
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1999 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

The JavaSeal Mobile Agent Kernel

Vitek, Jan; Bryce, Ciaran

How to cite

VITEK, Jan, BRYCE, Ciaran. The JavaSeal Mobile Agent Kernel. In: Trusted objects = Objets de

confiance. Genève : Centre universitaire d’informatique, 1999. p. 89–113.

This publication URL: https://archive-ouverte.unige.ch//unige:155918

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:155918
https://creativecommons.org/licenses/by/4.0

The JavaSeal Mobile Agent Kernel
Jan Vitek

Ciaran Bryce

Abstract
JavaSeal is a secure mobile agent kernel that provides a small and coherent set of abstrac-
tions for constructing agent applications. This paper describes the design of these abstrac-
tions and their implementation. We address the limitations of the Java security model and
present a medium-sized e-commerce application that runs over JavaSeal.

1 Introduction

Mobile agent systems come in all shapes and sizes. In fact, there is little consensus over the
services that an agent system should offer, or on the exact nature of mobile agents for that
matter. Recent standardization efforts notwithstanding [28, 13], most agent systems are hardly
comparable and even less compatible. While variety fosters new ideas, most projects end up
having to solve similar problems and leave some of the same key questions unanswered:

• Structure: What software structuring principles are appropriate for mobile agents? The
distinction between mobile and immobile software components must be clarified. Fur-
ther, which services should be provided in the agent platform and which can be coded at
user-level?

• Security: Execution guarantees are essential. There is a wide consensus on the need
for security, but few agent systems provide clear statements of their meaning of security.
Even less provide strong security guarantees.

This paperreports on our experience in implementing and using a Java-based agent kernel. The
JavaSeal system has been designed to support a minimal set of abstractions needed for building
mobile qgent applications. We chose to focus on providing a clear way to structure mobile
programs and to enforce specific security constraints. JavaSeal abstractions can be categorized
into three groups:

I. Software units called seals which are nested, encapsulated, programs. Seals are used for
mobile agents and for local services.

2. State capture mechanisms and a custom archive format for seals. This is used for wrap-
ping up seals for mobility and persistence.

3. Secure communication primitives for seal communication.

*To appear in the Proceedings of the Joint Symposium ASAIMA'99, First International Symposium on Agent
Systems and Applications (ASA'99) and Third International Symposium on Mobile Agents (MA'99) Palm
Springs, California, October 3 - 6, 1999.

90 The JavaSeal Mobile Agent Kernel

1bis kernel approach is visible in the implementation of services, e.g., the network interface
or the graphical user interface, which are user-level modules that can be loaded dynamically
as seals. The advantage of this approach is that with a simple programming model, it is easier
to reason about the properties of mobile programs. In faci, a related project is investigating
formal proof techniques for agent systems [35, 34). This project has defined a formal semantics
of JavaSeal as a process calculus and has been able to validate some security properties, for
example confinement by formal proofs [34, 31].

We begin by clarifying our use of terminology. A mobile agent platfonn is an execution en-
vironment for mobile agents. A platform is located on a single network node, several platforms
connected by a communication infrastructure form a mobile agent network. A mobile agent is
a program, in our case a multi-threaded program, that executes on a platform and may migrate
to another platform in the agent system. Migration means that the data and code of the agent
will be available to continue its computation on the new platform.

A JavaSeal kernel provides the core logic for an agent platform. We asswne a medium-
grained agent model in which every network node may host several thousand concurrently
executing agents. Furthermore, ageols are allowed to interact., but these interactions must be
subject to a security policy.

In JavaSeal, the agents of a platform are organised in a hierarchy. The kernel is at the root
of this hierarchy. Each agent can have agents nested inside of it This hierarchy is important
for aggregation, that is, to build a composite agent out of other existing agents. Aggregation
is a feature of mobile agent networks because often a computation that is moved needs to
have part of its environment moved with it, e.g., open file descriptors, sockets for services. In
JavaSeal, this is ac.hieved by representing an environment as a seal, and the computations of
that environment as children seals within this seal.

