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Abstract—The typical processors used for scientific computing
have fixed-width data-paths. This implies that mathematical
libraries were specifically developed to target each of these
fixed precisions (binary16, binary32, binary64). However, to
address the increasing energy consumption and throughput
requirements of scientific applications, library and hardware
designers are moving beyond this one-size-fits-all approach. In
this article we propose to study the effects and benefits of
using user-defined floating-point formats and target accuracies in
calculations involving mathematical functions. Our tool collects
input-data profiles and iteratively explores lower precisions for
each call-site of a mathematical function in user applications.
This profiling data will be a valuable asset for specializing and
fine-tuning mathematical function implementations for a given
application. We demonstrate the tool’s capabilities on SGP4, a
satellite tracking application. The profile data shows the potential
for specialization and provides insight into answering where it
is useful to provide variable-precision designs for elementary
function evaluation.

Index Terms—HPC, libm, floating-point, custom-precision, op-
timization, specialization

I. INTRODUCTION

A growing interest to adapt floating-point formats to the real

needs of applications is becoming ever more ubiquitous. This

process has been successfully conducted by the AI community

which has settled on the BF16 [1] and fp16 [2] formats, in

order to increase performance and efficiency. Similar benefits

have been achieved in other domains [3], [4] by reducing

the precision of basic operations (+,−, ∗, /) and harnessing

hardware-support for multiple internal floating-point formats.

Oberman et al. [5] demonstrate that neglecting optimizations

of infrequent operations, such as division and square root,

can severely impact performance. We believe that elementary

functions should not be neglected either when optimizing

for mixed-precision. Even though elementary functions are

not widely available in hardware and infrequently used in

applications, their impact can be important. HPC Patmos

neutronic solver [6] spends 70% of the execution time in the

mathematical library (libm) functions. This confirms similar

observations by CERN [7] on their HPC codes.

Various mathematical libraries specialize evaluation

schemes for different accuracy/performance trade-offs [8].

Recent developments such as metalibm [9] automatically

generate elementary functions to best fit the hardware and

accuracy constraints. These works highlight that a trade-off

can be explored between performance, accuracy and precision.

In this paper, we propose a tool for collecting input intervals

and output required precision profiles from real applications

in order to guide the design of specialized mathematical

libraries. Indeed, considering limited input data ranges and

application-focused output accuracy could drastically influence

the implementation performance. We demonstrate the tool’s

capabilities on SGP4, a satellite tracking application. The

profile data shows the potential for specialization and provides

insight into where it is useful to provide variable-precision

designs for elementary function evaluation.

II. RELATED WORKS

Contrary to basic operations, properties of elementary func-

tion are not standardized mainly because the correctly rounded

property is difficult to achieve [10], [11]. As a consequence,

there are numerous available implementations of such func-

tions, either in software or hardware, each representing a

different trade-off between, accuracy, performance, hardware

requirements and programming language. The most notable

mathematical library embedding different trade-offs are the

Vector Mathematical Functions from Intel’s MKL library [8],

which offers three accuracy modes: High-/Low-accuracy and

Enhanced Performance. Another example are Nvidia’s GPUs,

which embed dedicated hardware for fast approximation of

some functions and software implementation of more accu-

rate and larger input range versions [12]. This has led to

the OpenCL 2.2 standard which defines the requirements in

terms of accuracy of mathematical functions from half to

double [13].

Developing and maintaining multiple implementations for

each function is a daunting endeavor. Several tools have been

proposed to automate this task either, for hardware or software

implementation of such functions [9], [14].

Porting the concept of memoization to mathematical func-

tions has been explored in [15], [16] where the authors

investigated how considering real input-data profile can be

used to optimize the evaluation. However, they did not evaluate

the potential decrease in accuracy.

http://arxiv.org/abs/2005.02732v1


III. SIMULATING VARIABLE PRECISION AND RANGE FOR

MATHEMATICAL FUNCTIONS

Our approach to simulate mathematical functions with re-

duced range/precision is twofold: first we transparently inter-

pose calls to mathematical functions, then the VPREC-libm

library computes the result in a reduced precision.

A. Library Call Interposition

In Linux, the dynamic loader offers the possibility to

intercept dynamic library calls, so that a custom library is

called instead. This is achieved by setting the LD_PRELOAD

environment variable. This interception method works out-of-

the-box with a compiled binary and is transparent to the user.

