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Abstract— Providing robots with the ability to move human-
like is one of the recent challenges for researchers who work on
motion planning in human populated environments. Human-
like motions help a human interaction partner to intuitively
grasp the intention of the robot. However, the problem of
validating the degree of human-likeness of a robot motion is
rarely addressed, especially for the forward motion during
navigation. One approach is using similarity measures to
compare the robot trajectories directly with human ones. For
this reason, this paper investigates different methods from
the time series analysis that can be applied to measure the
similarity between trajectories: the average Euclidean distance,
the Dynamic Time Warping distance, and the Longest Common
Subsequence. We aim to identify the measure that performs
the same way as a human who rates the similarity. Thus, the
evaluation of the methods is based on a questionnaire that
examines the human perception of differences between walking
motions. It is concluded that the human similarity perception
is reproduced best by using the Dynamic Time Warping and
comparing the derivatives of the path and velocity profiles
instead of the absolute values.

I. INTRODUCTION

A prerequisite for seamless human-robot interaction is that
a human can easily interpret the intentions of its robotic
partner. The interpretation is assumed to be facilitated if a
robot moves human-like [1]. However, evaluating if motions
are actually human-like or to which extend is still an open
issue. So far, it has mostly been assessed qualitatively:
researchers on human crowd simulations validated if their
methods reproduce characteristic behaviors like line forming
or flocking [2], [3]; others checked for the adherence to social
standards [4] like keeping a comfortable distance, or carried
out a Turing test [5]; the most common approach is to learn
cost functions from human data and to compare generated
paths visibly by plotting them next to human ones [6], [7],
[8]. To our knowledge, a quantitative method is still missing.

We aim to identify a measure for the similarity of tra-
Jjectories such that artificial trajectories of a motion planner
can be compared to human ones. Of our particular interest is
rating the human-likeness of forward walking motions during
navigation, meaning the traveled trajectory while walking.
Two exemplary walking trajectories are shown in Fig. 1. One
difficulty with these trajectories is that they vary in their path
as well as their velocity profile. A suitable measure has to
account for changes in both. This leads to a second challenge:
determining which differences weight more.
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Fig. 1.  Video setup of the questionnaire. Participants had to rate the
difference between forward walking motions. The marker distribution for
the tracking system is shown.

In order to approach the first problem we interpret the
path and velocity profile of a human motion as two distinct
time series. Common methods from the time series analysis
are applied to compare the profiles separately. Specifically,
the average Euclidean distance, the Dynamic Time Warping,
and the Longest Common Subsequence are evaluated. Impor-
tantly, the local derivatives of the profiles are also considered
such that emphasis is put on differences between the shape.

The second problem is addressed by basing the weighting
on the human perception of similarity between motions. A
video questionnaire is set up to assess if and to what extent
humans perceive different motions during walking as being
different. For example, a human may perceive different path
shapes as striking while overlooking velocity changes. The
results are used to adjust the weighting between the path and
velocity comparisons and to evaluate the similarity measures.

The following Sec. II surveys the related works. Sec. III
presents the questionnaire about the human perception of
similarity, followed by descriptions of the considered mea-
sures and their adoptions to an application for human trajec-
tories in Sec. IV. Their performance is evaluated in Sec. V.

II. RELATED WORK

The research on computer animation that creates full-
body motions of humans is highly related. In [9] and [10]
different measures to divide generated motions in two classes
— natural and unnatural — are investigated. The authors let
the measures compete with human assessment to evaluate
the performance. Reitsma et al. [11] suggested to involve
the human perception of motions from the outset in the
development of a similarity measure. They measured the
sensibility of humans to changes in horizontal and vertical
velocity. The findings are used as guidelines for rating
the human-likeness of animated body motions. Following
Reitsma’s idea, Tang et al. [12] asked in a questionnaire
if motions are similar and presented a measure based on its
results and on machine learning.
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Fig. 2. Path profile of the reference trajectory and the nine investigated

motions. Inflection points are drawn in as circles.

