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Abstract—We describe various issues caused by the lack of
round-to-nearest mode in the gcc compiler implementation of the
fixed-point arithmetic data types and operations. We demonstrate
that round-to-nearest is not performed in the conversion of con-
stants, conversion from one numerical type to a less precise type
and results of multiplications. Furthermore, we show that mixed-
precision operations in fixed-point arithmetic lose precision on
arguments, even before carrying out arithmetic operations. The
ISO 18037:2008 standard was created to standardize C language
extensions, including fixed-point arithmetic, for embedded sys-
tems. Embedded systems are usually based on ARM processors,
of which approximately 100 billion have been manufactured by
now. Therefore, the observations about numerical issues that we
discuss in this paper can be rather dangerous and are important
to address, given the wide ranging type of applications that these
embedded systems are running.

Index Terms—fixed-point arithmetic, rounding, ISO
18037:2008

I. INTRODUCTION

The ISO 18037:2008 standard [1] defines C programming

language extensions to support various unconventional features

of embedded processors. Embedded processors are usually low

power/performance processors found in trains, planes, fab-

rication equipment and communication devices [2]. Another

notable example are battery-powered medical devices using

integer processors such as the ARM Cortex-M3 [3]. One of

the main features that the ISO/IEC TR 18037:2008 standard

addresses is fixed-point arithmetic and numerical data types for

embedded processors. The standard aims to move away from

embedded software designed in assembly languages to a more

portable and reusable C programming language, since code is

getting bigger and new platforms are rapidly being developed

with each new one requiring assembly level changes.

Since processors for embedded systems need to be ex-

tremely low power, floating-point hardware support is not

affordable and either hardware fixed-point support is provided,

or, more commonly, integer arithmetic instructions are used

to simulate fixed-point arithmetic. However, as the standard

states, the C programming language does not provide support

for any fixed-point arithmetic types which leads to the com-

mon solution of handcrafted arithmetic libraries in assembly

languages. The standard aims to improve this situation by

defining numerical types and operations that C compilers can

support.

In this paper we describe some issues that arise in the gcc

compiler implementation of fixed-point arithmetic defined by

this standard. Section II and III provides background on fixed-

point arithmetic. Section IV describes the issues with rounding

decimal constants to fixed-point data types. Section V de-

scribes rounding in conversions between different types. In

Section VI we address mixed-format operations and issues

with bit truncation of the arguments, due to limited support

for mixed-format operations by gcc. Finally Section VII shows

that gcc does not support round-to-nearest mode on the results

of fixed-point multiplication and that the pragma that should

enable this rounding mode, as indicated by the standard, does

not work.

All of the experiments were compiled with the gcc compiler

version 9.2.1, using the optimization flag -O2 and run on an

ARM968 processor.

II. FIXED-POINT ARITHMETIC

The standard defines multiple numerical types for fixed-

point arithmetic in the form {s, u}X.Y , where {s, u} defines

whether it is a signed or unsigned format (if signed, 2’s

complement representation is used), X defines the number of

integer bits and Y defines the number of fractional bits. Ma-

chine epsilon of a fixed-point type is defined as ε{s,u}X.Y =

2−Y , which is the gap between any two neighbouring fixed-

point values and is absolute across the dynamic range. Some

notable fixed-point numerical formats supported by gcc are:

s16.15, u16.16, s0.31, u0.32, s8.7, u8.8, s0.15, u0.16. The

s16.15 representation of the real number 1.5 has the 14th and

15th bits set to 1 and the others set to 0, and can be repre-

sented as the hexadecimal number 0xC000 or as the integer

215 + 214 = 49152. This can be converted to a decimal value

by multiplying it with εs16.15 = 2−15, 49152× 2−15 = 1.5.

Table I shows examples of some decimal values of the three

main numerical types explored in this paper.

TABLE I
MINIMUM AND MAXIMUM POSITIVE NUMBERS OF VARIOUS 32-BIT

FIXED-POINT NUMERICAL TYPES.

Property s16.15 u0.32 s0.31

Accuracy (abs.) 2−15 2−32 2−31

Min (exact) 2−15 2−32 2−31

Min (approx.) 0.0000305 2.32× 10−10 4.65× 10−10

Max (exact) 216 − 2−15 1− 2−32 1− 2−31

Max (approx.) 65535.999969 0.99... 0.99...

