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Abstract – Recently, stochastic rounding (SR) has
been implemented in specialized hardware but most
current computing nodes do not yet support this rounding
mode. Several works empirically illustrate the benefit
of stochastic rounding in various fields such as neural
networks and ordinary differential equations. For some
algorithms, such as summation, inner product or matrix-
vector multiplication, it has been proved that SR provides
probabilistic error bounds better than the traditional
deterministic bounds.

In this paper, we extend this theoretical ground for a
wider adoption of SR in computer architecture. First,
we analyze the biases of the two SR modes: SR-nearness
and SR-up-or-down. We demonstrate on a case-study of
Euler’s forward method that IEEE-754 default rounding
modes and SR-up-or-down accumulate rounding errors
across iterations and that SR-nearness, being unbiased,
does not. Second, we prove a O(

√
n) probabilistic bound

on the forward error of Horner’s polynomial evaluation
method with SR, improving on the known deterministic
O(n) bound.

Keywords – Stochastic rounding, Floating-point
arithmetic, Polynomial evaluation, Horner’s algorithm,
Numerical integration.

I INTRODUCTION

In floating-point arithmetic, rounding errors occur because
of the finite representation of floating-point numbers in
computers. The accumulation of rounding errors can
significantly reduce the accuracy of a computation [1], p. 8.

Stochastic arithmetic proposed in the 1950s by von
Neumann and Goldstine [2] is a computing paradigm
developed as a model for exact computation with imprecise
data. However, hardware units proposing stochastic rounding
(SR) are still unavailable in most computer machines.
Various specialized processors have introduced it such as:
Graphcore IPUs which supports SR for binary32 and binary16
arithmetic [3]–[5], or Intel neuromorphic chip Loihi [6]
to improve the accuracy of biological neuron and synapse
models. Moreover, several related patents are owned by
major chip designers such as AMD [7], NVIDIA [8], IBM
[9], [10], and other computing companies [11]–[13]. These
developments support the idea of hardware implementations
using stochastic rounding becoming more available in the
future.

Stochastic arithmetic has two main applications [14]. First,
it can be used to estimate empirically the numerical error
of complex programs. In this context, stochastic arithmetic

introduces a random noise in each floating-point operation to
simulate the effect of rounding errors. To make this error
analysis automatic, various tools such as Verificarlo [15],
Cadna [16] and Verrou [17] have been developed. Second,
stochastic arithmetic is sometimes used as a replacement
for the default deterministic rounding mode in numerical
simulations. Indeed, it has been demonstrated that in
multiple domains, SR provides positive effects compared to
the deterministic IEEE-754 [18] default rounding mode.

In particular, in the neural networks field, using SR instead
of deterministic rounding [19] enables training with smaller
data types and better accuracy. Indeed, the noise during
training has been observed to help regularization and avoid
model over-fitting [20], [21]. The positive effect of SR
extends also to the calculation of the solution of ordinary
differential equations (ODEs) in low precision [22], [23]
where SR reduces the accumulation of rounding errors by
avoiding stagnation phenomenon when the step decreases.
Various other applications such as PDEs, Quantum mechanics,
Quantum computing use SR to improve their results [14].

The IEEE-754 norm defines five rounding modes for
floating-point arithmetic which are all deterministic: round
to nearest ties to even (default), round to nearest ties away,
round to zero, round to +∞, and round to −∞. In section II,
we present a floating-point arithmetic background, and, we
describe two stochastic rounding modes defined in [1], p. 34:
SR-nearness and SR-up-or-down. Section III presents our
first contribution: we study the bias and we compare the two
stochastic rounding modes above and the default rounding
mode in the IEEE-754 norm (RN-nearest32) on rectangular
integration, which is at the basis of Euler’s Method for ODE.
We show that, contrarily to SR-up-or-down, SR-nearness is
unbiased. An exact expression and an estimation of the bias
are given for SR-up-or-down. We show how the accumulation
of errors with both SR-up-or-down and IEEE-754 modes leads
to results significantly less accurate than with SR-nearness.

