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Abstract— Playing pool is not a trivial task for an au-
tonomous robotic system: In order to excel, the tight coupling of
accurate perception, planning and highly dynamic while precise
manipulation is required. To investigate scientific challenges
arising from this tight coupling requirement an anthropomor-
phic robotic system has been developed, which is capable of
playing pool. Focusing in this paper on the planning part, a well-
calibrated pool simulator is developed in order to predict the
outcome of possible strokes. An optimization based framework
applying a discounted return term is presented for suggesting
an optimized next stroke by planning several strokes ahead.
Different to existing planners so far, our planner considers the
player’s and opponent’s skill. Therefore, strategic considera-
tions (e.g. safety shots) can now be evaluated depending on the
outcome of the next strokes for both player and opponent.

I. I NTRODUCTION

People have built automata for entertainment and gaming
purpose for centuries. Like the Jaquet-Droz automata, those
machines performed a straightforward task execution without
situation assessment as they lacked the ability to interact
in a reasonable way with their environment. In contrast,
recent robots are able to perform complex tasks based on
situation-aware judgement of their next action, even being
able to improve their skill for specific tasks through multiple
execution. In this context, game and entertainment robots
represent an interesting robotics research playground. Typ-
ically games are still structured in the sense that only a
limited number of situations can occur while still requiring
the full perception-cognition-action loop working in a tightly
coupled manner. This makes the development of suitable
robotic entertainment systems viable already today. As a
result, this type of robotic systems certainly play a strong
role on how robots are perceived by the society today
and how they will be integrated in our lives in the future.
Examples of successful integration of robotic systems are:
Table soccer [1], soccer [2] and ping pong [3]. Another game
is pool. Instead of fast reactions/decision making - an aspect
where humans still excel humanoid robots - pool requires
high accuracy when executing a stroke and good planning
capabilities. We are confident a humanoid robot is superior
to an intermediate human pool player in both aspects as
it can be calibrated well and has got enough computing
power and time to simulate hundreds of strokes before
deciding which one to execute. The problem of developing
a descent pool robot is split up into three processing steps:
Perception, planning and action. In this paper the focus lies
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on the planning part, dealing with the question how to select
the optimal next stroke depending on a set of previously
simulated ones. It is shown that the most relevant aspects
like player’s and opponent’s skill, tactical aspects like safety
shots and the desired farsightedness during play are handled
using a unified frameword.

In order to predict the outcome of a stroke, a model of
the physical behaviour of pool is needed. In [4] and [5], the
physical aspects occurring at pool are displayed. Aimed at
the amateur pool player who wants to improve his game style
by understanding the physical background behind pool, [6]
is best-suited. Special aspects are covered in [7] drawing
special attention on the movement of a ball on the table.
The collision between two balls is discussed in [8]–[11]. So
is the contact between cue tip and ball occurring at a stroke
in [12] where they focus on spin. Finally, [13] only looks at
the stroke of the white ball in the presence of friction with
the table.

Concerning developed pool simulators, most existing pro-
grams like [14] are designed for entertainment purposes,
making it difficult to fit the underlying physical model to one
specific table. One exception is PoolFiz [4], an open source
simulator designed for a real-world pool robot and used for
yearly pool simulation tournaments. Here, the movement of
a ball on the pool table under the effect of friction is solved
analytically, making classical numerical integration obsolete.
Even if this is advantageous from a computational point of
view - computation is speeded up by several magnitudes - it
becomes difficult to change the underlying physical model as
the corresponding PDEs have to be solved again analytically.

Coming to planners, the most decent ones are partici-
pating at the International Computational Billiards Champi-
onships. Over the years Monte-Carlo sampling based plan-
ners like [15]–[17] are proven to be the most robust ones in
the presence of noise. In contrast, a fuzzy logic planner is
presented in [18] together with a pool robot. A novel idea
is demonstrated in [19] and [20]: Instead of simulating shots
randomly and selecting the most promising ones, they embed
their pool simulator into an optimization routine, therefore
being able to fulfil advanced goals like pocketing multiple
balls with a single stroke. When making a choice among
two or more possible shots, one has to evaluate the difficulty
of each stroke. For this purpose [19] proposed two different
options to measure the stroke difficulty: One is based on the
allowed deviation angle of the white ball whereas the second
one directly takes the distance cue ball - object ball, distance
object ball - hole and cut angle into account.

