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Abstract

The ability of animals to select a limited region of sensory space for scrutiny is an important
factor in dealing with cluttered or complex sensory environments. Such an \attentional" system
in the visual domain is believed to be involved in both the perception of objects and the control of
eye movements in primates. While we can intentionally guide our attention to perform a speci�c
task, it is also re
exively drawn to \salient" features in our sensory input space. Understanding
how high-level task information and low-level stimulus information can combine to control our
sensory processing is of great interest to both neuroscience and engineering. Towards this end,
we have designed and fabricated a one-dimensional, analog VLSI vision chip that models covert
attentional search and tracking. We extend previous analog VLSI work (Morris and DeWeerth,
1997) on delayed inhibition in a winner-take-all network to use extracted image edges as input
to the attentional saliency map and to perform serial search on a particular feature conjunction
(spatial derivative and direction-of-motion). We further demonstrate the ability to modify the
circuit's parameters \on-the-
y" to switch between a search mode and a tracking mode.

1 Introduction

Raw visual information enters our system in a staggeringly high-dimensional space. While the
information needed to perform a particular visual task might be present in this sea of data, it is only
a tiny fraction of what is captured by our retinas. The di�culty lies in identifying and extracting
the information which is relevant to a given situation; this is where biological visual systems excel.

Studies of visual cortex have revealed a �ne-grained parallel architecture transforming the raw
image into multiple feature maps at many scales. Close to the signal transducers (e.g., the photore-
ceptors in the retina or on a chip) parallel processing of sensory information clearly is an e�cient
strategy. In vision, only a small number of elementary features are typically used, making it possi-
ble to provide dedicated processors for each such feature at every location. These simple features,
however, carry only a limited amount of useful information which, in general, is insu�cient for
the needs of higher organisms or complex machinery. Because of the astronomical number of pos-
sible combinations of features, it is practically impossible to provide specialized detectors for each
behaviorally-important stimulus at every position (Tsotsos, 1990). More importantly, the processing
power required to to process all of the available information in parallel far exceeds what the primate
brain could possibly provide, given reasonable size and power constraints.

It has been found, indeed, that access to higher processing areas and visual awareness is severely
limited by a selection process, commonly called \selective attention" (Rensink, O'Regan, & Clark,
1997). Perception in higher animals is found to be a hybrid parallel-sequential process in which the
extraction of elementary features is performed in parallel for all locations of the sensory surface while
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more advanced processing is a sequential process (see, however Palmer & McLean, 1995; Eckstein,
1998, for alternative accounts of human data in terms of parallel processes). Although attention has
been most heavily studied as a spatial e�ect (in the head-based and environment-based coordinate
frames), there is growing support for an object-based attention as well (see Kanwisher & Driver,
1992, for a review of object-based attention).

One of the standard tools for studying attention is visual search. In this psychophysical paradigm,
human observers look through a set of items for a designated target and report whether the target
is or is not present. The observers' reaction time (RT), starting from when the display appears,
typically depends on the visual characteristics of the target and non-targets. One of the striking
results of this paradigm is that RTs in experiments where a target di�ers from the non-targets by
a single feature depend very little on the number of non-targets, while RTs in experiments where
a target is de�ned by a conjunction (i.e., combination) of features is proportional to the number
of non-targets. One of the most in
uential theories put forward to explain these results is the
Feature Integration Theory (Treisman & Gelade, 1980; Treisman, 1988). It explains this di�erence
by proposing that elementary features are processed in parallel by dedicated feature detectors while
conjunctive targets require access to more sophisticated circuitry which is not available in parallel and
therefore requires serial scrutiny. More recent research, however, has called this elegant theory into
question since many conjunction searches were found to be more e�cient than would be predicted
by a strictly serial search (e.g. Cohen, 1993; Dehaene, 1989; Egeth, Virzi, & Garbart, 1984; McLeod,
Driver, & Crip, 1988; Treisman & Sato, 1990; Wolfe, 1992).