We use it to replace standard calls to the libm with custom

calls to our own VPREC-libm library which simulates non-

standard precisions and range. This approach is flexible, but

has two limitations:

• it is not applicable to statically linked programs: for those,

the user must manually re-link the program against the

VPREC-libm;

• it only intercepts library calls; to ensure that we inter-

cept all operations we disable compiler optimizations

which replace calls by hardware instrinsics (such as

sqrtsd assembly instruction in IA-64). Fortunately, the

-fno-builtin flag disables these optimizations in

most standard compilers.
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Fig. 1: VPREC-libm optimization process overview

B. Implementation of the VPREC-libm

The interposed mathematical call is handled by

VPREC-libm, which returns the result in the target

floating-point format. For example in double precision,

one can customize the bit length of the pseudo-exponent

r ∈ [1, 11] and the pseudo-mantissa p ∈ [0, 52].
VPREC-libm operates in two steps. First, it computes a

binary128 result z̃ by calling the corresponding mathemat-

ical function from the GCC’s libquadmath.

Then, z̃ is converted to the target format using Verificarlo-

VPREC [3]. If z̃ is representable in the target range, a

faithfully rounded result at target precision p is returned. If z̃
is outside the target range, VPREC returns ±∞ for overflows

and ±0 for underflows. Rounding is achieved by adding a ulp

at precision p+1 followed by a truncation (⌊z̃+2ez−p−1⌋p).

C. Exploring Precision Requirements Using VPREC-libm

VPREC-libm can be used in two modes: profiling, and ex-

ecution. In profiling mode, VPREC-libm creates a profile of

the executed code. For each call, it updates the boundaries of

the operands and output intervals, the number of occurrences

for the unique program address and stack trace from which the

call is made. This information is aggregated and processed to

produce execution statistics.

In execution mode, VPREC-libm accepts a configuration

file which specifies the floating-point formats to use at each

call-site. An initial config file is generated automatically after

a profiling run, containing information for all encountered call-

sites, which the user can later modify as it is required.

Taking advantage of this functionality, we developed a

method for exploring the optimization potential of a given

floating-point code. On a broad scale, we perform a dichotomic

search for the minimal output precision of the VPREC-libm

functions which meets the user-specified correctness criteria.

This search is applied sequentially per call-site and converges

in logarithmic time, in the size of the mantissa. As we are

dealing with a vast search-space, the order in which this

optimization is performed is quite important. According to

Amdahl’s law, optimizing the code in which most of the time

is spent results in the biggest performance gains. Therefore

we prioritize the call-site exploration by call frequency as a

heuristic. Figure 1 summarizes this process.

IV. EXPERIMENTAL RESULTS

The example discussed throughout this section illustrates

the potential of our proposed method, applied to a real-world

astrophysics application used to predict the position and the

velocity of Earth-orbiting objects (most notably satellites).

A. Satellite Tracker: SGP4

In order to track the position and the velocity of satellites, a

common technique is to use simplified general perturbations

(SGP) models, which predict the influence of drag, the Earth’s

shape, as well as that of the sun and the moon on the trajectory.

Work on SGP started in the 1960’s, but at the beginning of

the 1980s NORAD1 released the equations and the source

code to predict satellite positions [17]. NORAD maintains

and periodically refines data sets on all resident space objects,

ensuring the accuracy of trajectory predictions. The data-sets

were made available to users, through NASA, being the only

source of readily available orbital data.

However, a user could not just go ahead and use any

prediction model she wished, she had to use the same model

employed to generate the data-set, even if the user’s choice

might have had better performance, an aspect highlighted

in [17]. This made SGP, especially its SGP4/SDP4 variants,

commonplace among users wishing to use NORAD’s orbital

data, distributed as two-line element (TLE) sets. Near-Earth

objects (period less than 225 minutes) are tracked using SGP4,

while deep-space objects (period over 225 minutes) are tracked

1North American Space Defense Command



using SDP4, which also models the gravitational effects of the

moon and the sun and certain Earth harmonics.

In the period following the original release of SGP, a multi-

tude of code variations came to exist, making interoperability

and compatibility an issue. For experimental purposes, we

will use the SGP4 version documented in [18], which is a

community effort to keep a version up to date with the models

and TLE data-sets used by NORAD. The mathematical models

used throughout are those presented in [19]. The C++ version

used for the experiments is the one provided by CelesTrak,

available online2. Only minimal changes were made, in order

to ensure that the program runs correctly on Linux. This

has not affected the program outputs, as verified against the

provided test-suites.

