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Abstract— Playing pool is not a trivial task for an au- on the planning part, dealing with the question how to select
tonomous robotlc_ system: In order to excel, the tl_ght c_oupllng_of the optimal next stroke depending on a set of previously
accurate perception, planning and highly dynamic while precise i 1ated ones. It is shown that the most relevant aspects
manipulation is required. To investigate scientific challenges like ol , d t's skill. tactical s i
arising from this tight coupling requirement an anthropomor- Ike players an opponen ,S Skifl, tactica _aSpeC S likedesy
phic robotic system has been developed, which is capable of Shots and the desired farsightedness during play are tandle
playing pool. Focusing in this paper on the planning part, awell- using a unified frameword.
calibrated pool s'imulator is develop.ed' in .order to predict the In order to predict the outcome of a stroke, a model of
outcome of possible strokes. An optimization based framework the physical behaviour of pool is needed. In [4] and [5], the

applying a discounted return term is presented for suggesting . . . -
an optimized next stroke by planning several strokes ahead. physical aspects occurring at pool are displayed. Aimed at

Different to existing planners so far, our planner considers the the amateur pool player who wants to improve his game style
player's and opponent's skill. Therefore, strategic considera- by understanding the physical background behind pool, [6]
tions (e.g. safety shots) can now be evaluated depending on thejs pest-suited. Special aspects are covered in [7] drawing
outcome of the next strokes for both player and opponent. special attention on the movement of a ball on the table.

. INTRODUCTION The collision between two balls is discussed in [8]-[11]. So

: . . is the contact between cue tip and ball occurring at a stroke
People have built automata for entertainment and gami . .
b 9 ¢ [12] where they focus on spin. Finally, [13] only looks at

purpose for centuries. Like the Jaquet-Droz automatagtho . ; " .
machines performed a straightforward task execution Wtho:&: f;[)?:e of the white ball in the presence of friction with

situation assessment as they lacked the ability to intera . _ -

in a reasonable way with their environment. In contrast, Concgrnlng developed_pool simulators, most existing pro-
recent robots are able to perform complex tasks based grms I.'ke. [.14] are designed fqr entertgmment purposes,
situation-aware judgement of their next action, even being]ak'n.g it difficult to fit the qndgrlylng pr_\ysmal model to one
able to improve their skill for specific tasks through mukip pecific table. One exception is PoolFiz [4], an open source

execution. In this context, game and entertainment robo'l%mUIator des_lgned_ for a real-world pool robot and used for
early pool simulation tournaments. Here, the movement of

represent an interesting robotics research playgroungk- Tyy

ically games are still structured in the sense that only gballllt_on”the pokc_>l tablle u_ndtlar the e_ffe(ft_ Otf f”Ctt'.O N :;bssglved
limited number of situations can occur while still requgin analytically, making classical numerica integration '

the full perception-cognition-action loop working in atity Even if this is advantageous from a computational point of

coupled manner. This makes the development of suitab éew i compqtation is speeded up by sgveral mggnitudes - it
robotic entertainment systems viable already today. As ecomes difficult to change the underlying physical model as

result, this type of robotic systems certainly play a stron e corresponding PDEs have to be solved again analytically

role on how robots are perceived by the society todag Somlrlgthtolplannetrs, tr% mostt dt(_ecenlthlrll_es darghparua—
and how they will be integrated in our lives in the future. ating at tne International Lomputational bifiards hamp

Examples of successful integration of robotic systems arg_nshlps. Over the years Monte-Carlo sampling based plan-

Table soccer [1], soccer [2] and ping pong [3]. Another gam%’lerS like [15]-{17] are proven to be the most ro_bust ones in
the presence of noise. In contrast, a fuzzy logic planner is

is pool. Instead of fast reactions/decision making - an eéspe

where humans still excel humanoid robots - pool require!gresemed in [18] together with a pool robot. A novel idea

high accuracy when executing a stroke and good pIanniﬁ demonstrated in [.19] and [20]: Instefaq of simulating shot
capabilities. We are confident a humanoid robot is superi ndomly and selecting the most promising ones, they embed

to an intermediate human pool player in both aspects e.ir pool simulatpr into an optimiza.tion routing, then@‘.o
it can be calibrated well and has got enough computin eing able to fulfil advanced goals like pocketing multiple

power and time to simulate hundreds of strokes befo alls with a single stroke. When making a choice among

deciding which one to execute. The problem of developin fo orhmc;rekposslblttah_shots, one hi; 0 evalua(tjetthe (;j.?;ncult}[/
a descent pool robot is split up into three processing step | each stroke. For this purpose [19] proposed two differen