While the necessity of an explicit attentional mechanism (separate from the main stream of
information 
ow) is still hotly debated, several neurally-plausible models have been proposed to guide
experimental neuroscience. One in
uential model of stimulus-driven (or \bottom-up") attention
(which we have incorporated into our work) proposes the creation of a map of image saliency which
is followed by a winner-take-all mechanism (Koch and Ullman 1985). The location of the highest
saliency becomes the attended location. While the saliency map is thought to be constructed in
parallel from generic image primitives (e.g., orientation, texture, color-discontinuity), the relative
weighting of feature types is thought to be task-dependent (i.e., \top-down").

Compatible with this model is the phenomenon of \inhibition-of-return" (IOR) (Posner & Cohen,
1984; Rafal, Calabresi, Brennan, & Scioltio, 1989; Shimojo, Tanaka, Hikosaka, & Miyauchi, 1995).
This e�ect results in an increase of RTs for detecting target stimuli at the location of attentive
�xation after approximately 300 msec and lasting up to 1000 msec. The e�ect is particularly strong
once attention has been drawn away from the location. While there is evidence that part of this
\inhibition" is related to object identity (Tipper, Driver, & Weaver, 1991), of greater interest here
is its spatial component. In particular, Kwak and Egeth (1992) showed directly that at least a part
of the inhibition-of-return e�ect is spatially-de�ned, i.e. the return is inhibited at the location of
the last attended item, not to its other properties. Gibson and Egeth (1994) generalized earlier
approaches and showed that both object-based and environment-based descriptions can in
uence
location-based inhibition-of-return.

A straightforward way to take the observed inhibition of return phenomenon into account compu-
tationally and which is consistent with the winner-take-all model consists of applying slowly-decaying
inhibition to the attended location's input once the attention has shifted away. Alternatively, if a
large enough inhibition is applied during attentional �xation, the winner-take-all system can be made
to automatically shift to a new location and leave this slowly-decaying inhibition at the attended
location, generating internal dynamics which scan di�erent locations in order of decreasing saliency.

While some of the models developed in either neurobiology or psychology have been implemented
in simulation studies (Niebur and Koch (1996); Itti, Niebur and Koch (in press); Ahmad, 1992; see
Niebur and Koch, 1998 for recent reviews and references), little hardware development for system-
level simulation has been done so far in this area. To date, most neuromorphic analog VLSI systems,
part of whose goal is to develop real-time hardware models of neural systems at the organism-level,
have remained at the early sensory processing or simple motor control level (Douglas, Mahowald,
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& Mead, 1995). While several examples of re
exive sensorimotor loops have been developed (e.g.
DeWeerth, Nielsen, Mead, & Astrom, 1991; Horiuchi, 1995; Etienne-Cummings, Van der Spiegel,
& Mueller, 1996), little work has been done on how these systems can be integrated to process
information in more complex situations. This report describes one contribution towards this end.

In the hardware modeling domain, Morris and DeWeerth (1997) (see also Wilson, Morris, &
DeWeerth, 1998) designed a one-dimensional analog VLSI chip demonstrating the use of a winner-
take-all circuit with delayed inhibition to produce attentional shifting. This chip also incorporated
the use of fast positive feedback to provide hysteresis, or persistence, in an attentional �xation.
In previous work (Horiuchi et al., 1997), winner-take-all circuits were also used to model visual
attention to track moving edges in the presence of non-targets as well as to extract target motion
for controlling saccadic and smooth pursuit eye movements. While this system incorporated several
forms of positive feedback which improved tracking ability, one problem with this system was the
inability to consider a target on the basis of a conjunction of features or to disengage attention from
an unintended target.

In this paper we describe a one-dimensional chip that uses extracted image features as input
to the saliency map, performs serial search in the image using the winner-take-all mechanism with
delayed inhibition, and determines the location of a conjunction-de�ned target using a detector
applied to the attentionally-gated feature stream. We further demonstrate the ability to modify the
circuit's parameters \on-the-
y" to switch between a search mode and a tracking mode.

2 Architecture

Figure 1 shows a block diagram of the chip's di�erent processing elements and the 
ow of informa-
tion. The �rst stage of processing consists of image transduction and feature extraction. Adaptive
photoreceptor circuits (labeled P in Figure 1) transduce the incoming pattern of light into an array
of voltages. Temporal (TD) and spatial derivatives (SD) are computed from these voltages and are
then used to compute the direction of image motion (DM) at each pixel.