However, the method mentioned so far focused primarily
on the binary decision if a motion appears natural or not. As
one of few, Prazak et al. [13] were interested in the perceived
similarity of several motions. Therefore, humans were asked
to select motions that seem to be most similar. Based on the
findings a metric was developed. A analogical approach was
shown by Kriiger et al. [14].

Note that all mentioned works deal with full body motions
such as jumping, dancing or gesturing. These are complex
and require that the motions of all joints and limbs are
analyzed. The ordinary forward walking has received little
attention, although this is the essential motion in order to
compare the human-likeness of the navigation of robotic
platforms. We differ from the related work by concentrating
on forward walking motions. Moreover, we specifically ask
for the level of perceived difference between motions.

I1I. HUMAN MOTION PERCEPTION

A questionnaire assesses which kinds of changes during
a walking motion are noticed pre-eminently by humans. Its
setup and results are presented in the following.

A. Data Processing and Experimental Setup

1) Data recording and processing: Motions were
recorded with a video camera and an optical motion capture
system from Qualisys. For the latter six reflective markers
were put on a person as in Fig. 1 and their 3D positions
over time were recorded at 204 Hz. The mean position of
all markers was calculated at each time step and smoothed
with a Butterworth filter (4th order, 0.01 cutoff frequency')
to remove the torso oscillations.

In this work, a walking motion will be defined by a single
trajectory. Different motions come about by changing the
path shape or the velocity profile of a reference trajectory,
denoted as R. Its path and velocity profiles are shown as
solid black lines in Fig. 2 and 3. It is characterized by its
inflection point at the origin, the slope m ~ 1.5 through the
inflection point, and a mean velocity of 1.1 m/s. In order to
define new trajectories, either the path or velocity profile of
the reference were altered. Note that the trajectories are real

'Note that alternatively we presented a spline based method in [15].
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Fig. 3. Velocity profile of the reference trajectory and the five investigated
motions with altered velocity profiles.

human motions. Thus, path and velocity profile never match
exactly. All in all, nine trajectories were recorded:
« Different path profile, similar velocity profile:
— P;: small difference in the path, inflection point
shifted south-westwards, slope m ~ 0.6.
— Po: medium difference in the path, inflection point
shifted south-westwards, slope m ~ 0.8.
— P3: medium difference in the path, inflection point
shifted northwards, slope m =~ 0.4.
— P4: large difference in the path, inflection point
shifted south-westwards, point m = 0.0.

« Different velocity profile, similar path profile:

V;: larger mean velocity of 1.7 m/s.

Vy: smaller mean velocity of 0.6 m/s.

A;: high acceleration while walking.

Ajs: one stop at inflection point.

Ajs: changing acceleration and deceleration.

2) Experimental Setup and Procedure: An online ques-
tionnaire> was set up wherein the participants had to state for
each motion how different it is in comparison to the reference
trajectory. For this purpose, the participants were each shown
two videos: the first one always showed a person walking the
reference trajectory; the second one showed the same person
walking one of the other recorded motions. The videos could
be restarted if desired. The participants were asked to rate
the perceived difference between the walking motions on a
scale between 1 (small difference) and 11 (big difference).
The sequence of shown motions was randomized.

B. Results

Overall, 77 participants rated all nine motions. The result-
ing boxplots of the ratings are shown in Fig. 4. Although
the boxplots neglect that some persons tend to rate high
while others prefer low values, they already indicate that
trajectory A; — the behavior where the person accelerates
— is perceived as more similar to the reference trajectory
than the other motions. In contrast, trajectory P4 — the large
deviation from the path — is perceived as highly different.
Moreover, the distribution may have unequal variances.

2Software SoSci Survey, https://www.soscisurvey.de/ .
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Fig. 4. Level of perceived difference between the reference trajectory and
the rated motion behavior shown with boxplots.