At the beginning of section IV, a probabilistic background,
as well as some properties of SR-nearness rounding are
presented. We recall some techniques that have been used
in order to obtain a probabilistic bound for the inner product
on
√

n instead of the deterministic bound on n. We explain
two approaches proposed by Higham and Mary [24] and Ilse,
Ipsen and Zhou [25]. We extend these techniques for our
second contribution and showing that they can still be used in
situations where one multiplication operand is affected by an
error. In particular, using SR-nearness and without additional
assumption, we provide a probabilistic bound in O(

√
n) rather

than the deterministic bound which is in O(n). We conclude
this section with numerical experiments comparing the bounds
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above for the Chebyshev polynomial.

II Background

A. Floating-point arithmetic
A normal floating-point number in such a format is a

number x for which there exists a triple (s,m,e) such that
x = ±m× β e−p, where β is the basis, e is the exponent, p
is the working precision, and m is an integer (the significand)
such that β p−1 ≤ m < β p. This triple is unique. We only
consider normal floating-point numbers; detailed information
on the floating-point format most generally in use in current
computer systems is defined in the IEEE-754 norm [18].

Let us denote F ⊂ R the set of normal floating-point
numbers and x ∈ R. Upward rounding dxe and downward
rounding bxc are defined by:

dxe= min{y ∈F : y≥ x}, bxc= max{y ∈F : y≤ x},

clearly, bxc ≤ x≤ dxe, with equalities if and only if x ∈F .
The floating-point approximation of a real number x 6= 0 is

one of bxc or dxe.

fl(x) = x(1+δ ), (1)

where δ = fl(x)−x
x is the relative error: |δ | ≤ β 1−p. In the

following, we note u = β 1−p. IEEE-754 mode RN (round
to nearest, ties to even) has the stronger property1 that
|δ | ≤ 1

2 β 1−p = 1
2 u.

For x,y ∈ F , the considered rounding modes verify
fl(xopy) ∈ {bxopyc,dxopye} for op ∈ {+,−,∗,/}.
Moreover, for IEEE-754 RN [18] and stochastic rounding [26]
the error in one operation is bounded:

fl(xopy) = (xopy)(1+δ ), |δ | ≤ u, (2)

specifically for RN we have |δ | ≤ 1
2 u.

Assume that x is a real that is not representable: x ∈R\F .
The machine-epsilon or the distance between the two floating-
point numbers enclosing x is ε(x) = dxe− bxc = β e−p. The
fraction of ε(x) rounded away, as shown in figure 1, is
θ(x) = x−bxc

dxe−bxc

bxc dxex

1
2 ε(x)

θ(x)ε(x)

Fig. 1. θ(x) is the fraction of ε(x) to be rounded away.

We note TxU the integer part of x. The following lemma
gives an important property of downward rounding.

Lemma II.1. Let x ∈ R\F . β p−ebxc= Tβ p−exU.

Proof. We know that β p−ebxc,β p−edxe ∈ Z, and bxc< x <
dxe, then β p−ebxc< β p−ex < β p−edxe. We thus have

β
p−ebxc ≤ Tβ

p−exU < β
p−edxe.

1In many works focusing on IEEE-754 RN, u is chosen to be 1
2 β 1−p.

Since dxe−bxc= β e−p, then β p−edxe−β p−ebxc= 1 and

β
p−ebxc ≤ Tβ

p−exU < β
p−ebxc+1.

B. Stochastic arithmetic
In order to define the two principal stochastic rounding

modes, consider x̂ the random variable of the distribution of
results after random rounding of x. Then

x̂ = random_round(x) = round(x+β
e−p

ξ ),

where ξ is a random variable that can be discrete or continuous
and round is the default IEEE-754 rounding mode to the
nearest.

• SR-nearness [1], p. 34 is defined for an ξ uniform
random variable on ]− 1

2 ; 1
2 [, hence ξ has mean 0 and

standard deviation 1/
√

12.

bxc dxex

1−θ(x)
θ(x)

Fig. 2. SR-nearness.