Perception, planning and action. In this paper the focus ”eoptions to measure the stroke difficulty: One is based on the

allowed deviation angle of the white ball whereas the second
Part of this work is the result of the Bachelor thesis by Kerst one directly takes the distance cue ball - object ball, dista

Heunisch. Thomas Nierhoff and Sandra Hirche are with theitirist object ball - hole and cut angle into account.

of Automatic Control Engineering (LSR), Faculty of ElecticEngi- Th h th . d ol f I th h

neering, Technische Univeratt Miunchen, D-80290 Mnchen, Germany ough there exist good planners for pool, they show

{tn, hirche}@um de. limitations when planning several strokes ahead: So far, a



lot of important variables like the strength of the playeisystem is optimized for proper planning and execution speed
and opponent, tactical decisions or the far-sightednessglu making it possible to play also against humans at reasonable
position play are considered just insufficiently. speed. However, without planning at least one stroke ahead,

The contribution of this paper is therefore a frameworkhe resulting position of the white ball is often disadvanta
tackling the planning problem for a robotic system whemeous for the robot. For planning ahead, an accurate billard
playing pool. It consists on the one hand of a physics-basetimulator is required to model the outcome of a set of
pool simulator with parameters identified through a reallpogossible strokes.
table. On the other hand a sampling-based planning strategy
is adopted, simulating the next most likely strokes for bothf =
the robot and the opponent. By using a cost function based ¢ &
a discounted return function, the outcome of several ssrokﬁﬁ
ahead is represented as a single scalar value. This results®
an optimization problem over a search tree. Under certaizs
assumptions, we show how a fast solution can be obtaine,
through dynamic programming. The key aspect of this pape 'y
is how an optimal next stroke is derived taking both the “Jl
player's and opponent’s skill as well as tactical aspeses li e
safety shots into consideration.

The remainder of this paper is organized as follows: Sec. |
provides a brief overview over the existing anthropomaephi
robot used for pool. In Sec. Ill the underlying equations
for the implemented pool simulator are constituted. Sec. I\
displays how the simulator is fitted to a real table. Last,
Sec. V concentrates on the question how an optimized ne;
stroke is suggested for the player.

Il. POOL-PLAYING ROBOTIC SYSTEM

The entire system consists of a mobile robot with
pair of 7-DoF anthropomorphic arms, see [21]. All low
level platform and arm controllers are based on Simulin
and compiled using the Real-Time Workshop. The entir
system is designed for real-time control at a framerate o 2
up to 1000Hz using a RTAI real-time kernel. For fast data
exchange across different computers, a self-developeddha
memory called Real-Time Database (RTDB) in combination
with the Ice middleware is used, see [22]. Optionally, ROS-
based programs can be connected to the RTDB for any
not time-critical task. Vision information comes from a
ceiling-mounted camera approximately 2.5m above the table [1l. PHYSICAL MODEL OF THE SIMULATOR
tracking the trajectory of all balls on the table at a frante ra : . :
of 30Hz and distinguishing between the white ball, the blac|§~r]-|—hIS section covers the theoretical background for the

. X . . plemented billard simulator. Most calculations are lase
ball, striped and solid balls. The robot is able judge Whetheg|n the results presented in [5]. In total, there are five
e