JavaSeal is written in Java as a package and runs over a single virtual machine. This design
choice favours portability and means that services can be shared without having to provoke
context switches. Multiple agents can concurrently execute on a JavaSeal kernel. Agents are
written in a restricted version of Java; they are forbidden from using several primitives and
library methods. Security in JavaSeal is in fact enforced solely using language mechanisms.
This security model is derived from Java's security model though had to overcome several
weaknesses of the latter.

Overview: This paper is structured as follows. Section 2 presents the security model of
JavaSeal and Section 3 describes its main features. Section 4 discusses the limitations of the
Java security architecture. Section 5 details the implementation of JavaSeal. Section 6 presents
Hyper News, a medium-sized (30 OOO line) mobile agent application for selling short-lived dig-
ital documents on the Internet that runs on JavaSeal. Section 7 compares JavaSeal with other
leading agent platforms., and Section 8 concludes with prospects for future enhancements.

J. Vitek and C. Bryce 91

2 The Meaning of Security

Security is frequently mentioned in the agent literature, yet it is often difficult to know what
security guarantees ar!! furnished by a particular system. We differentiate between security
measures against exogenous threats - attacks that occur from outside of the platform - and
security measures against endogenus threats for policing the execution of a single platform.
Typically exogenous threats are addressed with cryptography and digital signatures [23, 18]
which protect the contents of information while on the network and authenticate users. In this
paper, we focus on security within a single platform. Section 2.1 reviews the security threats
that are relevant in an agent system. Section 2.2 introduces some concepts. Finally Section 2.3
enumerates the security guarantees provided in JavaSeal.

2.1 Threat Model

A mobile agent system differs from a traditional computer system in that it allows untrusted
agent programs to execute locally, use local resources and services, and to interact with other
co-located agent programs. The threats, on the other hand, are not different from any computer
system:

• Unauthorized disclosure: Data is read without proper authorization.

• Unauthorized modification: Data is subvertly modified or destroyed.

• Denial of service: Inordinate consumption of shared resources, preventing other pro-
grams from progressing.

• Trojan horses: Malicious code is mistakenly executed under the authority of a trusted
user.

Each of the above attacks can be mounted by an agent against the agent platform or other co-
located agents, in which case we call the agent a malicious agent, or by the platform against the
agents it hosts, in which case we call the platform a malicious host._

When a mobile agent arrives, the platform typically must:

1. Verify that the agent came from the site that it claims to have come from.

2. Ensure that the agent has not been tampered with from the time it was sent.

3. Verify that the agent program is well formed~ and that it possesses the necessary creden-
tials to execute on the platform.

4. Grant the agent access to local resources and services.

5. Grant local resources and services access to the agent.

6. Allow execution while enforcing the local security policy. This policy assures that the
agent and services can only access one another according to the access rights granted to
each.

92 The JavaSeal Mobile Agent Kernel

PRINCIPAL 1 PRINCIPAL2

~·- ·-·-· -.- - · -·- ··! -~· - · -·-·pq;;ep;a- · i-'N>1Jf"R'4 QOMMI 1 I

~ Coflb: op1 : ~ ; f check I

<Pl,opl,02>

Figure 1: A system's security architecture. The reference monitor intercepts each access to an object
from a remote domain, and queries the security policy.

The security architecture of an agent platform must cover all of these aspects. Our kernel
approach is to focus on the points 4, 5 and 6 as they are essential for providing execution
guarantees. Points l, 2 and 3 counter exogenous threats and can he implemented hy user-level
services in JavaSeal.

2.2 Security Terminology

Before proceeding, we review essential security terminology. Principals are the entities of a
system whose actions must be controlled. Principals typically represent users, though can also
correspond to sites or services. Principals conswne resources and invoke operations on objects.
It is the role of th.e security policy to determine ifa principal may consume a resource or invoke
an operation on an object A protection domain is a context in which a principal executes.
It contains objects "owned" by that principal and for which the security policy does not need
to be checked. Only operations that cross domains need be mediated by the security policy.
Figure l illustrates these concepts. The tenn reference monitor is used for that component of
a system that verifies the legality of each operation by consulting the security policy [11). A
reference monitor must satisfy two properties: total mediation - it intercepts all operations,
and encapsulation - it is protected from tampering.