Though there exist good planners for pool, they show
limitations when planning several strokes ahead: So far, a



lot of important variables like the strength of the player
and opponent, tactical decisions or the far-sightedness during
position play are considered just insufficiently.

The contribution of this paper is therefore a framework
tackling the planning problem for a robotic system when
playing pool. It consists on the one hand of a physics-based
pool simulator with parameters identified through a real pool
table. On the other hand a sampling-based planning strategy
is adopted, simulating the next most likely strokes for both,
the robot and the opponent. By using a cost function based on
a discounted return function, the outcome of several strokes
ahead is represented as a single scalar value. This results in
an optimization problem over a search tree. Under certain
assumptions, we show how a fast solution can be obtained
through dynamic programming. The key aspect of this paper
is how an optimal next stroke is derived taking both the
player’s and opponent’s skill as well as tactical aspects like
safety shots into consideration.

The remainder of this paper is organized as follows: Sec. II
provides a brief overview over the existing anthropomorphic
robot used for pool. In Sec. III the underlying equations
for the implemented pool simulator are constituted. Sec. IV
displays how the simulator is fitted to a real table. Last,
Sec. V concentrates on the question how an optimized next
stroke is suggested for the player.

II. POOL-PLAYING ROBOTIC SYSTEM

The entire system consists of a mobile robot with a
pair of 7-DoF anthropomorphic arms, see [21]. All low
level platform and arm controllers are based on Simulink
and compiled using the Real-Time Workshop. The entire
system is designed for real-time control at a framerate of
up to 1000Hz using a RTAI real-time kernel. For fast data
exchange across different computers, a self-developed shared
memory called Real-Time Database (RTDB) in combination
with the Ice middleware is used, see [22]. Optionally, ROS-
based programs can be connected to the RTDB for any
not time-critical task. Vision information comes from a
ceiling-mounted camera approximately 2.5m above the table,
tracking the trajectory of all balls on the table at a frame rate
of 30Hz and distinguishing between the white ball, the black
ball, striped and solid balls. The robot is able judge whether
it can pocket a ball with respect to physical constraints and
move autonomously around the table to execute the desired
stroke. One challenge is a precise and fast 3D detection
of cue and robot with respect to the pool table. Having
mounted only one camera, fusioned data from robot-mounted
laser rangefinder, arm pose data and ceiling camera is used
for an accurate cue positioning behind the white ball. In
order to execute a fast stroke without violating hardware
constraints regarding motor current and joint velocity, the
arm configuration is optimized before the stroke, see [23].
Out of 463 test strokes for random ball positions on the
table, the robot succeeds in pocketing around50% of all
balls, and with a success rate of around80% for the simplest
shots (approx. 25% of all balls). Differing from existing
pool robots (The Snooker Machine, Deep Green) the entire

system is optimized for proper planning and execution speed,
making it possible to play also against humans at reasonable
speed. However, without planning at least one stroke ahead,
the resulting position of the white ball is often disadvanta-
geous for the robot. For planning ahead, an accurate billard
simulator is required to model the outcome of a set of
possible strokes.

Fig. 1. Picture of the robotic platform for pool playing

III. PHYSICAL MODEL OF THESIMULATOR

This section covers the theoretical background for the
implemented billard simulator. Most calculations are based
on the results presented in [5]. In total, there are five
situations one has to examine at pool: At the beginning of
each move, the white ball is hit by the cue, see Sec. III-
A. After that, a usual short phase of sliding on the table,
see III-C, is followed by a rolling phase, see Sec. III-B, till
the ball stands still. In addition, collisions with either another
ball, see Sec. III-D, or a cushion, see Sec. III-E, may happen.