Fig. 1. Picture of the robotic platform for pool playing

it can pocket a ball with respect to physical constraints an uations one has to examine at pool: At the beginning of

move autonomously around the table to execute the desir ch move, the white ball is hit by the cue, see Sec. IlI-
After that, a usual short phase of sliding on the table,

stroke. One challenge is a precise and fast 3D detecti%
e llI-C, is followed by a rolling phase, see Sec. IlI-B], til

of cue and robot with respect to the pool table. Havin%
ball stands still. In addition, collisions with eitheradher

mounted only one camera, fusioned data from robot—mount?ﬁ
laser rangefinder, arm pose data and ceiling camera is u I, see Sec. lI-D, or a cushion, see Sec. lll-E, may happen

for an accurate cue positioning behind the white ball. In
order to execute a fast stroke without violating hardwari Srok

constraints regarding motor current and joint velocitye th™ ™ roke

arm configuration is optimized before the stroke, see [23]. If a ball gets hit by the cue, the cue transfers an impplse
Out of 463 test strokes for random ball positions on thén the x-z-plane on the ball in poindl. Given the three
table, the robot succeeds in pocketing arodod; of all parametersy for displacement of the cue along the y-axis
balls, and with a success rate of arowids for the simplest causing side sping for displacement of the cue along the
shots (approx. 25% of all balls). Differing from existingz-axis causing top spin and for the angle between z-axis
pool robots (The Snooker Machine, Deep Green) the entiend cue, the resulting velocity of the center-of-mags and



C. diding on the Table
A ball is sliding on the table if the translational velocity
of the contact point with the tabkeg; # 0. In this case, the
sliding friction forcef,;q. is
VBt
— m
|Vt

foride = JAsa — VBtMGAsr, (6)

with \,, denoting the velocity-independent sliding friction
coefficient and\,, the velocity-dependent rolling friction
coefficient. Similar to the previous case the ball is rol]i(f)
holds.

D. Ball-Ball Collision

The collision between two balls is approximated by a
partially elastic hit in normal direction, see [10]. In atioln,
Fig. 2. Possible states of a pool game: Stroke (top left);tmlicollision ~ SOme impulse in tangential direction is transferred due to
(top right), ball-cushion collision (bottom left), roligisliding on the table  friction between the two ball in the moment of contact. The
(bottom right) transferred impulse,, in normal direction on ball one is

. 1+ ep

. . . P ™MV pn, 7
the rotational velocityw is calculated as " 2 " @
) and the transferred impulse in tangential directignis
sin 7y
p| VD
ve="—| 0 |, (@) P = [Pali i (8)
m 0 |V Dt
) For (7) and (8),vp; denotes the contact point velocity
pllrcal SlnaCOSBCOSjY . of ball one in a reference coordinate frame. The same
w= — —cosacpsﬂcosvfs1nB51n7 (2)  accounts forvps and ball two, see Fig. 2. The relative
sin a cos Bsiny velocity between the two balls can then be calculated

m denotes the mass of the ball 4 the vector fromC' to A.  @SVp = Vp2 — vp1. It consists of a normal componenp,,

For arbitrary stroke directions on the table; andw need [N rcic2 direction and a tangential componenp; orthog-
to be rotated by an anglé around the z-axis. onal to it. The resulting velocity¢; after the collision is

. n + Pt
B. Rolling on the Table Vo, = % +ve, 9)

~ A ball rolling on the table is characterized by a tangenif the tangential inpulse; is not zero, the transferred angular
tial speed of the contact poin® with the table equal t0 momentumL, on ball one is calculated as

zerovg; = 0. In this case

1 Lt =Trc,p X Pt, (10)
Wy =~ |PCB|2 fep X Ve, ®) and the resulting angular velocity’ after collision as
for the tangential rotational velocitw; in the x-y-plane W' = Ly +w (11)
andv¢ holds. The corresponding rolling friction forde,;; _ o e
is calculated as E. Ball-Cushion Collision
Vo In [5] an in-depth analysis of the ball-cushion collision
fron = _|Vc|m9)‘m_"0m9)‘m ) s presented. In this paper a simplified model is used,

assuming the ball is rolling on the table immediately before
and after cushion contact. Under the assumption of no
sidespinw,, = 0, the contact with a cushion is modeled by
an partially inelastic hit along the normal direction as

with ¢ for the gravitational constant,, for the velocity-
independent rolling friction coefficient and,.. for the
velocity-dependent rolling friction coefficient.