Thus, the non-parametric Friedman-Test is chosen to check
if any of the motions is rated consistently higher or lower
than the others. It takes within subject data into account and
is suitable if the distribution is unknown. The resulting p-
value is < 0.001 with a 5% significance level, hence, at
least one group differs significantly from another group.

In order to decide which motions are perceived different,
a post hoc analysis was performed. Fig. 5 shows the p-values
of the group comparisons and the boxplots of the differences
of the ratings. Significant differences are marked grey. As as-
sumed, the median rating value for the acceleration trajectory
A is significantly smaller than all other trajectories, see the
eight grey boxplots in Fig. 5 on the left. The post hoc test
also confirmed that the median of the rates for trajectory Py
is higher than the rest. The only exception is trajectory A3
with changing acceleration and deceleration. This trajectory
itself is also perceived as very different to the reference.
Apart from that, the difference of trajectory Ps is perceived
as smaller than the trajectories P, and A,.

To sum up, the participants rated the unusual motion
behaviors like the huge path deviation with high curvature
P4, the stopping motion As, and the changing accelerations
Ajs as highly different to the reference trajectory. The con-
stant acceleration motion .4; was only marginally noticed.
Interestingly, the ratings for the small and medium path
deviations (P;, P2, Ps3) are similar to the one of the velocity
deviations (V;, V»). Hence, a proper similarity measure
for human trajectories has to account equally strong for
changes in both path and velocity. Importantly, also sudden
acceleration changes need to be detected.

IV. SIMILARITY MEASURES FOR HUMAN
LOCOMOTOR TRAJECTORIES

A trajectory recorded with a motion capture system can be
interpreted as a time series. One of the most popular methods
to compare the similarity between two time series are to
compute the average Euclidean distance, the Dynamic Time
Warping or the Longest Common Subsequence. Therefore,
these three approaches are evaluated for their suitability to
rate the difference between trajectories similar as humans
would do. First, the approaches are presented generally for
the application of comparing multivariate time series. After
that we elaborate how to use these methods such that they
account for the specifics of human trajectories.

A. Similarity Measures for Time Series

A time series is denoted as A (or B, respectively) and
consists of a series of N-dimensional observations at]:
A = (a[l],...,a[t],...,a[T,]), with a,[t] being the n-th
dimension of observation a[t] at time step t. T, is the number
of observations. A time series is called univariate if N = 1,
otherwise it is multivariate.

1) Average Euclidean Distance: A simple way to compare
time series is to compute the average Euclidean distance
between the observations. It is defined by:

Ta
Dever(A,B) = 23 d(alil, bfi]), with (1)
dafil blj)) = llafi] ~ bl @

All trajectories are sampled to have equal number of
elements that are equidistant because this measure requires
the time series to have the same amount of elements.

2) Dynamic Time Warping: The Dynamic Time Warping
(DTW) method [16] can compare time series of different
length (T}, and T}). It uses a one-to-many comparison to find
an optimal match for each element with certain restrictions.
A distance matrix D is computed first:

d(a[1], b[1]) d(a[1], b[T}])
D(A,B) = : , 3)
d(a[To], b[1]) d(a[Ta], b[T)))

with D; ; being the cell in the i-th row and the j-th column.
Note that the original DTW is for univariate time series only.
An extended DTW is used to cope with multivariate time
series (e.g., trajectories) by using the Euclidean distance over
all dimensions of the time series as proposed in [17], [18].
Secondly, a warping path W = {ws,...,wg,...,wk}
through the matrix D is sought. It starts at w; = Dy ; and
ends at wy = Dr, 7,. At the same time, it has to minimize

the normalized warping sum:
}, “)

with wy, being an element D; ; and K being a normalizing
factor to compensate warping paths of different length.
Additionally, the warping path has to fulfill the continuity
and monotonicity constraints (compare [19]).