In other words, SR-nearness consists in rounding up
x ∈R\F with probability θ(x) = (x−bxc)/(dxe−bxc),
we round down with probability 1− θ(x), proportional
to the distances between x and the closest representable
numbers.

Stott Parker shows that SR-nearness is unbiased [1], p. 34
so E(x̂) = x.

• SR-up-or-down is defined for a ξ uniform random
variable on ]− θ(x);1− θ(x)[, ξ is biased with mean
1
2 −θ(x) and standard deviation 1/

√
12.

bxc dxex

1
2

1
2

Fig. 3. SR-up-or-down.

In other words, SR-up-or-down consists in rounding x up
or down with probability 1

2 . SR-up-or-down mode can
be expressed [1], p. 34 in terms of θ(x): since the two
outcomes of SR-up-or-down mode are equiprobable, we
have E(x̂) = dxe+bxc

2 , which allow us to write the bias as

E(x̂− x) =
dxe+ bxc

2
− x,

because θ(x) = x−bxc
dxe−bxc

E(x̂− x) = (dxe−bxc)(1
2
−θ(x))

= ε(x)(
1
2
−θ(x)).

Thus, we conclude that SR-up-or-down is biased and the



expected value depends on θ(x) and ε(x).

III Integrating a constant function

Rectangular integration rule is a classic approximation for
performing numerical integration: the area under a curve is
approximated by a sum of N rectangle areas:

∫ b

a
f (t)dt ≈

N−1

∑
k=0

h f (a+ kh)

where h = b−a
N . In particular, rectangular rule is one of the

resolution techniques for ODE using Euler’s forward method.
Verrou’s tutorial [27] integrates the cosinus function with

the rectangular rule; with deterministic round to nearest or SR-
up-or-down modes, the solution is biased. When the number
of integration steps grows, this bias can become high and
degrade the quality of the solution. In this section, we show
why deterministic and SR-up-or-down modes are sometimes
biased with rectangular rule.

We perform the analysis on a constant function f (t) = 1
for all t ∈ [0;1]. With f constant, the evaluation error is zero,
making it clear how the numerical error accumulates on the
summation.

Denote x = 1 = ∑
N−1
k=0 h, where h = 1/N. The distribution

x̂ is produced by summing N times the integration step h. We
note ŝk the random variable for the partial sum at step 0≤ k≤
N−1 and sk the exact expected result, with ŝN−1 = x̂.

SR-up-or-down : As shown before, for each ŝk we introduce
a bias corresponding to

E(ŝk− sk) = ε(sk)(
1
2
−θ(sk)),

from the definition of θ(sk), we have 0< θ(sk)< 1, then− 1
2 <

1
2 −θ(sk)<

1
2 and

|E(ŝk− sk)|<
1
2

ε(sk).

Table I shows these different values for N = 20.
Interestingly, in this table, we note that θ(sk) is constant

between two powers-of-the-base except for the first value. For
example for 9 < k < 20, sk stays within [2−1;20) and both
θ(sk) and E(Sk − sk) are constant. Let us show why that is
always the case.

Suppose sk ∈ [β e;β e+1). Then ε(sk) = β e−p. At each step
the next partial sum is computed as, sk+1 = fl(sk)+ h, in that
case, using the lemma II.1, we have

θ(sk+1) = β
p−e(sk+1−bsk+1c)

= β
p−esk+1−Tβ

p−esk+1U
= β

p−e fl(sk)+β
p−eh−Tβ

p−e fl(sk)+β
p−ehU.

Since fl(sk) ∈F , we have β p−e fl(sk) ∈ Z and

Tβ
p−e fl(sk)+β

p−ehU = β
p−e fl(sk)+Tβ

p−ehU.