A. Stroke

If a ball gets hit by the cue, the cue transfers an impulsep

in the x-z-plane on the ball in pointA. Given the three
parametersα for displacement of the cue along the y-axis
causing side spin,β for displacement of the cue along the
z-axis causing top spin andγ for the angle between z-axis
and cue, the resulting velocity of the center-of-massvC and
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Fig. 2. Possible states of a pool game: Stroke (top left), ball-ball collision
(top right), ball-cushion collision (bottom left), rolling/sliding on the table
(bottom right)

the rotational velocityω is calculated as

vC =
|p|

m





sin γ
0
0



 , (1)

ω =
|p||rCA|

m





sinα cosβ cos γ
− cosα cosβ cos γ + sinβ sin γ

sinα cosβ sin γ



 (2)

m denotes the mass of the ball,rCA the vector fromC toA.
For arbitrary stroke directions on the table,vC andω need
to be rotated by an angleψ around the z-axis.

B. Rolling on the Table

A ball rolling on the table is characterized by a tangen-
tial speed of the contact pointB with the table equal to
zerovBt = 0. In this case

ωt = −
1

|rCB |
2
rCB × vC , (3)

for the tangential rotational velocityωt in the x-y-plane
andvC holds. The corresponding rolling friction forcefroll
is calculated as

froll = −
vC

|vC |
mgλra − vCmgλrr, (4)

with g for the gravitational constant,λra for the velocity-
independent rolling friction coefficient andλrr for the
velocity-dependent rolling friction coefficient.

If the ball has a normal rotational velocityωn along
the z-axis, this velocity will be unaffected by the rolling
friction force froll. Therefore, [5] suggests to calculate the
normal angular accelerationαn depending on the radius of
the contact area between ball and tableρ as

αn = −
ωn

|ωn|

2

3Θ
mgρλsa. (5)

The inertiaΘ of a ball depending on the radius of a ballrB
is calculated asΘ = 0.4mrB .

C. Sliding on the Table

A ball is sliding on the table if the translational velocity
of the contact point with the tablevBt 6= 0. In this case, the
sliding friction forcefslide is

fslide = −
vBt

|vBt|
mgλsa − vBtmgλsr, (6)

with λsa denoting the velocity-independent sliding friction
coefficient andλsr the velocity-dependent rolling friction
coefficient. Similar to the previous case the ball is rolling, (5)
holds.

D. Ball-Ball Collision

The collision between two balls is approximated by a
partially elastic hit in normal direction, see [10]. In addition,
some impulse in tangential direction is transferred due to
friction between the two ball in the moment of contact. The
transferred impulsepn in normal direction on ball one is

pn =
1 + ebb

2
mvDn, (7)

and the transferred impulse in tangential directionpt is

pt = |pn|λbb
vDt

|vDt|
(8)

For (7) and (8),vD1 denotes the contact point velocity
of ball one in a reference coordinate frame. The same
accounts forvD2 and ball two, see Fig. 2. The relative
velocity between the two balls can then be calculated
asvD = vD2 − vD1. It consists of a normal componentvDn
in rC1C2 direction and a tangential componentvDt orthog-
onal to it. The resulting velocityvC′

1
after the collision is

vC′

1
=

pn + pt

m
+ vC1

(9)

If the tangential inpulsept is not zero, the transferred angular
momentumLt on ball one is calculated as

Lt = rC1D × pt, (10)

and the resulting angular velocityω′ after collision as

ω
′ =

Lt

Θ
+ ω (11)

E. Ball-Cushion Collision

In [5] an in-depth analysis of the ball-cushion collision
is presented. In this paper a simplified model is used,
assuming the ball is rolling on the table immediately before
and after cushion contact. Under the assumption of no
sidespinωn = 0, the contact with a cushion is modeled by
an partially inelastic hit along the normal direction as

vCn′′ = −vCn′ebc, (12)

vCt′′ = vCt′ , (13)

vC′′ = v
Cn′′+v

Ct′′

|v
Cn′′+v

Ct′′
| |vC′ | δv (14)

where (14),ebc denotes the coefficient of restitution depend-
ing on the velocity before cushion contact|vC′ | and the input
angle∆. In addition, the velocity after cushion contact|vC′′ |
is reduced by a factorδv relative to the velocity before
cushion contact.