The second stage of processing is the selection of the most salient location in the image. The
spatial derivative alone is used as the input to the saliency map to drive the winner-take-all (WTA)
circuit; thus the WTA selects the \strongest" edge. The activated WTA circuit then gates the local
image features onto the chip's global output lines. In this way, the spatial derivative, the direction-
of-motion, and the pixel position (using the \position-to-voltage," P2V, circuit) at the selected, or
attended, location is known. There are two additional currents on the input to the WTA which
provide the circuit with some interesting dynamics: a fast positive feedback and a delayed negative
feedback. The fast positive feedback serves the role of producing hysteresis in the response to a
particular stimulus. When a pixel is selected by the WTA circuit, a small additional current is
added to its input node, allowing it to win by a larger margin. In order for a di�erent pixel to
become the winner, it must provide an input that is greater than the current winner's input plus
the hysteresis input. This reduces quick oscillations between locations with comparable inputs. In
addition to the positive feedback, the winning status also triggers the growth of an inhibitory current
(IOR) on the input node. This produces a \fatigue" behavior, e�ectively reducing the saliency at
that location once a pixel has been chosen. Once the inhibition is large enough to counteract both
the hysteresis and pre-existing di�erences in inputs, the winning status jumps to the next most
salient location, producing a scanning behavior.

The third stage of processing for conjunction search occurs o�-chip, where feature conjunctions
are detected and, in a feedback loop with the chip, circuit parameters are modi�ed to facilitate
tracking behavior. This will be discussed in subsection 4.1 where we show an example.
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Figure 1: System block diagram of the tracking chip with the inhibition-of-return circuits. P =
adaptive photoreceptor circuit, TD = temporal derivative circuit, SD = spatial derivative circuit,
DM = direction-of-motion circuit, WTA = Winner-Take-All circuit, P2V = position-to-voltage
circuit, IOR = inhibition-of-return circuit. This 2.0 �m, double-poly, CMOS chip contains a one-
dimensional array of 23 pixels. The temporal derivative (TD), the spatial derivative (SD), and the
direction-of-motion (DM) are computed at each location in the image which is focused onto the
chip surface. The SD circuit outputs are used as the input to the saliency map and a \winner"
is chosen by the WTA circuits. A limited amount of positive feedback provides hysteresis which
prevents rapid switching between competing candidate locations. The winning pixel location gates
information about the direction-of-motion, spatial derivative, and the pixel's position onto the global
output lines.

2.1 Circuits

The transduction from light intensity to electrical signals is done with an adaptive photoreceptor
circuit (Delbr�uck and Mead, 1989). This circuit is a high-gain ampli�er in a low-pass, negative-
feedback loop with a photodiode (Figure 2, left). In the feedback loop is a diode-type non-linearity
which creates an intensity-dependent time-constant which spans many orders of magnitude. This
basically acts as an auto-gain control circuit at the pixel level.

The temporal derivative circuit (Figure 2, middle) consists of mirroring the current required to
charge a 1 pF capacitor in an op-amp follower circuit. Using this circuit, the output is split into a
positive and negative signal stream (\on" and \o� " channels). The two voltage references, nsource
and psource are used to amplify the current.

The spatial derivative circuit (Figure 2, middle) uses a source-degenerated transconductance
ampli�er to measure the di�erences in neighboring photoreceptor voltages and this bi-directional
current is then recti�ed into a positive and negative signal stream. Ampli�cation in the spatial
derivative signal is controlled by the SD bias parameter. A copy of the bi-directional spatial derivative
is also created for later use.

The direction-of-motion circuit (Figure 2, right) computes a normalized product of the spatial and
temporal derivatives ( TD�SD

jSDj+jTDj ) which does not give the pure velocity, but the velocity modulated

by the spatial derivative. This type of signal e�ectively reports the sign of the velocity with larger
signals for larger spatial derivatives, producing a type of con�dence measure.

The input to the saliency map is constructed from the absolute-value of the SD current. Due
to the recti�cation in the SD circuit, this is a simple summation of currents, however, there is an
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Figure 2: Circuit diagram for the photoreceptor (P), spatial derivative (SD), temporal derivative
(TD), and direction-of-motion (DM) circuits.