TABLE I
sk, θ , bias and ε for N = 20.

k sk θ(sk) E(Sk− sk) ε(sk)

2 0.150... 0.7500 -3.725290e-09 1.490116e-08
3 0.200... 0.2500 3.725290e-09 1.490116e-08

4 0.250... 0.6250 -3.725290e-09 2.980232e-08
5 0.300... 0.6250 -3.725290e-09 2.980232e-08
6 0.350... 0.6250 -3.725290e-09 2.980232e-08
7 0.400... 0.6250 -3.725290e-09 2.980232e-08
8 0.450... 0.6250 -3.725290e-09 2.980232e-08

9 0.500... 0.3125 1.117587e-08 5.960464e-08
10 0.550... 0.8125 -1.862645e-08 5.960464e-08
11 0.600... 0.8125 -1.862645e-08 5.960464e-08
12 0.650... 0.8125 -1.862645e-08 5.960464e-08
13 0.700... 0.8125 -1.862645e-08 5.960464e-08
14 0.749... 0.8125 -1.862645e-08 5.960464e-08
15 0.799... 0.8125 -1.862645e-08 5.960464e-08
16 0.849... 0.8125 -1.862645e-08 5.960464e-08
17 0.899... 0.8125 -1.862645e-08 5.960464e-08
18 0.949... 0.8125 -1.862645e-08 5.960464e-08
19 0.999... 0.8125 -1.862645e-08 5.960464e-08

Finally
θ(sk+1) = β

p−eh−Tβ
p−ehU = θ(h).

Thus θ(sk+1) depends only on h and e. Recursively for
all l > 0 satisfying sk+l ∈ [β e;β e+1), θ(sk+l) = β p−eh −
Tβ p−ehU = θ(h) is constant. The bias

E(ŝk− sk+l) = ε(sk)(
1
2
−θ(sk+l))

= β
e−p(

1
2
−β

p−eh−Tβ
p−ehU),

is also constant in this interval.
Between two powers of the base, θ remain constant as well

as the bias. Because the bias is constant (and, consequently,
its sign too), it accumulates across iterations.

The total bias can be written as,

E(x̂− x) = E(ŝN−1− sN−1) = ε(sN−1)(
1
2
−θ(sN−1)),

and
|E(x̂− x)|< 1

2
ε(sN−1).

We can neglect the effect of the first partial sum in each
power-of-the-base interval. Since sk increases arithmetically,
and the size of the power of the base interval grows
geometrically, the bias in the last interval usually dominates
since it contains more summation terms and has a larger ε .

Numerical experiment. We have verified numerically that
the above expression for the bias closely predicts the bias
measured with SR-up-or-down stochastic rounding.

We consider a fixed number of iterations N. We ran one
time the C program in listing 1 with each of the two previously
defined stochastic rounding modes as well as round to nearest.



Listing 1: Fixed-step rectangle integration of a constant
float h = 1/N;
float s = 0.0;
for (int i=0 ; i < N ; i++) {

s += h*1;
}
return s;

Figure 4 plots the three distributions over N.

-0.00015

-0.0001

-5x10-5

 0
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 0.0001
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RN-binary32 SR-up-or-down SR-nearness

Fig. 4. Round to nearest (RN-binary32) vs stochastic rounding SR-
up-or-down and SR-nearness for

∫ 1
0 1dt.

Figure 4 shows that SR-nearness mode samples is unbiased
regardless of the number N of rectangles. The unbiased
nature is unsurprising, since SR-nearness mode can be seen
as a sub case of Monte Carlo Arithmetic (MCA). Stott Parker
proves [1], p. 46 that the expectation of a sum of terms with
MCA is the exact mathematical result.

On the other hand, SR-up-or-down mode and RN-binary-32
samples have a bias, which confirms the previous results for
SR-up-or-down mode. The maximal amplitude of the bias for
both SR-up-or-down and increases with N because of errors
accumulation. The bias is reproducible and constant across
different runs.

In conclusion, this example illustrates that SR-nearness is
unbiased not only for one elementary operation, but, even in
other numerical methods such as rectangular integration, it is
much closer to the expected value than SR-up-or-down or RN-
binary32, in particular for N large. In the remainder of this
paper, we focus on SR-nearness.

IV Probabilistic bound

The aim of this section is to introduce a probabilistic bound
in O(

√
nu) on the forward error of Horner algorithm, based on

the Azuma–Hoeffding inequality and martingale properties.
We first recall some probabilistic properties, then provide
a review of the results made on the forward error in the
numerically computed inner product, and we conclude with
numerical experiments illustrating the previous results.