If the ball has a normal rotational velocity, along

the z-axis, this velocity will be unaffected by the rolling Venr = —VCn/ €, (12)
friction force f,,;. Therefore, [5] suggests to calculate the Vo = Vo, (13)
normal angular accelerationn,, depending on the radius of VetV
Vo = 7‘\, v ‘ ‘Vc/| du (14)
the contact area between ball and taplas onl! TVO
w. 9 where (14) .. denotes the coefficient of restitution depend-
oy = — | "| 36 MYpPAsa- (5) ing on the velocity before cushion contéet | and the input
wn

angleA. In addition, the velocity after cushion contéet |
The inertia® of a ball depending on the radius of a bal) is reduced by a factob, relative to the velocity before
is calculated as®© = 0.4mrp. cushion contact.
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IV. PARAMETER DETERMINATION

T
For the model presented in Sec. lll, the following parame 5 04
ters need to be determinel;,, A\, Asar Asry Abbs €bby Ebes ;:'-j : iiiilmmi
dy, py m, rg. Out of the 11 unknown physical parameters, § 0.2 'luluu !
the following 8 are evaluated: g 01
1) Ball massm and radius s k ; & ) 05 o .
2) Rolling friction coefficients\,., and \,., B 7‘“ velocity [m/s]
3) Sliding friction coefficients\,, and A,
4) Cushion parametess,. andé, Fig. 4. Determining the sliding friction coefficient. A rackaading on

three fixed pool balls is pulled over the pool table by a linears at
The other ones - namely, Ay, and ey, - cannot be de- various predefined speeds. The calculated sliding frictioafficient and

termined due to too imprecise equipment and other supehe piecewise linear regression lines are shown on the left
imposed, more dominant effects. Here, values based on the

results of [5] and [10] are used. sliding friction seems to be constant over a wide area of

b The lr(c_)lllnghfrlctu_)n coefh(;lentgxmll agdll)\r,.”gre mea;]sulreg velocities and almost linear dependent of the velocity for
ytrac mg_t_ e trajectory of a single ball rolling on thelab g ifieg smallef.052. Results obtained through piecewise
with the ceiling-mounted camera. Exemplary results thh)ugIinear regression for fhe WO cases are

piecewise linear regression are shown in Fig. 3. For ve&scit
greater 0.08: the rolling friction is nearly independent of Moo (Vise) = 0.2014 for |vp] < 0.672, 17)
the ball velocity. For velocities smaller 0.g5it decreases sal¥B = 002322 for |vpe| > 0.672,

almost linearly. The calculated friction coefficients anewn

in (16). To reduce the influence of outliers due to measure- ) (y,,) = 0.4763 for |vp| < 0.672, (18)
ment noise like inaccurate camera trigger timings, onlydat 0.0180 for [vp| > 0.672

points within a certain dista.nce 'to the x-axis are evaluateé)verall, 1217 recorded cushion contacts are used to eealuat
see the cone of blue dots in Fig. 3. The measured dataigs physical behaviour of the cushion. Two parameters are
still noisy as the measured friction coefficient is close tQjetermined: The coefficient of restitution of the cushiod an
zero and therefore hard to determine. The exact parametgig velocity of the ball after cushion contact. Both paraeret
are evaluated depending on the velocity of the ball before
! _ : cushion contact and the input angle. As Fig. 5 shows,

€ T . .
£ 05 ; £ depends heavily on both parameters: The velocity of the ball
T Ve e and the input angle. The regression planesfprandd, are
g Ol
§ -0.5 ™~ .E
S . 3 -0.02
Q S

-1 -0.04
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pool table x—dim. [m] velocity [m/s]
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Fig. 3. Determining the rolling friction coefficient. Showm dhe left
side is some part of the trajectory obtained by the ceiling-mexi camera.
The right side displays the calculated rolling friction ffmeent with the
corresponding piecewise linear regression result. Faebstadability, only
every tenth sampling point has been plotted

0 .
05 1 15

> o o051 5 570
velocity [m/s] angle [rad] velocity [m/s] angle [rad]

Fig. 5. Measuring the cushion parameters. On the left sié;dkfficient of

of the regression line are restitutione,,. of the cushion with corresponding regression plane for 1217
cushion contacts is shown. On the right side, the relativecity §,, with
0.0011 for |Vc| < 0.0473, calculated regression plane is displayed. Note that theirmdxd results for
)\m(vc) = (15) the relative velocity are based on very noisy data and shibelig:fore been
0.0075  for [ve| > 0.0473, taken with a pinch of salt