IV. PARAMETER DETERMINATION

For the model presented in Sec. III, the following parame-
ters need to be determined:λra, λrr, λsa, λsr, λbb, ebb, ebc,
δv, ρ, m, rB . Out of the 11 unknown physical parameters,
the following 8 are evaluated:

1) Ball massm and radiusrB
2) Rolling friction coefficientsλra andλrr
3) Sliding friction coefficientsλsa andλsr
4) Cushion parametersebc andδv

The other ones - namelyρ, λbb and ebb - cannot be de-
termined due to too imprecise equipment and other super-
imposed, more dominant effects. Here, values based on the
results of [5] and [10] are used.

The rolling friction coefficientsλra andλrr are measured
by tracking the trajectory of a single ball rolling on the table
with the ceiling-mounted camera. Exemplary results through
piecewise linear regression are shown in Fig. 3. For velocities
greater 0.05m

s
the rolling friction is nearly independent of

the ball velocity. For velocities smaller 0.05m
s

it decreases
almost linearly. The calculated friction coefficients are shown
in (16). To reduce the influence of outliers due to measure-
ment noise like inaccurate camera trigger timings, only data
points within a certain distance to the x-axis are evaluated,
see the cone of blue dots in Fig. 3. The measured data is
still noisy as the measured friction coefficient is close to
zero and therefore hard to determine. The exact parameters
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Fig. 3. Determining the rolling friction coefficient. Shown on the left
side is some part of the trajectory obtained by the ceiling-mounted camera.
The right side displays the calculated rolling friction coefficient with the
corresponding piecewise linear regression result. For better readability, only
every tenth sampling point has been plotted

of the regression line are

λra(vC) =

{

0.0011 for |vC | ≤ 0.0473,

0.0075 for |vC | > 0.0473,
(15)

λrr(vC) =

{

0.1350 for |vC | ≤ 0.0473,

−0.0004 for |vC | > 0.0473
(16)

To determineλsa andλsr, a small rack with defined weight
standing on three fixed pool balls is designed as shown
in Fig. 4. The entire rack is pulled by a linear axis with
constant velocity. The force exerted on the linear axis due
to the sliding friction of the rack is measured using a JR3
force/torque sensor. Different speeds between0.01m

s
and1m

s

are evaluated, see Fig. 4. The noise of the data results from
small vibrations during pulling caused by the elastic string
connecting vehicle and linear axis. Similar to rolling friction,
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Fig. 4. Determining the sliding friction coefficient. A rack standing on
three fixed pool balls is pulled over the pool table by a linearaxis at
various predefined speeds. The calculated sliding frictioncoefficient and
the piecewise linear regression lines are shown on the left

sliding friction seems to be constant over a wide area of
velocities and almost linear dependent of the velocity for
velocities smaller0.05m

s
. Results obtained through piecewise

linear regression for the two cases are

λsa(vBt) =

{

0.2014 for |vBt| ≤ 0.672,

0.2322 for |vBt| > 0.672,
(17)

λsr(vBt) =

{

0.4763 for |vBt| ≤ 0.672,

0.0180 for |vBt| > 0.672
(18)

Overall, 1217 recorded cushion contacts are used to evaluate
the physical behaviour of the cushion. Two parameters are
determined: The coefficient of restitution of the cushion and
the velocity of the ball after cushion contact. Both parameters
are evaluated depending on the velocity of the ball before
cushion contact and the input angle. As Fig. 5 shows,ebc
depends heavily on both parameters: The velocity of the ball
and the input angle. The regression planes forebc andδv are
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Fig. 5. Measuring the cushion parameters. On the left side, the coefficient of
restitutionebc of the cushion with corresponding regression plane for 1217
cushion contacts is shown. On the right side, the relative velocity δv with
calculated regression plane is displayed. Note that the obtained results for
the relative velocity are based on very noisy data and shouldtherefore been
taken with a pinch of salt

described by

ebc(vC ,∆) = 0.9331− 0.0278|vC | − 0.1051∆, (19)