A. Probabilistic Background
A random variable Y is said to be mean independent

of random variable X if and only if its conditional mean

E[Y/X = x] equals its unconditional mean E(Y ) for all reals
x such that the probability that X = x is not zero and we write
E[Y/X ] = E(Y ). The random sequence (X1,X2, . . .) is mean
independent if E[Xk/X1, ...,Xk−1] = E(Xk) for all k.

Proposition IV.1. Let X and Y two real random variables: X
and Y are independents =⇒ X is mean independent from Y
=⇒ X and Y are uncorrelated. The reciprocals of these two
implications are false.

Under stochastic rounding, the elementary operations are
stochastically rounded, hence, for x ∈ R, if fl(x) = x(1+δ ) is
obtained by SR-nearness then δ is a random variable such that
E(δ ) = 0. For x1,x2,x3 ∈R, such that c = x1 opx2 opx3 where
op ∈ {+,−,∗,/}, and

fl(c) =
(
(x1 opx2)(1+δ1)opx3

)
(1+δ2)

obtained from SR-nearness. δ1,δ2 are random variables such
that E(δ1) = E(δ2) = 0.

The following lemma has been proven in [26], Lem 5.2
and shows that SR-nearness satisfies the property of mean
independence.

Lemma IV.1. For some δ1,δ2, ..., in that order obtained from
SR-nearness, the δk are random variables with mean zero such
that E[δk/δ1, ...,δk−1] = E(δk) = 0.

Finally, we need to recall the concept of a martingale and
the Azuma-Hoeffding inequality for a martingale [28].

Definition IV.1. A sequence of random variables M1, ...,Mn is
a martingale with respect to the sequence X1, ...,Xn if, for all
k,

• Mk is a function of X1, ...,Xk,
• E(|Mk|)< ∞, and
• E[Mk/X1, ...,Xk−1] = Mk−1.

Lemma IV.2. (Azuma-Hoeffding inequality). Let M0, ...,Mn
be a martingale with respect to a sequence X1, ...,Xn. We
assume that there exist ak < bk such that ak ≤Mk−Mk−1 ≤ bk
for k = 1 : n. Then for any A > 0

P(|Mn−M0| ≥ A)≤ 2exp
(
− 2A2

∑
n
k=1(bk−ak)2

)
.

In the particular case ak =−bk we have

P

(
|Mn−M0| ≥

√
n

∑
k=1

b2
k

√
2ln(2/λ )

)
≤ λ ,

where 0 < λ < 1.

B. Inner product bound
Under SR-nearness, the deterministic bound on the error of

an inner product y = a>b, where a,b ∈ Rn, is proportional to
nu, where u is the unit roundoff of the floating-point arithmetic
in use. Wilkinson [29], sec 1.33 had the intuition that the
roundoff error accumulated in n operations is proportional to√

nu rather than nu. Based on the mean independence of
errors established in Lemma IV.1, Higham and Mary [24]
and Ilse, Ipsen and Zhou [25] have proved this result for
SR. Both works build on the mean independence property



of SR. This allows them to form a martingale, and then to
apply the Azuma-Hoeffding concentration inequality. The
difference between these two works is in the way they form
the martingale. In [24], the martingale is built using the
errors accumulated in the whole process, while [25] forms
it by following step-by-step how the error accumulates. In
particular, they distinguish between the multiplications and
additions computed in the inner product, and carefully monitor
their mean independences. In the following, we adapt this
construction to Horner’s algorithm.

C. Horner algorithm bound
Horner algorithm is an efficient way of evaluating

polynomials. When performed in floating-point arithmetic this
algorithm may suffer from catastrophic cancellations and yield
a computed value with less accurate than expected.

In the following, we derive a probabilistic bound for the
computed fl(P(x)) based on the previous methods applied for
the inner product.

Model IV.1. Let P(x) = ∑
n
i=0 aixi, Horner’s rule consists in

writing this polynomial as

P(x) =
(
((anx+an−1)x+an−2)x...+a1

)
x+a0.