Figure 3: Circuit diagram for the SD balance, winner-take-all (WTA), inhibition-of-return (IOR),
and position-to-voltage (P2V) circuits.

additional stage (SD balance circuit) of current steering where we provide the ability to bias the
saliency map either towards positive or negative spatial derivatives (Figure 3, left). This balance is
controlled by the signals vref (usually �xed) and SD ctrl. This circuit can be used to pre-bias the
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chip in anticipation of particular target, or it can be used in a \feature-hysteresis" mode where a
target is �rst chosen with no bias, then the bias is set to match whichever type of target was chosen.

The winner-take-all circuit (Lazzaro et al., 1989) is a two-transistor (per pixel) circuit that allows
input currents to compete via a common voltage reference line that generates inhibition equal to
the maximum input current. The \winning" pixel's input node voltage is non-zero and the global
bias current generated by WTA bias is used to generate a feedback current. This feedback gain is
controlled by the voltage hys src. This current is copied to the winning pixel's neighbors to increase
the likelihood of \attention" shifting locally (upon movement of the image) instead of jumping across
the array.

The inhibition-of-return circuit (Figure 3, right) is activated by a copy of the feedback current
which is limited by the bias voltage IOR charge. This current linearly charges a 260 fF capacitor
which in turn generates an exponentially-rising inhibitory current on the input node. While the leak
transistor controlled by IOR leak sets the decay rate of the inhibition, the combination of IOR
leak and IOR charge set the onset rate of the inhibition.

The P2V circuit (Figure 3, right) is also activated by the feedback current. This circuit basically
functions as a voltage follower, driving the local WTA-position-reference voltage onto the global line
(DeWeerth, 1992). This reference voltage is provided by a polysilicon resistor ladder set to di�erent
voltages on the two ends of the array.

The WTA input node voltage is also used to generate a logical gating signal (not shown) to gate
both the SD output current and the DM output current onto global lines. Also not shown are the
various circuits used to monitor internal signals.

This chip was fabricated using the Orbit 2.0 �m double-poly CMOS process on a 2220 x 2220
�m

2 die. The array consists of 23 pixels. Each pixel strip is 64 �m wide by 1370 �m long. This
length includes all of the processing described above, as well as the necessary circuitry for accessing
intermediate signals for both monitoring and circuit tuning.

3 Performance

To demonstrate the operation of the chip, we focus both static and dynamic test images onto the
surface of the chip and measure the various output signals. Our stimuli consist of medium-contrast,
black-and-white patterns printed onto paper mounted on a rotating mechanism to produce either a
static picture or a one-dimensional \movie."

3.1 Static Images

Figure 4 shows outputs from the chip for a static scene consisting of two dark bars. Each bar
produces two regions of activity on the spatial derivative map (Figure 4, left), one from the light-
to-dark transition on the left edge and one from the dark-to-light transition on the right edge. The
four bumps of activity will be the dominant features of the saliency map that drive the WTA circuit.

The larger panel on the right shows the position of the WTA-selected pixel and the SD current
at that position as a function of time. As described above, the IOR circuits produce inhibition that
cause the WTA circuits to select a new pixel after a short time. In this example, the rate of decay for
the IOR circuit (once the WTA has selected another pixel) is high so that the strong input locations
recover after a short time and only the eight most salient locations are visited. By creating a scatter
plot of spatial derivative vs. WTA position (Figure 5), a selective reconstruction of the original
saliency map can be made. Only the attended pixel locations, however, will be \painted" in.
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Figure 4: Winner-take-all trajectories for a static image of two dark bars. The image of two dark
bars is focused onto the photoreceptor array (A) which produces four bumps of activity in the
spatial derivative circuits (B). (Note that internally, the chip preserves the polarity of the spatial
derivative, but only reports an unsigned SD signal for scan out). The winner-take-all circuits select
pixels sequentially as the delayed, negative-feedback inhibition keeps the winning-status unstable.
In panel (c), the upper trace shows the position of the winning pixel as a function of time and the
lower trace shows the spatial derivative at the selected pixel. The parameters have been chosen for
this particular image such that only about eight locations are ever visited.