δv(vC ,∆) = 0.7366− 0.1094|vC |+ 0.1698∆ (20)

V. STROKE PLANNING

Concerning planning, the question is how a recommenda-
tion for the next stroke is stated depending on the analyzed
outcome of a set of simulated strokes. The previous sentence
leads to the two major topics covered in this section: First,
which stroke to simulate? And second, how to analyze the
outcome of a stroke systematically?



A. Stroke Selection

When executing a stroke, one can varyα, β, γ, ψ and
p. In order to reduce complexity and being able to make
predictions that can be transferred on a real pool table, only
two parameters are varied,p andψ. Implicitly it is assumed
the ball is hit centrally, i.e.α = 0, β = 0 and γ = π

2
. For

this case, an optimal stroke angleψo is determined for each
object ball - hole combination such that the object ball is
pocketed in the mid of each pocket, see [19]. In addition,
there are two anglesψ±h marking the maximal allowed
deviation to the left/right ofψo the ball is just pocketed,
as shown in Fig. 6. If the angular deviation is bigger, one
is unable to pocket the object ball. Two other anglesψ±e

denote the angular deviation the object ball is just hit without
making a foul. Similar limits exist for the stroke intensity: An
lower limit p−e the white ball is just fast enough to pocket the
object ball and an upper limitp+e depending on the robot’s
maximal achievable velocity. As a result, one has only to
consider parameter tuples in a 2D search space betweenψ±e

andp±e assuming the robot is at least able to hit the object
ball and programmed well enough to approximatep−e. All
calculations can be extended to cover also possible obstacles
(other balls) on the table.

ψ−eψ−h ψo ψ+h ψ+e
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Rk+1n

po
x

y

z

N
(µ

|p
|,
σ
2 |p

|)

N (µψ, σ
2
ψ)

ψ

|p|

Fig. 6. Calculation ofRk n. Assuming the robot is “skilled” enough,
only sampling points withinψ±e and|p±e| are considered. Each sampling
point has got an assigned valueRk+1n denoting the expected return for the
robot from the next stroke on. Big blue dots indicate a high return for the
player (positive) whereas big red dots mark a high return for the opponent
(negative). ThenRk n is calculated based on an optimization overµ|p|
andµψ . The optimization cost function is the average of all samplingpoints
weighted withN (µ, σ2

|p|
) andN (µψ , σ

2
ψ
). Under certain assumptions,µψ

can be set to a fixed value andµ|p| can be approximated with the center
of clusteredRk+1n values (black ellipse). In addition,po based upon the
ruled area marks the percentage to pocket the current ball if the outcome
of a stroke depends only on the angle

The robot’s (and opponent’s) skill is determined by a set
of recorded sampling shots with measured angular deviation
relative to ψo and measured intensity deviation relative
to a predefined value. Both values are approximated by
normal distributionsN (µψ, σ

2
ψ) for the angular deviation

andN (µ|p|, σ
2

|p|) for the impulse deviation. Neglecting the
stroke intensity, the percentagepo to pocket an object ball
is calculated based on the approximated normal distribution
of the angular deviation andψ±e.