B. Results

We applied our method to the data-set sgp4-all.tle

discussed in [18]. Figure 2 illustrates our profiling and pre-

cision exploration results for the 50 libm call-sites with the

most calls. At the top we show the number of occurrences

for different libm call-sites. In the middle graph we show for

each call-site the dynamic range of the input data, as used

in the original code, extracted from the profile produced by

VPREC-libm. Finally, in the bottom graph we show for each

call-site the required precision of the outputs determined by

our exploration with the VPREC-libm method.

We can observe that the second and third call-sites are

almost twice more frequent than the next ten entries. The

output precision cannot be significantly decreased for the two

first call-sites, as shown in the bottom sub-figure. Indeed they

occur at the very end of the algorithm, directly influencing the

outputs. On the other hand, the dynamic range of the input is

quite reduced at these two call-sites.

Analyzing the code, we notice that these calls to sin()

and cos() take the same argument, as they are part of a

rotation. Therefore, they could be replaced with a call to

sincos(), effectively reducing their combined workload by

almost a factor of two, similar to what is done in [20].

Analyzing the rest of the call-sites, we can observe two gen-

eral trends. The first are call-sites where the required precision

is close to the default one; here we only manage to save 5−6-

bits. The second are call-sites where the required precision

hovers around the 28-bits mark. A plausible explanation for

these results can be found through a bit of computer-science

archaeology. SGP4 was first developed in FortranIV3, on a

Honeywell-60004 series computer [17]. This machine had 36-

bit words, so floating-point numbers had a 8-bit exponent and

a 28- or 64-bit significand, for single- or double-precision,

respectively. As noted in [18], the code originally used a mix of

single- and double-precision computations. With the evolution

of the underlying hardware, the code was moved to double-

precision throughout, which made for a smoother behavior, but

did not improve the accuracy. These observations are indeed

2httsp://celestrak.com/publications/AIAA/2006-6753/
3https://en.wikipedia.org/wiki/Fortran#FORTRAN IV
4https://en.wikipedia.org/wiki/Honeywell 6000 series

coherent with our findings on optimizing the precision of the

outputs of the mathematical functions.

Figure 3 shows the results of our method on to a data-set

containing just the satelite number 5, which is the first satellite

in the sgp4-all.tle dataset. This is a near-Earth satellite,

which means that its trajectory is tracked using SGP4, not

SDP4. Its period, perigee and eccentricity ensure that no corner

case is triggered in the model. The only particularity of this

example is that it uses the TEME5 coordinate system, which

requires a conversion to a more standard coordinate systems.

Indeed, avoiding exceptional cases in the model shows that

considerably lower precisions can be used throughout. The

trends for the precision of the math functions’ output remains

mostly the same. We notice, that over a third of the functions

could be evaluated in single-precision, requiring at most 23-

bits of precision at the output.

It should be noted that the x-axis indices in Fig. 2 and 3 do

not necessarily match, as the execution paths can differ, due

to the different nature of the two data-sets.

V. CONCLUSION AND FUTURE WORK

In this paper, we focus on providing a software tool and

methodology to profile the mathematical library usage in a full

scale application. The objective is to measure the potential and

drive future ad-hoc optimizations of the math library.

Usually, elementary functions are implemented following

a four step scheme [21]: special-case handling, argument

reduction, reduced domain splitting and interpolation (e.g.

polynomial or iterative).

When limiting the input domain, the first two steps can be

optimized. Furthermore, reducing the required accuracy and

input domain may lower the interpolation complexity. It can

also diminish the implementation cost in special purpose ar-

chitecture designs or re-programmable architectures (FPGA).

Rewriting ad-hoc custom elementary functions with a target

accuracy on a given input interval is a costly and error

prone task. We propose to explore existing tools to assist or

automate these optimizations and measure emprical speedup

on real use cases. An easy first step would be to automatically

select the best fitting implementation among existing libraries,

such as Intel MKL VML [8]. Finally, approaches such as

metalibm [9] for math function code generation could be

leveraged to produce specialized libraries.

To conclude, the work presented in this paper shows

promising results on co-designing mathematical libraries from

application profiles. One weakness of the approach is that the

profile is data-input dependent; further experiments on a larger

set of use-cases will be done to demonstrate the generalization

of the approach and how one can deal with the speculative

aspect of profile-guided optimization for math libraries.
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