We define by induction the following sequence

r0 = an,

r2k−1 = r2k−2x,
r2k = r2k−1 +an−k,

for all 1≤ k ≤ n. Likewise, We define

r̂0 = an,

r̂2k−1 = r̂2k−2x(1+δ2k−1),

r̂2k = (r̂2k−1 +an−k)(1+δ2k),

for all 1 ≤ k ≤ n, with δ2k−1 and δ2k represent the rounding
errors from the products and the additions, respectively.

Let us define Zi := r̂i − ri for all 1 ≤ i ≤ 2n. The total
forward error is |Z2n| = |r̂2n − r2n| = |fl(P(x))− P(x)|. The
computation of Z2n introduces δ1, ...,δ2n such that |δk| ≤ u for
all 1 ≤ k ≤ 2n. We prove by induction that the accumulation
of the (1 + δk) errors on the aixi term for 0 ≤ i ≤ n− 1
reaches ∏

2n
k=2n−2i(1 + δk) := ϕi, and for i = n, it reaches

∏
2n
k=1(1+δk) := ϕn. Hence

|fl(P(x))−P(x)| =

∣∣∣∣∣ n

∑
i=0

aixi(ϕi−1)

∣∣∣∣∣≤ n

∑
i=0
|aixi||ϕi−1|

≤
n

∑
i=0
|aixi|γ2n,

where γ2n = (1+ u)2n− 1 = 2nu+O(u2) (we recall that, ∀k,
|δk| ≤ u). Finally

|fl(P(x))−P(x)|
|P(x)|

≤ cond1(P,x)γ2n, (3)

where cond1(P,x) := ∑
n
i=1|aixi|
|P(x)| is the condition number of the

evaluation of P in x using the 1-norm. The deterministic bound
is proportional to nu. In the following, we prove a probabilistic
bound in O(

√
nu).

The partial sums forward errors satisfy

Z2k−1 = r̂2k−1− r2k−1

= r̂2k−2x(1+δ2k−1)− r2k−2x
= xZ2k−2 + r̂2k−2xδ2k−1,

Z2k = r̂2k− r2k

= (r̂2k−1 +an−k)(1+δ2k)− r2k−1−an−k

= r̂2k−1 +(r̂2k−1 +an−k)δ2k− r2k−1

= Z2k−1 +(r̂2k−1 +an−k)δ2k,

for all 1 ≤ k ≤ n. The sequence Z1, ...,Z2n does not form
a martingale with respect to δ1, ...,δ2n because, due to the
multiplication in odd steps, E[Z2k−1/δ1, ...,δ2k−2] = xZ2k−2.
In order to form a martingale and use the Azuma-Hoeffding
inequality, we define the following variable change

Yi =
Zi

xT(i+1)/2U
,

where T(i+1)/2U is the integer part of (i+1)/2, we thus have

Y2k−1 = Y2k−2 +
1

xk−1 r̂2k−2δ2k−1, (4)

Y2k = Y2k−1 +
1
xk (r̂2k−1 +an−k)δ2k, (5)

for all 1≤ k ≤ n.

Theorem IV.1. The sequence of random variables Y1, ...,Y2n
is a martingale with respect to δ1, ...,δ2n.

Proof. We check that the three conditions of definition IV.1
are satisfied. Throughout the proof, we note the set Fk =
{δ1, ...,δk}.

• The recursion in Model IV.1 shows that Yi is a function
of δ1, ...,δi for all 1≤ i≤ 2n.

• E(|Yi|) is finite because x and ak are finite for all
n− i≤ k ≤ n and |δ j| ≤ u for all 1≤ j ≤ i.

• We prove that E[Yi/Fi−1] = Yi−1 by distinguishing the
even and odd case.
Firstly, using the mean independence of δ1, ...δ2k−1 and
equation (4) we obtain

E[Y2k−1/F2k−2] = E[Y2k−2/F2k−2]

+E[
1

xk−1 r̂2k−2δ2k−1/F2k−2]

= Y2k−2 +
1

xk−1 r̂2k−2E[δ2k−1/F2k−2]

= Y2k−2.