(16) described by

eve(vo,A) = 0.9331 — 0.0278|vc| — 0.10514,  (19)

To de_termmexsa and_)\sr, a small rack_ with d_efmed weight S,(ve,A) = 0.7366 — 0.1094|ve| + 0.1698A  (20)
standing on three fixed pool balls is designed as shown

in Fig. 4. The entire rack is pulled by a linear axis with V. STROKE PLANNING

constant velocity. The force exerted on the linear axis due Concerning planning, the question is how a recommenda-
to the sliding friction of the rack is measured using a JR8on for the next stroke is stated depending on the analyzed
force/torque sensor. Different speeds betw@en”: and1”:  outcome of a set of simulated strokes. The previous sentence
are evaluated, see Fig. 4. The noise of the data results frdeads to the two major topics covered in this section: First,
small vibrations during pulling caused by the elastic gtrinwhich stroke to simulate? And second, how to analyze the
connecting vehicle and linear axis. Similar to rolling fiike, outcome of a stroke systematically?

A (ve) — {01330 for |ve| < 0.0473,
T ) 200004 for [ve| > 0.0473



A. Stroke Sdlection B. Planning Ahead
In order to analyze the strokes, skilled human players also

When executing a stroke, one can vary 3, v, ¥ and consider the most likely situations for the nextstrokes
p. In order to reduce complexity and being able to makéeside the current situation. A situation on the table at
predictions that can be transferred on a real pool tablg, orime £ in the future is described as a stake containing
two parameters are varieg,ands. Implicitly it is assumed the positions of theN balls on the table, whereX is
the ball is hit centrally, i.,eo = 0, 5 = 0 andy = . For the Cartesian producX = z; x x5 X ... x xy, Where the
this case, an optimal stroke angle is determined for each sets z; are subsets ofR? giving the space of possible
object ball - hole combination such that the object ball ipositions of the i-th ball on the table. Them; is the
pocketed in the mid of each pocket, see [19]. In additior;ost associated with the sta}§, determining how good or
there are two anglesy, marking the maximal allowed bad the situation is for the player. Similar to reinforcemen
deviation to the left/right ofy, the ball is just pocketed, learning problems as described in [15] and [24] we model
as shown in Fig. 6. If the angular deviation is bigger, onéhis effect with an discounted finite-horizon return fuoati
is unable to pocket the object ball. Two other angles.  with discount factor:
denote the angular deviation the object ball is just hit with n

making a foul. Similar limits exist for the stroke intensin Ry, = Z sFwy, 0<6<1 (21)
lower limit p_. the white ball is just fast enough to pocket the k=0

object ball and an upper limjt, . depending on the robot's Let us assume an arbitrary finite sequence of strokes negulti
maximal achievable velocity. As a result, one has only tin a sequencéXy,..., X, ) and consequently a sequence of
consider parameter tuples in a 2D search space betyween states returngwo, . .., wy,). The returnwy, is defined as +1 if

andp. assuming the robot is at least able to hit the objedhe player pockets a ball and 0 otherwise. For the opponent,
ball and programmed well enough to approximate. All  the reward is -1 if he pockets a ball and 0 otherwise. Because
calculations can be extended to cover also possible obstacthe outcome of each stroke is probabilistic, one has to
(other balls) on the table. weight every possible stroke outcome with its correspogndin
probability depending on the impulge and angley and
integrate over all probabilities(p, ¥):

)
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R%:Z{ak [[wrpviavan|, ser, @2
k=0

For 0 = 1, there is a proper physical understandingif,,
as aRy, value greater zero indicates the player is going to

K/\

..........

