code with our implementations using the subtractive
Karatsuba algorithm will improve the performance of these
critical cryptographic operations. Furthermore, this paper
focused on ECC friendly operand sizes. It will be of interest

to investigate even longer operand sizes that are relevant
for RSA implementations. Other possible domains for our
implementations include the recent post-quantum PKC im-
plementations (e.g., for the SIDH cryptosystem [6]) where
multiprecision multiplications with large integers are also
needed.

References

[1] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology — CRYPTO ’85, ser. Lecture Notes in Computer Science,
vol. 218. Springer, 1986, pp. 417–426.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Compu-
tation, vol. 48, no. 177, pp. 203–209, 1987.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[4] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in Advances in Cryptology — CRYPTO 1984,
ser. Lecture Notes in Computer Science, vol. 196. Springer, 1985,
pp. 10–18.

[5] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Advances in Cryptology — EU-
ROCRYPT 2010, ser. Lecture Notes in Computer Science, vol. 6110.
Springer, 2010, pp. 1–23.

[6] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for
supersingular isogeny Diffie-Hellman,” in Advances in Cryptology —
CRYPTO 2016, ser. Lecture Notes in Computer Science, vol. 9814.
Springer, 2016, pp. 572–601.

[7] C. P. L. Gouvêa and J. López, “Implementing GCM on ARMv8,” in
Cryptographers’ Track at the RSA Conference — CT-RSA 2015, ser.
Lecture Notes in Computer Science, vol. 9048. Springer, 2015, pp.
167–180.

[8] H. Seo, Z. Liu, Y. Nogami, J. Choi, and H. Kim, “Binary field
multiplication on ARMv8,” Security and Communication Networks,
vol. 9, no. 13, pp. 2051–2058, 2016.

[9] H. Seo, “Faster ECC over F2571 (feat. PMULL),” Cryptology ePrint
Archive, Report 2015/745, 2015, http://eprint.iacr.org/2015/745.

[10] OpenSSL, “OpenSSL-1.1.0b,” Available for download at https://www.
openssl.org, Sep. 2016.

[11] National Institute of Standards and Technology (NIST), “Digital
signature standard (DSS),” Federal Information Processing Standard,
FIPS PUB 186-4, Jul. 2013.

[12] P. G. Comba, “Exponentiation cryptosystems on the IBM PC,” IBM
systems journal, vol. 29, no. 4, pp. 526–538, 1990.

[13] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Com-
paring elliptic curve cryptography and RSA on 8-bit CPUs,” in
International Workshop on Cryptographic Hardware and Embedded
Systems — CHES 2004, ser. Lecture Notes in Computer Science, vol.
3156. Springer, 2004, pp. 119–132.

[14] M. Scott and P. Szczechowiak, “Optimizing multiprecision multiplica-
tion for public key cryptography,” Cryptology ePrint Archive, Report
2007/299, 2007, http://eprint.iacr.org/2007/299.

[15] M. Hutter and E. Wenger, “Fast multi-precision multiplication for
public-key cryptography on embedded microprocessors,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems
— CHES 2011, ser. Lecture Notes in Computer Science, vol. 6917.
Springer, 2011, pp. 459–474.

[16] H. Seo and H. Kim, “Multi-precision multiplication for public-key
cryptography on embedded microprocessors,” in Information Security
Applications — WISA 2012, ser. Lecture Notes in Computer Science,
vol. 7690. Springer Verlag, 2012, pp. 55–67.

[17] Y. Lee, I.-H. Kim, and Y. Park, “Improved multi-precision squaring
for low-end RISC microcontrollers,” Journal of Systems and Software,
vol. 86, no. 1, pp. 60–71, 2013.

[18] H. Seo, Z. Liu, J. Choi, and H. Kim, “Multi-precision squaring for
public-key cryptography on embedded microprocessors,” in Interna-
tional Conference on Cryptology in India — INDOCRYPT 2013, ser.
Lecture Notes in Computer Science, vol. 8250. Springer, 2013, pp.
227–243.

[19] H. Seo, T. Park, S. Heo, G. Seo, B. Bae, L. Zhou, and H. Kim,
“Multi-precision squaring for public-key cryptography on embedded
microprocessors, a step forward,” in International Workshop on In-
formation Security Applications, 2016.

[20] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers
on automata,” in Soviet Physics Doklady, vol. 7, 1963, pp. 595–596.

[21] M. Scott, “Missing a trick: Karatsuba variations,” Cryptology ePrint
Archive, Report 2015/1247, 2015, http://eprint.iacr.org/2015/1247.

[22] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,”
in Public Key Cryptography — PKC 2006, ser. Lecture Notes in
Computer Science, vol. 3958. Springer, 2006, pp. 207–228.

Appendix

Algorithm 3 Assembly code for the 128-bit Karatsuba
multiplication

Require: operand pointers (x1 and x2)
Ensure: result pointer (x0)

1: LDP x4, x5, [x2] {loading}
2: LDP x2, x3, [x1]
3: MOV x1, #0

4: MUL x6, x2, x4 {AL ·BL low}
5: UMULH x7, x2, x4 {AL ·BL high}
6: MUL x8, x3, x5 {AH ·BH low}
7: UMULH x9, x3, x5 {AH ·BH high}
8: ADDS x10, x6, x8
9: ADCS x11, x7, x9

10: ADCS x12, x1, x1
11: ADDS x7, x7, x10
12: ADCS x8, x8, x11
13: ADCS x9, x9, x12

14: SUBS x2, x2, x3 {absolute values}
15: SBCS x3, x3, x3
16: EOR x2, x2, x3
17: AND x3, x3, #1
18: ADD x2, x2, x3
19: SUBS x4, x4, x5
20: SBCS x5, x5, x5
21: EOR x4, x4, x5
22: AND x5, x5, #1
23: ADD x4, x4, x5
24: EOR x3, x3, x5 {combining the signs}
25: SUB x3, x3, #1

26: MUL x10, x2, x4 {AD ·BD low}
27: UMULH x11, x2, x4 {AD ·BD high}
28: EOR x10, x10, x3 {two’s complement}
29: EOR x11, x11, x3
30: AND x4, x3, #1
31: ADDS x10, x10, x4
32: ADCS x11, x11, x1
33: ADCS x3, x3, x1
34: ADDS x7, x7, x10
35: ADCS x8, x8, x11
36: ADCS x9, x9, x3

37: STP x6, x7, [x0, #0] {storing}
38: STP x8, x9, [x0, #16]