B. Planning Ahead

In order to analyze the strokes, skilled human players also
consider the most likely situations for the nextn strokes
beside the current situation. A situation on the table at
time k in the future is described as a stateX containing
the positions of theN balls on the table, whereX is
the Cartesian productX = x1 × x2 × . . .× xN , where the
sets xi are subsets ofR2 giving the space of possible
positions of the i-th ball on the table. Thenwk is the
cost associated with the stateXk determining how good or
bad the situation is for the player. Similar to reinforcement
learning problems as described in [15] and [24] we model
this effect with an discounted finite-horizon return function
with discount factorδ:

R0n =

n
∑

k=0

δkwk, 0 ≤ δ < 1 (21)

Let us assume an arbitrary finite sequence of strokes resulting
in a sequence(X0, . . . , Xn) and consequently a sequence of
states returns(w0, . . . , wn). The returnwk is defined as +1 if
the player pockets a ball and 0 otherwise. For the opponent,
the reward is -1 if he pockets a ball and 0 otherwise. Because
the outcome of each stroke is probabilistic, one has to
weight every possible stroke outcome with its corresponding
probability depending on the impulsep and angleψ and
integrate over all probabilitiesp(p, ψ):

R0n =

n
∑

k=0

[

δk
∫∫

wk p(p, ψ) dψdp

]

, δ ∈ R+ (22)

For δ = 1, there is a proper physical understanding ofR0n,
as aR0n value greater zero indicates the player is going to
pocket more balls over the nextn rounds than the opponent
from a statistical point of view. The opposite applies forR0n

values smaller than zero. Consequently, the resulting goalfor
this planning problem is formulated as

maximize
p,ψ,stroke sequence

(R0n) (23)

The first step in solving (23) is to discretize the problem
and to set up a search tree of depthn where each node
of depth k = 1 . . . n represents the situation on the table
afterk strokes. When sampling the 2D search space of each
node, one also has to consider the possible outcome for the
opponent. When simulating a robot stroke of depthk in the
tree and the shot parameter are withinψ±h and |p±e|, the
robot can continue playing the next round. Iteratively, one
gets new search spaces of depthk + 1. The same accounts
for the opponent of depthk + 1 if the shot parameters are
within ψ±h andψ±e and |p±e|. If the maximum depthn is
reached, we do not plan another step ahead. In this case,Rnn
is a single scalar number representing the maximal percent-
age to pocket a ballpmaxP for the robot respectivelypmaxO
for the opponent.

Subsequently, an optimization algorithm is used varying
the stroke intensityµ|p| and stroke angleµψ variables of
each node of the tree in order to solve (23). This problem is
intractable within reasonable for large search trees as there



areO((ns)
n) variables to optimize forns sampling points

for each table and a search tree of depthn.
However, experiments show that under certain assump-

tions a good approximate solution is obtained. Except for ex-
tremely easy shots or very skilled pool players andδ . 1, µψ
is close toψo after optimization. This abandons the need to
optimize for µψ. The physical interpretation is that except
for those situations the primary goal is to pocket the object
ball in the most simple manner, thus by aiming at the center
of the pocket. In addition, optimization forµ|p| is bypassed
by assigning a value to each sampling point in the search
space of a node of depthk equal toRk+1n, whereRk+1n

represents the return function for the subtree starting from
the specific sampling point on. The resulting search space
with sampling points and corresponding valuesRk+1n is
then clustered using the OPTICS algorithm [25], taking only
a fraction of the bestRk+1n values into account. Every
found cluster withµ|p| set to the center of the cluster is com-
pared with each other, making it possible to calculateRk n
as the average return based onN (µψ, σ

2
ψ), N (µ|p|, σ

2

|p|)
and Rk+1n via backward induction. After having iterated
to the root of the search tree,R0n will return the optimal
valuesµψ andµ|p| for the next shot.

C. Safety Shots

Pool offers another element of strategic gameplay called
safety shots. After having announced a safety shot, the op-
ponent will continue with the next shot in any case. Looking
at the search tree, because we now have to consider two
different possibilities for each situation, the number of nodes
in the tree grows fromO((ns)

n) to O((ns)
2n). This is the

brute-force approach. A more elegant solution first analyses
each situation and then decides dynamically whether one also
wants to consider a safety shot. In general, there are two
reasons for announcing a safety shot in roundk:

1) There is no chance for the robot of executing a legal
stroke after the next stroke. We reduce this situation to
the case the robot can’t hit any object ball.