Dynamic programming is used to find the warping path:
based on the distance matrix D, a cumulative matrix D is
computed with the elements

D, ;(A,B) =D;; +min{D;_1;_1,D;_1;,D;;1}. (5

1
l)])’[‘w(x&7 B) = X Inln{

The last cell f)Tme corresponds to the minimum warping
sum in Eq. (4). Its normalized value is the Dynamic Time
Warping distance Dprw.

One problem is that this method admits that a large number
of consecutive elements in one time series are matched with
a single element in the other series. This is prevented by
forcing the warping path to stay within a region around the
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diagonal of matrix D [19]. Elements can only be matched if

they are within § temporal units, D; ; = oo if |¢ — j| > 4.

3) Longest Common Subsequences: Euclidean distance
and DTW punish dissimilar parts because each element of
the time series needs to be matched. Contrarily to that,
identifying the Longest Common Subsequence (LCSS) [20]
focuses on the parts that are similar: it counts the number
of consecutive matches, whereas two elements match if they
are within § temporal and e spacial units of each other.

The LCSS constructs a matching matrix M with dynamic
programming similar to D in (5). The cells are defined by:

0 A or B empty,
1+Mi,1",1 Diy' < € and
Mis(4,B) = ] i <5

max{Mi_Lj, Mi,j—l} otherwise.

(6)
Since the LCSS counts the matches, we define
Mr, 1,(A,B)

D AB)=1—- —w by 77 7

Less(A, B) min{ Ty, Ty} @)

to be the LCSS distance between two time series.

B. Adapting Similarity Measures for Human Trajectories

The presented measures are mostly used to compare
signals that contain the same information, meaning they
have the same unit like frequency or meter. However, for
human trajectories the following adaption is necessary
because the questionnaire revealed that one has to account
for changes in path and velocity, which have different units.

1) Splitting Motions into Position and Velocity Profiles:
We propose to interpret the path and velocity profile of a
human motion as two distinct time series. For example, the

reference motion R can be split into
R = {AR" A%} ®)

A" marks the multivariate time series that contains the posi-
tions of a person over time. It consists of the two dimensional

Level of perceived difference between the reference trajectory and the rated motion behavior.

observations ar [t] = (a1[t], az[t])T that represent the = and
y-position.

The time series AY! contains the forward velocity over
time. It is obtained by calculating the covered distance over
time based on the position observations. Note that A%l is
univariate since only the forward velocity is considered.
Additionally, the velocity is smoothed with a Butterworth
filter (2th order, 0.004 cutoff frequency) to remove the step
oscillations. This is not strictly necessary. However, our
desired application is the performance evaluation of a robot
motion planner by comparing its trajectories to human ones.
Robotic platforms are mostly wheeled, hence, go without the
typical accelerations during step motions.

In the following, AP* and A'®' are defined to be different
types of time series. Let types to differ in the information
they contain: e.g., either path or velocity information.

2) Considering the Derivative: Two further types are
considered: the local derivative of the position and velocity,
respectively. Thus, not only the raw path and velocity profiles
are compared but also their ‘shapes’. Inspired by Keogh and
Pazzani [21], the derivative of the time series is taken in order
to account for differences in the rising and falling trends of
a curve.

Let us denote D; A to be the time series that consists of the
(approximate) derivative of A. For simplicity the following
estimate of the derivative is used [21]:

(aft] —aft —1]) + ((aft + 1] — a[t — 1])/2)

. L)

Dt [a] =

with 1 <t < T,.

The derivative of the time series containing positions is
denoted as D; AP, Note that it is different from the forward
velocity because it is taken for each dimension. D, A"
corresponds to the derivative of the velocity.

In the following, it is differed between four types of time
series. They are named as ‘Pos’, ‘dPos’, ‘Vel’ and ‘dVel’.