Figure 5: Scatter plot of the winning pixel location and its spatial derivative when selected by the
WTA mechanism.

4 Dynamic Stimuli

Figure 6 shows the scatter plots of four di�erent dynamic stimulus conditions which were designed
to stimulate the four quadrants of the SD-motion stimulus space. The stimuli were single edges
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Figure 6: Feature conjunction display (SD vs. direction). Four di�erent stimulus conditions are
shown: a white-black edge moving left and right (top two panels), and a black-white edge moving
left and right (bottom two panels). The vertical axis in all plots is the spatial derivative and the
horizontal axis in all plots is the direction-of-motion. The chip selects the one strong edge in each
stimulus condition and reports its characteristics. The four stimulus conditions produce outputs in
the four di�erent quadrants. From these outputs it is possible to make a \quadrant detector" to
signal the existence of a target with the desired feature conjunction.

(positive and negative derivative) that were slowly moved either leftward or rightward. These single
targets were tracked by the WTA circuit and their feature characteristics were reported o�-chip.

Next, a stimulus was used which consists of multiple targets that lie in all four quadrants of
the SD-direction stimulus space (Figure 7(A)). With the inhibition-of-return circuits operating, the
WTA circuit shifts from one pixel to another, reporting the feature characteristics for each pixel
visited. By constructing an o�-chip quadrant detector (two zero-crossing detectors and a logical
AND) we can detect when the WTA has selected a particular target of interest. In this example,
we have chosen to detect the pixels of positive derivative and leftward moving edges. Figure 7(B)
shows the output of the WTA position and the quadrant detector as a function of time.

Figure 8 shows the spatial derivative and direction-of-motion outputs for the same experiment
as in Figure 7. By producing the scatter plot of spatial derivative vs. direction, we see that the
WTA circuit has visited all four quadrants (i.e. all four moving targets).

4.1 Switching From Search to Tracking

Along with the ability to search for a predetermined target, it is also important to have the con-
trol to stop and scrutinize, or track, a target. While the inhibition-of-return acts as a destabilizing
in
uence, producing repetitive shifts, the position-based hysteresis current and the feature-based hys-
teresis system both act to stabilize the WTA, producing tracking behavior. The modes of searching
(destabilized WTA) and tracking (stabilized WTA) have di�erent optimal parameter settings.

To demonstrate the circuit's ability to switch between these two important behavioral modes of
an attentional system, a small external circuit was constructed to use the quadrant detector signal
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Figure 7: Example of a SD-direction conjunction search using the inhibition-of-return. In this
example, a moving stimulus which contains stimuli that �t into all four quadrants (of the SD-
direction space) is used (A). An external detector circuit was constructed to indicate the presence
of a positive spatial derivative edge moving to the right. Panel (B) shows the position of the WTA-
selected pixel (upper trace) and the output of the external quadrant detector circuit (lower trace) as
a function of time. Using the quadrant-detector circuit output, it is possible to disable the inhibitory
circuits and shift into a tracking-only mode.

Figure 8: From the same experiment as in Figure 7, the spatial derivative and motion outputs are
considered. (A) Spatial derivative (upper trace) and direction-of-motion (lower trace) as a function
of time. (B) Scatter plot of the spatial derivative vs. the direction-of-motion. This plot shows that
all four possible conjunction targets were visited

to trigger a change in three user-de�nable parameters. In this demonstration, as in the previous
subsection, a stimulus is presented that consists of four possible feature-conjunction targets. The
task of the circuit is to locate and then track the target which consists of the conjunction of positive
spatial derivative and leftward motion.

The three parameters that were modi�ed when switching from the search mode to tracking mode
were: 1) the inhibitory onset rate was changed to zero to prevent inhibition from building up, 2) the
WTA-based positive feedback to both the local pixel and its two nearest neighbors was increased
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Figure 9: (A) The stimulus used for the search experiment contains four edges which have di�erent
spatial derivatives) and di�erent directions of motion. This is the same stimulus as in Figure 7.
(B) The WTA position and the quadrant detector output are plotted as a function of time. In
this experiment, the quadrant detector output is used to switch the parameters on the chip from
values that promote switching behavior, as in Figure 7, to those that promote tracking behavior. In
this particular example, the target edge (positive spatial derivative and leftward motion) is initially
being tracked, but as the edge leaves the array and a new group of edges are available, the system
begins to search the di�erent possible edges until the target edge is found and tracking is resumed.

to improve tracking, and 3) the feature-based hysteresis was activated to strongly bias the saliency
map to the type of edge being tracked. The e�ect of these parameter changes are visible in Figure 9
where the scanning behavior gives way to tracking when the quadrant detector signal is activated.
When the tracked target leaves the �eld of view, the chip begins scanning di�erent edges until the
target edge is found again.