In terms of rounding, fixed-point arithmetic values can

be rounded using the same rounding modes as floating-

http://arxiv.org/abs/2001.01496v3


point arithmetic, which is defined by the IEEE 754 standard

[4]; these are: round-down, round-up, round-toward-zero and

round-to-nearest. The only difference worth noting is that bit

truncation in fixed-point arithmetic is equivalent to round-

down mode because of 2’s complement notation to represent

negative numbers, whereas in floating point it is equivalent to

round-toward-zero.

Various libraries have been developed to support fixed-

point arithmetic, some of which are based on the ISO 18037

standard.

• The gcc compiler supports fixed-point arithmetic of the

ISO 18037 standard [5].

• The MPLAB XC32 C/C++ compiler, a port of gcc for

compiling code for the devices developed by a company

Microchip [6] (unfortunately, support for rounding is not

specified).

• The library called libfixmath [7] implements a 32-bit

fixed-point type with the possibility to control rounding

on operations, including bit truncation and round-to-

nearest.

• MATLAB’s Fixed-Point Designer tool supports fixed-

point types with configurable integer and fraction bit-

lengths and includes various rounding modes [8].

III. ISO 18037:2008 STANDARD

The following quotes can be found in Section 4 and Annex

A of the ISO standard [1], dealing with fixed-point number

rounding:

Quote 1: Conversion of a real numeric value to a fixed-

point type may require rounding and/or may overflow. If

the source value cannot be represented exactly by the

fixed-point type, the source value is rounded to either

the closest fixed-point value greater than the source value

(rounded up) or to the closest fixed-point value less than

the source value (rounded down).

Note that Quote 1 can be interpreted to state that one way

rounding is suitable, either round-up or round-down, since it

does not mention that the decision has to be done based on

the bits tha are rounded off.

Quote 2: Processors that support fixed-point arithmetic

in hardware have no problems in attaining the required

precision without loss of speed; however, simulations

using integer arithmetic may require for multiplication and

division extra instructions to get the correct result; often

these additional instructions are not needed if the required

precision is 2 ulps. The FX FULL PRECISION pragma

provides a means to inform the implementation when a

program requires full precision for these operations (the

state of the FX FULL PRECISION pragma is ”on”), or

when the relaxed requirements are allowed (the state of

the FX FULL PRECISION pragma is ”off”). For more

discussion on this topic see A.4. Whether rounding is up

or down is implementation-defined and may differ for dif-

ferent values and different situations; an implementation

may specify that the rounding is indeterminable.

Quote 2 talks about a pragma that can be set in order to

improve the accuracy of arithmetic operations and mentions 2

ulp accuracy. However, the standard does not mention the error

bounds for different rounding modes that can be implemented.

Lastly, this quote has some indication about rounding, and the

implication that it may differ for different values seems to

suggest round-to-nearest, but it does not explicitly state this

rounding mode and its maximum error bound of 0.5 ulp that

could be achieved if the macro is set.

Quote 3: Generally it is required that if a value cannot

be represented exactly by the fixed-point type, it should

be rounded up or down to the nearest representable value

in either direction. It was chosen not to specify this

further as there is no common path chosen for this in

hardware implementations, so it was decided to leave this

implementation defined.

Quote 3 seems to indicate that rounding should be to one of

the two directions, rather than any direction which will give

the nearest value.

Quote 4: All conversions between a fixed-point type and

another arithmetic type (which can be another fixed- point

type) are defined. Rounding and overflow are handled

according to the usual rules for the destination type.

Conversions from a fixed-point to an integer type round

toward zero. The rounding of conversions from a fixed-

point type to a floating-point type is unspecified.

This quote provides details about the conversion between

different numerical types. It instructs to apply the usual rules

when converting between fixed-point types and any other

numerical types, probably referring to Quote 3.

Quote 5: If the result type of an arithmetic operation

is a fixed-point type, for operators other than * and /,

the calculated result is the mathematically exact result

with overflow handling and rounding performed to the

full precision of the result type [...]. The * and / operators

may return either this rounded result or, depending of the

state of the FX FULL PRECISION pragma, the closest

larger or closest smaller value representable by the result

fixed-point type. (Between rounding and this optional ad-

justment, the multiplication and division operations permit

a mathematical error of almost 2 units in the last place

of the result type.)

This quote is very unclear, since it states that the result of

addition/subtraction is mathematically exact, but rounded.