3) Combining Position and Velocity Comparison: The
similarity of two motions can be calculated by comparing one
of these four types each. Which type is suited best for human



TABLE I
PERFORMANCE RATING PR OF THE THREE CONSIDERED SIMILARITY
MEASURES DEPENDING ON THE TYPE OF THE COMPARED TIME SERIES.
PR € [0,1], WITH 1 BEING THE BEST POSSIBLE PERFORMANCE.

Type of Deguc Dprw Dicss
time series PR PR PR
Pos 0.68 0.63 0.37
dPos 0.74 0.68 0.63
Vel 0.53 0.79 0.47
dVel 0.53 0.63 0.58

motion will be examined in the next section. Additionally, it
is investigated if it is advisable to sum up the results of the
single comparisons. Four combinations are considered:

o Pos+Vel: D(AP* BP*) + AD(AY!, BY)

o Pos+dVel: D(AP BP*) + A\D(D;A!, D,B")

o dPos+Vel: D(D; AP, D,BP*) + AD(AY!, B¥)

o dPos+dVel: D(D; AP, D;BP*) + AD(D; A", D,B**)
with \ being a constant for weighting the influence of path
and velocity differences.

In order to have an equal weighting for A = 1, the
dimensions of the time series are normalized before the
summation. Particularly, each dimension of the time series
A and B together is normalized separately to zero mean and
unit variance [17].

The suggested adaptations are grounded on the assumption
that humans account for changes in path, velocity and shape.
The next section evaluates for each measure which types
have to be compared and which A has to be used in order to
mimic human motion perception as closely as possible.

V. EVALUATION OF THE SIMILARITY MEASURES

This section evaluates how suitable the presented similar-
ity measures are for comparing human trajectories.

A. Evaluation Approach

We aim to identify the measure that reproduces the hu-
man assessment of the difference between trajectories best.
Therefore, the distances between the nine motions introduced
in Sec. III and the reference is calculated with the three
similarity measures presented in Sec. IV.

Each of the nine motions was recorded ten times since
comparing the reference to only one specific representative
of a motion lacks generalizability. For each trajectory the
distance is calculated and the mean of all ten distances is
considered for the further evaluation.

1) Rating the Performance: The performance rating of
each similarity measure is based on a ‘bonus point system’.
The questionnaire identified the criteria a measure has to
fulfill in order to reproduce the human similarity assessment.
According to the post hoc analysis the similarity ratings were
significantly different in 19 cases. The grey boxplots in Fig. 5
show which comparisons are significant. They also reveal
which motion was perceived as less different to the reference.
Thus, a similarity measure has to fulfill at least these 19

TABLE II
PERFORMANCE RATING PR OF THE THREE CONSIDERED SIMILARITY
MEASURES DEPENDING ON THE TYPE OF THE COMPARED TIME SERIES
AND WEIGHTING .

Type of DgycL Dprw Dycss
time series PR AE PR A E PR A€
PostVel  0.68 [0.0]  0.79 [0.3,3.0] 0.47 [L.1,2.2]
PostdVel 0.68 [0.0,3.0] 0.63 [0.0]  0.53 [1.3,3.0]
dPos+Vel 0.74 [0.0,0.3] 0.74 [0.1,3.0] 0.63 [0.0,0.3]
dPos+dVel 0.84 [1.9,2.0] 0.84 [0.4,1.4] 0.74 [0.6,1.4]

criteria in order to match the human perception. For example,
the distance D(R,.A;) has to be smaller than D(R,P;)
because the boxplot is below zero (compare leftmost boxplot
in Fig. 5). D(R, A1) also needs to be smaller than D(R, V),
D(R,Vs), and so on.

Whenever a similarity measure got the ratio right (smaller
of bigger, respectively) it was credited a bonus point. The
sum of collected bonus points was divided by 19, leading
to a performance rating PR € [0, 1], with 1 being the best
possible performance.