Secondly, using the mean independence of δ1, ...δ2k and



equation (5) we obtain

E[Y2k/F2k−1] = E[Y2k−1/F2k−1]

+E[
1
xk (r̂2k−1 +an−k)δ2k/F2k−1]

= Y2k−1

+
1
xk (r̂2k−1 +an−k)E[δ2k/F2k−1]

= Y2k−1.

Lemma IV.3. The above martingale Y1, ...,Y2n satisfies

|Yi−Yi−1| ≤Ciu, 1≤ i≤ 2n,

where

C2k−1 = |an|(1+u)2k−2 +
k−1

∑
j=1
|an− j||x|− j(1+u)2(k− j)−1,

C2k = |an|(1+u)2k−1 +
k

∑
j=1
|an− j||x|− j(1+u)2(k− j),

for all 1≤ k ≤ n.

Proof.
Note that Y0 = 0, then |Y1−Y0|= |Y1|= |an| and the equality

holds for C1. Using equation (4)

|Y2k−1−Y2k−2| ≤
1
|x|k−1 |r̂2k−2|u.

However

|r̂2k−2| ≤ |r̂2k−3|(1+u)+ |an−k+1|(1+u)
≤ |r̂2k−4||x|(1+u)2 + |an−k+1|(1+u),

by induction we obtain

|r̂2k−2| ≤ |an||x|k(1+u)2k−2 +
k−1

∑
j=1
|an− j||x|k− j(1+u)2(k− j)−1.

This completes the proof for C2k−1 for all 1≤ k≤ n. A similar
approach can be applied to proving the same result for C2k for
all 1≤ k ≤ n.

We now have all the tools to state and then demonstrate the
main result of this section:

Theorem IV.2. Under SR-nearness, for all 0 < λ < 1 and
with probability at least 1−λ

|fl(P(x))−P(x)|
|P(x)|

≤ cond1(P,x)
√

uγ4n
√

ln(2/λ ), (6)

where cond1(P,x) =
∑

n
i=1|aixi|
|P(x)| is the condition number of the

polynomial evaluation and γ4n = (1+u)4n−1.

Proof. Recall that |r̂2n− r2n|= |Z2n|= |xn||Y2n|. Therefore,
Y1, ...,Y2n is a martingale with respect to δ1, ...,δ2n and Lemma
IV.3 implies |Yi−Yi−1| ≤ Ciu for all 1 ≤ i ≤ 2n. Using the

Azuma-Hoeffding inequality yields

P

(
|Y2n| ≤ u

√
2n

∑
i=1

C2
i

√
2ln(2/λ )

)
≥ 1−λ ,

it follows that

|Z2n| ≤ u

√
2n

∑
i=1

(|x|nCi)2
√

2ln(2/λ ),

with probability at least 1−λ , where

|x|nC2k = |an||x|n(1+u)2k−1 +
k

∑
j=1
|an− jxn− j|(1+u)2(k− j)

≤ (1+u)2k−1
k

∑
j=0
|an− jxn− j|

≤ (1+u)2k−1
n

∑
j=0
|a jx j|,

for all 1≤ k ≤ n. Hence,

(|x|nC2k)
2 ≤ (1+u)2(2k−1)( n

∑
j=0
|a jx j|

)2
.

In a similar way

(|x|nC2k−1)
2 ≤ (1+u)2(2k−2)( n

∑
j=0
|a jx j|

)2
.

Thus

2n

∑
i=1

(|x|nCi)
2 ≤

( n

∑
j=0
|a jx j|

)2
2n−1

∑
i=0

((1+u)2)i

=
( n

∑
j=0
|a jx j|

)2 ((1+u)2)2n−1
(1+u)2−1

=
( n

∑
j=0
|a jx j|

)2 γ4n

u2 +2u
.

As a result

|fl(P(x))−P(x)|= |Z2n| ≤
n

∑
j=0
|a jx j|

√
uγ4n

2+u

√
2ln(2/λ ),

with probability at least 1−λ . Finally

|fl(P(x))−P(x)|
|P(x)|

≤ cond1(P,x)
√

uγ4n
√

ln(2/λ ),

with probability at least 1−λ .