IV. ROUNDING OF CONSTANTS

Firstly, we address rounding of constants. This was com-

mented on previously by us in [9] and also noticed in [10]. A

constant, for example 0.04, cannot be represented exactly in a

finite-precision arithmetic (Table II) and has to be rounded to

the nearest value in the numerical data type of the constant. For

example, the two nearest values in the integer representation in

s16.15 are ⌊ 0.04
2−15 ⌋ = 1310 and ⌈ 0.04

2−15 ⌉ = 1311, produced by

round-down and round-up respectively. These correspond to

the real values of 0.039978... and 0.040008.... However, since



0.04
2−15 = 1310.72, it makes most sense to represent 0.04 as

⌈ 0.04
2−15 ⌉ = 1311, since it is closer to the real value of 0.04. That

is, round 0.04 to the nearest s16.15 value (or any other given

fixed-point format that is being used to store the constant).

This operation is done on compilation, when the constant is

written into the memory by the compiler, and therefore no run-

time performance penalty is incurred. Unfortunately, we found

that this was not done by the gcc compiler, which resulted in

large total errors due to magnification of these small errors in

the constants, for example in Ordinary Differential Equations

(ODE) solvers run using fixed-point arithmetic with the gcc

compiler [10], [11]. The code for this is

1 accum a = 0 . 0 4 k ;

where the letter k is used to indicate that this constant is

in s16.15 format (not necessary to use in this context since

the destination format is known but we chose to use it for

demonstration). The accum data type is another name in C

for the s16.15 data type.

We believe this to be an issue due to Quote 2 — the pragma

that is defined there should only be applied to control run-time

performance, that is, rounding of various values that come up

at run time, not at compile time. On compilation we expect all

the constants to be rounded to the nearest representable values

irrespective of the run-time accuracy settings. And in general,

we found that the pragma FX FULL PRECISION does not

have any effect in gcc and does not turn on rounding neither

on compilation nor run time.

TABLE II
VALUES OF A CONSTANT 0.04 IN DIFFERENT DATA TYPES

Data type round-to-nearest next nearest

s16.15 0.040008544921875 0.03997802734375

s0.31 0.04000000003725... 0.0399999995715...

u0.32 0.04000000003725... 0.0399999998044...

binary32 0.03999999910593... 0.0400000028312...

V. ROUNDING ON CONVERSION

Here we show that round-to-nearest is not applied when

converting to a fixed-point type a numerical value that is held

in a more precise data type. First, we try to convert a value

held in s0.31 to s16.15. We choose a value that is smaller

than the smallest value representable in s16.15: 2−16+2−17 =

0.00002288818359375 = 0.75εs16.15, where εs16.15 = 2−15.

In C code we write:

1 long f r a c t a = 2 .288818359375E−5 l r ;

2 accum b = a ;

Here long fract is another name for s0.31 and accum for

s16.15. The letters lr next to the constant tell the compiler

that this is a s0.31 constant, as defined in the ISO standard.

Once this code is executed, b evaluates to 0, rather than

the nearest representable value of 2−15, therefore round-to-

nearest is not performed on conversion — round-down, or bit

truncation, is performed instead.

Another test that demonstrates this involves conversion from

the single precision floating-point format binary32, defined in

the IEEE 754 standard [4], to s16.15.

1 f l o a t a = 0 . 0 4 ;

2 accum b = a ;

This uses the same constant that we have used in the Sec-

tion IV, which is not rounded to the nearest fixed-point value

when specified as a decimal value 0.04 in the source code as

was shown in Section IV. In this case binary32 approximation

of 0.04 is more accurate than the s16.15 approximation, so the

value of 0.04 held as binary32 should be rounded to the nearest

value in s16.15. However, b still evaluates to the value below

0.04, meaning that upon conversion from binary32 to s16.15

round-down is used instead of round-to-nearest.

Therefore, conversion of fixed-point values does not im-

plement round-to-nearest to minimize the conversion error

and either follows the vague specification of the standard

in Quotes 1, 3, and 4 or simply performs bit truncation

by shifting. Our recommendation is that the specification in

Quote 2 should be implemented, with the pragma enabling

round-to-nearest on conversions.