A real system contains a variety of channels over which protection domains can exchange
information [24]. Legitimate channels are mechanisms included in a system precisely as a.
means of communication, e.g. , sockets, object references. Access control mechanisms regulate
the use of legitimate channels. Storage channels are elements of the environment that can be
read or written by several programs and which can therefore be used to exchange information
between these programs. Examples of such channels include the shared buffers and kernel
variables. The last category is that of covert channels which are means of communication
that abuse some characteristic of the system to exchange data among programs. For instance, a
value can be communicated by modulating some visible system characteristic such as the disk
access rate. Covert channels are hard to block, and many security architectures are satisfied
if the bandwidth of covert communication is sufficiently low. Of course, if the secret is a
password, even a low-bandwidth channel is unacceptable.

J. Vitek and C. Bryce 93

2.3 JavaSeal Security

The goal of JavaSeal is to ensure that each agent executes in a protection domain of its own. All
actions that affect other protection domains - either other agents or the kernel itself - must be
controlled by the agent reference monitor (ARM). The JavaSeal kernel is an implementation of
an ARM, and thus must be encapsulated from attacks by agents. The ARM verifies the legality
of the following operations with respect to the security policy in place:

I. Creation of a protection domain.

2. Creation of a thread.

3. Communication across domain boundaries.

4. Loading of code into a protection domain.

5. Termination of a protection domain.

These operations represent all of the cross-domain operations allowed in JavaSea1. Control-
ling these operations is needed to satisfy the first requirement of a reference monitor (total
mediation). The second requirement (encapsulation) is obtained through an assortment of pro-
gramming language protection mechanisms. In JavaSeal, a protection domain is represented by
the seal abstraction.

Aspects (I), (2) and (5) are hardwired into the JavaSeal kernel; each protection domain
bas a direct parent (see Section 3) that creates the domain and only this may tenninate the
child domain. Further, threads may only be created within one protection domain and cannot
cross protection domain boundaries. A JavaSeaJ kernel has a configuration that describes which
library classes may be used by services. In effect, eaob seal bas its directives, which is a list
of classes that the seal is allowed to Load (4). Finally, inter-protection domain communications
(3) can be controlled by user-defined supervisors (in our hierarchical model: parent agents). It
is possible for a parent seal to allow or disallow its children access to individual services, and
even to control how many times an agent may invoke an interface.

We now describe informally three security properties that an implementation of JavaSeal
must have. Note that these properqes must hold for all programs and all services.

• Confinement: Intuitively, confinement means that if the policy specifies that an agent
does not have any open communication channels with other parts of the system, then that
no matter what this agent does, its actions cannot affect any other part of the system. In
essence, a confined agent is running behind a firewall isolated from the rest of the system.
A formal definition of this concept is given in [34].

• Mediation: Mediation means that it is possible to interpose security code between an
untrusted agent and any service available in the environment. Mediation is one step up
from confinement. While confinement simply says that the ARM can close all channels,
mediation means that it is possible to intercept every message going in and out of an
agent.

94 The JavaSeal Mobile Agent Kernel

• Faithfulness: This means that code executed in a protection domain 'under the authority
of a principal actually belongs to that protection domain. This implies that JavaSeal pre-
vents agents from somehow tricking other agents into executing foreign (Trojan Horse)
code.

The guarantees are enforced entirely by means of Java's programming language based pro-
tection mechanisms. The interesting point is that the default security model of Java is not
sufficient to enforce any of them. as we discuss in Section 4. JavaSeal security addresses stan-
dard and storage channels; covert channels are not specifically dealt with.

3 Seals - A Basis for Agents

Agents are autonomous programs that can move around a network while they execute. In
JavaSeal, they are represented by software abstractions called seals which are hierarchically-
strui.:lun:J ~UC11Jlliulated computations. Mobility is implemented by capturing the execution
state of a seal and shipping it to another JavaSeal kernel.