It should be noted that, when taking the data shown in Figure 8, we chose to make the chip �nd
the correct edge by searching all possible edges. Alternatively, it would have been possible to pre-bias
the saliency map to only look for one type of edge and scan for the correct direction-of-motion.

It is relatively simple to tune the parameters for a particular behavior once an image has been
selected, such as number of targets visited, the duration of an attentional �xation, or speed of
shifting, however, these characteristics are not independently controlled. The shifting behavior
of the attentional system will depend critically on the mean input strengths, the relative input
strengths, the pattern of input movement, the level of hysteresis, and the rate of onset and decay of
the inhibition-of-return circuit.

4.2 Power Consumption

The fabricated chip draws approximately 1.08 mA at 5 volts, (or 5.4 mW) which includes the power to
the padframe. The image processing and winner-take-all selection circuits alone draw approximately
120 �A at 5 volts (or 600 �W).
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5 Summary and Considerations for the Future

In this paper we have described a one-dimensional analog VLSI-based model of covert atten-
tional search using an augmented winner-take-all (WTA) circuit and WTA-gated features to detect
conjunction-de�ned targets. This work combines and extends the work of Horiuchi et al. (1997) and
Morris and DeWeerth (1997) to produce a single chip capable of operating on visual edges as the
input saliency map as well as reporting the position, the polarity, and the direction-of-motion of the
selected edge.

From a neural modeling perspective there are a number of shortcomings. The �rst and most
obvious is the pixel-based nature of the WTA circuit. Most objects in our world occupy regions
of space that vary dramatically in both size and shape, and comprise many di�erent features. To
address part of this issue, Morris et al. (1998) demonstrated a switch-based coupling of adjacent
pixels at the WTA input node to create \super-pixels" which are then selected as a region. Another
limitation of this model is the assignment of the inhibition-of-return function to the retinal coordinate
frame. If the attentional system were used to drive an eye movement, the inhibition associated with
di�erent objects in the image would be shifted o� the correct locations and inappropriately placed
onto new locations. It may be quite possible, however, that this problem is only an apparent one since
human psychophysics has found little or no integration across saccades (Bridgeman, Hendry, & Stark,
1975; McConkie & Zola, 1979; Irwin, Yantis, & Jonides, 1983; Irwin, 1991; Grimes, 1996; Irwin,
1996). This would remove any di�culty with di�erent coordinate frames since only information
from the presently used frame is required. Along the same lines, more extreme results have been
recently obtained indicating that visual search may not rely on any stored representation of the
visual input (Horowitz & Wolfe, 1998). It remains to be seen, however, how these data relate to the
vast body of literature showing interactions between subsequent attentional �xations in the form of
inhibition-of-return. Another more subtle di�culty in relating this model to neurobiological function
is the extreme non-linearity of the winner-take-all concept. There are a few suggestions that we may
e�ectively be able to split our attention into more than a single region across both space and sensory
modality (Pashler, 1987; Pylyshyn & Storm, 1988; Wolfe, Cave, & Franzel, 1989). Although this is
clearly a minority view at this time, it deserves to be kept in mind.

From an engineering perspective, a higher-resolution, two-dimensional system is clearly desirable
for a larger �eld of view as well as for the use of two-dimensional features (e.g., orientation) on the
input. Although this particular design was demonstrated in one-dimensions, scaling the winner-
take-all circuit and its gating circuits up to multiple dimensions should not dramatically increase
the design, size, or operation of the circuits. While intended as a model for biological attentional
search, this circuit and variants of it are well suited to controlled industrial environments where the
detection of faults in a manufacturing process often needs to be small, cheap, and fast.
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