P pocket more balls over the nextrounds than the opponent
from a statistical point of view. The opposite applies foy;,
WY ¥ JJ values smaller than zero. Consequently, the resultingfgoal
N, 02) z this planning problem is formulated as
‘ _ _ o maximize (Rg,) (23)
Fig. 6. Calculation ofRj ,. Assuming the robot is “skilled” enough, p,,stroke sequence

only sampling points within)+. and|p+.| are considered. Each sampling . . . . . .
point has got an assigned vali,  ; ,, denoting the expected return for the The first step In solvmg (23) is to discretize the prOblem

robot from the next stroke on. Big blue dots indicate a higrrefor the and to set up a search tree of depthwhere each node

p'ayefﬁ\(/gc;s“Ti\r/]i)m‘gher?sscgliguflg?egogzggf‘;r? gir?hoffitrl:]ri;;?égpgonem of depthk = 1...n represents the situation on the table

énn%g;¢. THe optimikzgtion cost function is the averagepof all sampﬁ\éqg%tls after i strokes. When samplllng the 2D se.arCh space of each

weighted With\ (1, o) andA/ (pys, o7, ). Under certain assumptions,, node, one also has to consider the possible outcome for the

can be set to a fixed value and,, can be approximated with the center oppponent. When simulating a robot stroke of deptim the

T e el o samipre 16€ ad he ShOL parameter are withi, and p..., the

of a stroke depends only on the angle robot can continue playing the next round. Iteratively, one
gets new search spaces of depth- 1. The same accounts
for the opponent of depth + 1 if the shot parameters are

The robot's (and opponent’s) skill is determined by a sewithin v, and. and |p.|. If the maximum depthn is

of recorded sampling shots with measured angular deviatiseached, we do not plan another step ahead. In this Rase,

relative to ¢, and measured intensity deviation relativeis a single scalar number representing the maximal percent-

to a predefined value. Both values are approximated kpge to pocket a bap,,...p for the robot respectively,,...o

normal distributions/\/(uw,ai) for the angular deviation for the opponent.

andN(u‘p‘,afpl) for the impulse deviation. Neglecting the Subsequently, an optimization algorithm is used varying

stroke intensity, the percentagg to pocket an object ball the stroke intensityu, and stroke angle., variables of

is calculated based on the approximated normal distributiceach node of the tree in order to solve (23). This problem is

of the angular deviation and_... intractable within reasonable for large search trees a® the




are O((ns)™) variables to optimize forn, sampling points measured precisely for the robot. On the other hand, human
for each table and a search tree of depth players are told to pocket a set of balls with “light intep5it

However, experiments show that under certain assumfnormal intensity” and “high intensity”. As the standard
tions a good approximate solution is obtained. Except fer exleviations for all three cases were quite similar, a single
tremely easy shots or very skilled pool players &@ 1, i1,  value has been used instead. However, this fact has to be
is close toy, after optimization. This abandons the need t@onsidered if the planner is ought to be used for humans.
optimize for ny,. The physical interpretation is that except

for those situations the primary goal is to pocket the object 06

ball in the most simple manner, thus by aiming at the center 04

of the pocket. In addition, optimization for,,| is bypassed g 0.2

by assigning a value to each sampling point in the search g 0 o o0

space of a node of depth equal toRx11,, Where Rx.1, § 02

represents the return function for the subtree startinghfro L ooa

the specific sampling point on. The resulting search space '

with sampling points and corresponding valuBg,,, is oo - s : . :
then clustered using the OPTICS algorithm [25], taking only " x-dimension [m]
a fraction of the bestR;,,, values into account. Every

found cluster withy ;| set to the center of the cluster is com- U

pared with each other, making it possible to calculRie,

0.6
as the average return based 8, 07), N('u"pl’o-|2p|)

E -
and Ry1, via backward induction. After having iterated g ol | o oo ® ‘ 2 04
to the root of the search tre®,,, will return the optimal £ . \‘ 2 02
valuesy,, and | for the next shot. L-0s > £
-1 -05 0 0.5 1 -0.32 0 0.32

C_ Safety S’]OtS x-dimension [m]

Pool offers another element of strategic gameplay calledE °5 P,
safety shots. After having announced a safety shot, the opg || . . \ s

ponent will continue with the next shot in any case. Looking g

at the search tree, because we now have to consider tw@ 05 iil
different possibilities for each situation, the number ofles -1 -05 0 05 1 -0.32 0 0.32
in the tree grows fromO((n,)") to O((n,)?"). This is the wemension [l
brute-force approach. A more elegant solution first analyse

each situation and then decides dynamically whether owe als
wants to consider a safety shot. In general, there are two
reasons for announcing a safety shot in roénd

1) There is no chance for the robot of executing a legal
stroke after the next stroke. We reduce this situation to
the case the robot can't hit any object ball.