2) The situation after the next shot will be bad for both
robot and opponent.

With respect toR0n and the game logic, not announcing
a safety shot in the first case will result in comitting a foul
the next round, thus letting the opponent place the white ball
two rounds ahead whereever he wants. As this is assumed to
be optimal for the opponent, it is always better to announce
a safety shot. For the second case, announcing a safety shot
means expecting a high return in the long run with the
disadvantage of letting intentionally execute the opponent the
shot after the next round. Here, the expected returnRk+1n

for any subtree starting from depthk+1 without announcing
a safety shot is close to zero and a safety shot may lead to
better results.

VI. RESULTS

Measuringµψ, σψ, µ|p| and σ|p| for any player (human
or robot) is achieved by a set of recorded sample strokes.
Regarding the stroke intensity, this can be adjusted and

measured precisely for the robot. On the other hand, human
players are told to pocket a set of balls with “light intensity”,
“normal intensity” and “high intensity”. As the standard
deviations for all three cases were quite similar, a single
value has been used instead. However, this fact has to be
considered if the planner is ought to be used for humans.
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Fig. 7. Planning results for a sample situation. Shown on top is the current
situation with the success rates for a greedy approach only considering the
current situation on the table. The next four images illustrate the calculations
the final return functionR0 1 is based on. Yellow crosses mark the position
of the white ball after each sample stroke. Last, the lowermostimage shows
the expected return for both strokes when planning one stroke ahead

Planning results are shown in figure 7 for a planning
depth of 1 andδ = 1. Shown is the effectiveness of the
proposed planner over a greedy approach considering only
the current situation. The two easiest shots have success rates
of 98% and 87% as shown in the topmost image. Thus,
a greedy approach will select the shot with 98% success
rate. However, when simulating sample shots for the two
possibilities as shown in the next four images, the situation
changes: On the left side, the final positions of the white ball



after having executed a set of sample shots are marked with
a yellow cross. The right side displays the search space that
is used to calculateR0 1. Because the tree depth equals 1,
everyR1 1 value represents the maximal percentage to pocket
a ball in the next round for the player (blue dots) if he pockets
the object ball without a foul or for the opponent (red dots).
The lowermost image shows the resultingR0 1 values for
both strokes, indicating that it is advantageous to pocket the
ball with the lower success rate as it has the higher expected
return.

VII. D ISCUSSION

As many aspects of pool are already analyzed in detail,
most topics of this paper can be compared in a broader
context. To a large extent our pool simulator model is
founded on well established physical principles. For the ball-
cushion collision, the resulting equations are extended to
model the physical effects for the given pool table better.
It is not our intention to model every physical effect as
accurate as possible (e.g. spin), rather we concentrate on the
dominant, measurable and best understood effects. Differing
from other pool simulator implementations, this planner uses
numerical integration instead of an analytical solution for
better modeling of discontinuous friction effects (as shown
in Sec. IV) and easier model improvement whenever new
measurements are available.

With respect to the planner presented in this paper, the
discounted return approach in combination with modeled
stroke angle and impulse deviation is promising as parameter
tuning is reduced to choose a suitable discount factorδ that
determines the look-ahead horizon of the planning strategy.
One still existing problem covers end game situations where
one or two players have only few balls left. Because the
planner does not depend explicitly on the number of balls
as shown in (22), a potentially desired shift in the playing
strategy cannot be accomodated adequatly.

VIII. C ONCLUSION

This paper presents a framework for a robotic pool playing
system with advanced planning capabilities. Particular em-
phasis is on the interactive playing capability with a human
opponent requiring for a tight coupling and real-time capa-
bility of perception, planning, and stroke execution. Based on
a unified approach, we are able to handle tactical decisions
during a pool game including the consideration of different
player strengths. Whereas the current implementation is tied
to the pool game, the general idea can be extended to various
episodic games in order to include human capabilities into
the robot’s tactical considerations.
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