Remark IV.1. The bounds (3) and (6) have the same condition
number, but differ in another factor: γ2n for (3) against√

uγ4n
√

ln(2/λ ) for (6).
For n such that 2nu < 1, [30], Lemma 3.1 implies



γ2n ≤ 2nu
1−2nu , it follows that for 4nu < 1

√
uγ4n ≤

√
4nu2

1−4nu
= u
√

n
2√

1−4nu
.

For n large, Taylor’s formula implies γn = nu + O(u2) and
γ2n ≈ 2nu. This approach can’t be used for

√
γ4n because it’s

indeterminate in 0. However,

lim
u→0

√
uγ4n√
nu

= 2⇐⇒
√

uγ4n ≈ 2
√

nu.

Eventually, the probabilistic bound for the forward error of
Horner’s algorithm is in O(

√
nu).

D. Numerical experiments.
In this section, we illustrate that the probabilistic bound is

tighter than the deterministic bound for SR-nearness forward
error on a numerical application: the evaluation of the
Chebyshev polynomial. We use Horner’s method to evaluate

the polynomial P(x) = TN(x) = ∑
T N

2 U
i=0 ai(x2)i where TN is the

Chebyshev polynomial of degree N. Consider an even N = 2n.
We use single-precision (binary32) for both SR-nearness and
round to nearest ties to even. All SR computations are repeated
30 times with verificarlo [15]; we plot all samples and the
forward error of the average of the 30 SR instances. The
following error bounds and evaluations apply:

Probabilistic bound = cond1(P,x)
√

uγ4n
√

ln(2/λ ),

Deterministic bound = cond1(P,x)γ2n,

SR-nearness =
|fl(P(x))−P(x)|

|P(x)|
.
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Fig. 5. Probabilistic bound with λ = 0.5 vs deterministic bound of the
computed forward errors of Horner’s rule for Chebyshev polynomial
T20(x).

Chebyshev polynomial is ill-conditioned near 1: in figure
5, we evaluate T20(x) for x ∈ [ 8

64 ;1]. As expected and
due to catastrophic cancellations among the coefficients, the

condition number increases from 100 to 107 which explains
the increase of numerical error from 10−7 to 10−1. The
probabilistic bound is closer to the forward error points than
the deterministic bound even for a small n = 10. The average
of SR-nearness stays below RN-binary32 for almost all points.

In Figure 6, the two previous bounds and the forward
error are divided by the condition number cond(P,x), and
the evaluation in x = 24/26 ≈ 0.923 is plotted for various
polynomial degrees N.
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Fig. 6. Forward errors/cond(P,x) of Horner’s rule for Chebyshev
polynomial TN(24/26).

The comparison between the two bounds is fairly visible
in figure 6. By increasing N, the deterministic bound draws
away from the forward error faster than the probabilistic bound
and for N large, the gap becomes more interesting. SR-
nearness points are between 10−8 and 10−10, versus 10−7 for
the probabilistic bound and 10−6 for the deterministic bound.

V Conclusion.

Stochastic rounding has drawn a lot of attention in various
domains [14], [19], [22], [23] due to its efficiency compared to
the default rounding mode. The fact that SR-nearness satisfies
mean independence (a weaker property than independence)
leads to an expected value that coincides with the exact
value. We have shown that the bias in SR-up-or-down can
significantly reduce the precision of the computation, even on
simple algorithms such as rectangular integration section III,
and that SR-nearness can remain unbiased and provide the
full expected precision on them. We also discussed that
using SR-nearness leads to having a probabilistic bound in
O(
√

nu), compared to the O(nu) deterministic bound for the
inner product forward error. We have shown this property
for Horner’s method using Azuma–Hoeffding inequality and
martingale properties. As opposed to the study made for the
inner product, the issue of this algorithm is that the martingale
does not appear explicitly; nevertheless, a change of variable
shows that it is present, allowing the use of concentration
inequalities. As future work we will investigate more complex
algorithms with non-explicit martingales.
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