2) Determining the Values for 6, € and \: Using LCSS
required to fix the values of § and e. Their values clearly
depend on the type of data and the application. However,
Vlachos et al. [22] state that choosing J to be more than
20 — 30% of the trajectories length did not yield substantive
improvements for most examined datasets. Thus, ¢ is set to
be 20% of the reference trajectory length. This same 0 is
used to fix the size of the warping window of the DTW.

The value of € is application specific. Best results were
achieved by setting € to a quarter of the average Euclidean
distance in Eq. (1).

Several values for the weighting factor A were examined
by incrementally increasing A from O to 3 with a step size
of 0.1. The values yielding the best results are discussed in
the next section.

B. Results

First, the performance ratings PR are presented for the
case that the path and velocity profiles of the motions as
well as their derivatives are compared separately. Tab. I
summarizes the results. The best performance rating of
PR = 0.79 was achieved by applying the DTW on the
velocity profiles. The Euclidean distance is with its best PR
of 0.74 only slightly lower. In contrast to the DTW, this result
was obtained by comparing the derivative of the position,
hence, the shape of the trajectories. The same applies for the
LCSS that was the worst performing measure with a best
PR of 0.63.

The performance rate could be further enhanced in case
that the separately calculated distances in Tab. I were com-
bined as shown in Sec. IV-B.3. Tab. II lists the performance.
Only the best PR values are shown depending on the
corresponding interval of the weighting parameter A. Clearly,
comparing and combining the derivative of both the path as
well as the velocity profile (dPos+dVel) was most successful:



all measures performed best with these types of time series
inputs. The Euclidean distance and DTW are on par with
PR = 0.84. The results of the DTW seem to be more robust
since its range for ) is obviously larger than for the Euclidean
distance. Again the performance of LCSS is slightly worse
with PR = 0.74. The reason may be that the LCSS with
its binary decision for each element — match or no match
instead of a distance value — is unable to specify the amount
of difference over a certain threshold.

Although Euclidean distance and DTW perform well, non
of the measures satisfied all criteria. We examined which
criteria were violated in which cases. If the derivative of
the velocity was disregarded, the two motions with changing
accelerations A5 (one stop) and Aj (slow and fast) were
assigned very low difference values when compared to the
reference. This is in great contrast to the human rating which
assigns these motions high differences, probably because
they appear as rather unusual. Only the DTW detected
the differences without relying on the derivative of the
velocity, but still performs best by using the combination of
dPos and dVel. However, using dVel is a trade-off because
it assigns the remaining (constant) acceleration trajectory
A; additional distance although human rarely noticed the
constant acceleration. Apart from that all similarity measures
rated the difference of Ps as too high compared to the human
perception. The ratios got slightly better in case the derivative
of the position was used.

As final remark we note that the good results with using
the derivatives suggest by implication that humans rather pay
attention to differences in the shape than in the positions.

VI. CONCLUSIONS

This paper evaluated three similarity measures for times
series with regard to their eligibility for the comparison of
human locomotor trajectories during walking. The evaluation
was based on how far the measures agreed with the human
perception of similarity between motions. On that account,
a video based questionnaire revealed that humans perceive
differences in position and velocity similarly strong. How-
ever, a huge deviation from the path or unnatural acceleration
during the motion were rated as significantly different. These
results could be reproduced best by applying Dynamic Time
Warping on the derivative of the position and velocity profiles
of the motions that are to be compared. The performance of
the Euclidean distance was almost as good. However, none of
the similarity measures reflect the human assessment exactly.

Further studies are needed to gain more insights about
the human similarity assessment of walking motions since
our questionnaire yields merely a rough valuation. Based
on this, it would be advisable to learn a suitable weighting
between position and velocity differences. Future work will
also take further, existing similarity measures into account.
Particularly, Dynamic Motion Primitives [23] hold promises
since they yield a generic framework to represent motions.
Motion segments are compared by regarding the weighting
of the basis functions.
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