VI. ROUNDING OF ARGUMENTS IN MIXED-FORMAT

OPERATIONS

We have observed multiple fixed-point arithmetic routines

in the assembly from gcc with some loss of precision and

speed, for example the multiplication of a value in s16.15

by u0.32 is performed as the multiplication of two s32.31

values, or the multiplication of s16.15 by u0.16 is performed

as the multiplication of two s16.15 values. This is achieved by

converting all the arguments to the common internal format,

which means that u0.32 argument in the former case is

converted to s32.31, and u0.16 argument in the latter case

to s16.15 (one bit less precision in the fractional part). This

causes loss of precision on conversion in the arguments, even

before multiplication is performed, and the main reason is

that gcc does not support mixed-format multipliers directly,

as indicated by a list of internal compiler functions for

performing fixed-point arithmetic operations [12]. A test for

this is as follows:

1 unsigned long f r a c t a = pow(2 , −3 2 ) ;

2 accum b = 65535k ;

3 unsigned long f r a c t c = a ∗ b ;

We chose a = εu0.32 = 2−32 since that is the smallest value

representable by u0.32 (only the least significant bit set) and

b = 65535 the largest integer value representable by s16.15.

In this scenario we expect to get c = 65535 × a, however

we get c = 0 because the last bit of a is dropped before the

multiplication takes place, causing a = 0. Same issue happens

irrespective of what b is set to. Furthermore, we can enclose

this code in a conditional execution that checks the values of

a and b and it executes the conditional code and incorrectly

updates c to 0, overwriting it’s previous value:



1 unsigned long f r a c t a = pow(2 , −3 2 ) ;

2 accum b = 65535k ;

3 unsigned long f r a c t c = 0 . 8 u l r ;

4 i f ( a > 0 && b > 1 )

5 c = a ∗ b ;

Lastly, if we modify the code as follows:

1 long f r a c t a = pow(2 , −3 1 ) ;

2 long f r a c t b = −1 l r ;

3 long f r a c t c = a ∗ b ;

In this case we are using signed fractional type s0.31 so that

we can represent −1. Running this testcase we do not get

c = 0 but a correct multiplication result of c = −2−31. Both

this and the previous testcase are quite similar — multiplying

a very small value by a value that is not smaller than 1 in

magnitude, expectation is that this code will scale a, returning

|c| ≥ |a|. However, the first provides unexpected result due

to the conversion of a and b to the common numerical type

s32.31, as outlined above, and the second works as expected

as no conversion is needed. This leads to a major problem:

we know that a is not zero, but multiplying it by a non-zero

value with a magnitude larger than 1 sometimes can give an

answer of 0 and sometimes a correct answer, depending on the

numerical types used to store a and b. For most of the users

who do not necessarily think about how exactly arithmetic is

performed at the lowest level, this behaviour would be and

potentially is very puzzling.

VII. ROUNDING OF MULTIPLICATION RESULTS

In this section we show that there is no support for round-

to-nearest in arithmetic operations with fixed-point numbers.

Specifically, we test multiplication, which multiplies the two

arguments and returns a value in a more precise fixed-point

format. The result held in extended precision in most cases

requires rounding in order to convert to the format of one of

the arguments. A simple test is to declare two s16.15 values,

a = 3 × εs16.15 = 0.000091552734375 and b = 0.25. This

should give us 0.25×3εs16.15 =
3

4
εs16.15 which should round

to a nearest value of εs16.15. The code for this is:

1 accum a = 0 .000091552734375k ;

2 accum b = 0 . 2 5 k ;

3 accum c = a ∗ b ;

In this piece of code c evaluates to 0, which means that the

result 3

4
εs16.15 is rounded down to 0 rather than the closest

value of εs16.15, most likely as a result of bit truncation that

happens when the product in full precision (which has to be

stored in the s32.30 format) is shifted right 15 steps to convert

it to s16.15. The pragma that is described by Quote 2 does

not change the rounding mode.

VIII. CONCLUSION

We have shown various numerical accuracy issues in the

gcc compiler implementation of the standardized fixed-point

arithmetic [1]. The main issue is lack of rounding in decimal

to fixed-point conversion, generally any format to fixed-point

conversion and arithmetic operations such as multiplication.

Furthermore, there is precision loss in the arguments in mixed-

format arithmetic operations. In our understanding, these soft-

ware bugs exist both because of the vague specifications of

various fixed-point properties and required features in the ISO

18037 standard, and lack of support of different features of

the fixed-point arithmetic in gcc. This arithmetic in gcc should

be carefully reimplemented taking care of various edge cases

and all possible mixed-format combinations to support the

embedded systems community.

In summary, the current paper should inform the embedded

systems community about the numerical accuracy problems in

the current implementation of the gcc fixed-point arithmetic,

as well as help identify and understand numerical problems in

their codes.
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