2) The situation after the next shot will be bad for both 0.4
robot and opponent. -0.6

With respect toRy,, and the game logic, not announcing
a safety shot in the first case will result in comitting a foul
the next round, thus letting the opponent place the white bdlig. 7. Planning results for a sample situation. Shown onsdpé current
two rounds ahead whereever he wants. AS his is assumecfien s he siccess tes for 2 geecy spprosch amierg e
be optimal for the opponent, it is always better to announaGge final return functiony 1 is based on. Yellow crosses mark the position
a safety shot. For the second case, announcing a safety sefdhe white ball after each sample stroke. Last, the lowerrimage shows
means expecting a high return in the long run with thgwe expected return for both strokes when planning one statiead
disadvantage of letting intentionally execute the oppotiesn
shot after the next round. Here, the expected re®n; ,, Planning results are shown in figure 7 for a planning
for any subtree starting from depkth-1 without announcing depth of 1 andj = 1. Shown is the effectiveness of the

a safety shot is close to zero and a safety shot may lead REPPosed planner over a greedy approach considering only
better results. the current situation. The two easiest shots have success ra

of 98% and 87% as shown in the topmost image. Thus,

VI. RESULTS a greedy approach will select the shot with 98% success

Measuringiy, oy, pjp| and o), for any player (human rate. However, when simulating sample shots for the two
or robot) is achieved by a set of recorded sample strokgsossibilities as shown in the next four images, the situatio
Regarding the stroke intensity, this can be adjusted amthanges: On the left side, the final positions of the whité bal

o

impulse [Ns]

o
o

o o
[N

y-dimension [m]
)
"\) o
o]

x—dimension [m]



after having executed a set of sample shots are marked with
a yellow cross. The right side displays the search space thr[g]
is used to calculatd?y;. Because the tree depth equals 1,
every R, ; value represents the maximal percentage to pocke t2
a ball in the next round for the player (blue dots) if he posket |3
the object ball without a foul or for the opponent (red dots).
The lowermost image shows the resultify, values for ]
both strokes, indicating that it is advantageous to podiet t
ball with the lower success rate as it has the higher expected]
return.

[6]
[71

VIl. DISCUSSION

As many aspects of pool are already analyzed in detaiI[8
most topics of this paper can be compared in a broader
context. To a large extent our pool simulator model is
founded on well established physical principles. For thé ba [
cushion collision, the resulting equations are extended too]
model the physical effects for the given pool table better.
It is not our intention to model every physical effect agyy)
accurate as possible (e.g. spin), rather we concentratieeon t
dominant, measurable and best understood effects. Digferi[12]
from other pool simulator implementations, this plannegsus 5
numerical integration instead of an analytical solution fo
better modeling of discontinuous friction effects (as show
in Sec. 1IV) and easier model improvement whenever ne
measurements are available.

With respect to the planner presented in this paper, tH&!
discounted return approach in combination with modeled
stroke angle and impulse deviation is promising as paramete7]
tuning is reduced to choose a suitable discount fagtirat
determines the look-ahead horizon of the planning strategyg;
One still existing problem covers end game situations where
one or two players have only few balls left. Because th&9
planner does not depend explicitly on the number of ballgg;
as shown in (22), a potentially desired shift in the playing
strategy cannot be accomodated adequatly. (21]

14]
5]

VIIl. CONCLUSION

This paper presents a framework for a robotic pool playing
system with advanced planning capabilities. Particular em
phasis is on the interactive playing capability with a human
opponent requiring for a tight coupling and real-time capapy;
bility of perception, planning, and stroke execution. Bhsa
a unified approach, we are able to handle tactical decisions
during a pool game including the consideration of different
player strengths. Whereas the current implementationds ti¢3]
to the pool game, the general idea can be extended to various
episodic games in order to include human capabilities intgy

the robot’s tactical considerations.
[25]
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