We refer to a JavaSeal kernel instance as a root seal, one of which runs on each network
node. An agent system is thus a group of root seals connected by a communication infrastruc-
ture. We now present a high-level overview of the JavaSeal system and discuss how seals can
be used to structure mobile agent applications. Section S describes the actual implementation.

3.1 Seal Hierarchies

A seal is a self-contained program with its own data, code and execution threads, and which
implements an agent protection domain. A seal may also contain a number of nested seals,
called direct children. At the same time, every seal is enclosed within some other seal (or
root seal) referred to as its direct parent. The set of children and parents of a seal refer to the
transitive closure of direct parents and sets of direct children respectively.

The key feature of seals is the strict encapsulation that is enforced by the kernel at seal
boundaries. Sharing of objects, of resources or of memory locations between seals is disal-
lowed. Instead, every object and thread in a seal program belongs to a single seal. This clean
separation makes accounting of resource usage easier and helps to enforce systematic security
policies.

Seals communicate solely through messages (see 3.2). Channel communication is one-to-
one and hierarchical: A seal can only communicate with its direct parent and children. Mes-
sages to distant seals, such as service requests, are encoded as a sequence of neighborly message
exchanges. Thus if the service provider is at the root of the hierarchy, every seal between the
client and the root must have a policy that allows this type of requests. This ensures that the
services that an agent may use are either services that its direct parent implements or services
available in a higher-level seal and to which the parents grants access.

Only the key services (seal creation and destruction, communication, memory management,
scheduling and state capture) are under the control of the root seal. Services such as migration,

J. Vitek and C. Bryce 95

network access and even user interface are implemented at user-level by service seals. Service
seals are special in that they are not mobile. They can only be loaded directly from disk by the
root seal. Service seals have fewer security constraints imposed on them for this reason; for
instance, they may use a larger number of library classes compared with standard mobile user
seals. A similar dichotomy between untrusted mobile components and trusted local services is
found in PLAN [20] and Mole [4].

Thus a seal controls its children in two ways. First, it is able to stop and start its children
seals. Second, it intercepts messages sent from its children to other seals in its environment,
and imposes security constraints on these messages. In contrast, a seal is not able to peek and
poke the internals of any of its children seals, or of any other seal.

The design bas been inspired by the Fluke micro-kernel [14] and work oo interposition in
opera.ting systems [12, 15, 16]. We have not addressed interposition oflow-level resources such
as memory and the scheduler as this requires modifications to the virtual machine (3).

Two types of agents: In JavaSeal there are two categories of agents. The leaves of the seal hi-
erarchy, which are called complets, are "traditional" mobile agents, while intermediate levels,
called envlets, are mobile environments. The role of envlets is to interpose between requests
of a complet (or nested envlet) and its environment Thus for instance, they can play the role
of adaptors when the services on the current platfoIID do not match an agent's expectation (or
act as the facilitators of [21)). Envlets can also play the role of a security policy. Figure 2
shows a JavaSeal platform running some complet named CompA. The requests that the com-
plet is allowed to make to services such as the NetMgr seal are filtered by the Sandbox. envlet.
Depending on the current policy, the Sandbox seal may choose to disallow all network commu-
nication or only communication to a restricted set of sites. Service seals are typically stru.ctured
as complets, but for more complex services nothing precludes using envlets.

Envlets are mobile just as any other seal. They can, for example, be used to make mobility

Gui Seal

NetMgr Seal

NameServ Seal

Figure 2: A seal hierarchy. The root seal runs three service complets and two envlets. Sandbox hosts
untrusted agents while Trustedbox hosts friendly ones.

96 The JavaSea/ Mobile Agent Kernel

somewhat transparent. In Figure 2 the user interface is maintained by a local service seal. This
means that when CompA moves its binding with its user interface are tom down. The Portable
Gui envlet wrapped aroiind CompA interposes on UI requests to keep track of the state of the
user interface and rebuilds it after each move. In this scenario the envletmoves with its complet.
The HyperNews application presents good examples of both types of agents (see Section 6).

From a security standpoint, malicious envlets are similar to malicious hosts in that they can
control all communications going in and out of a subseal as well as stop a subseal. Thus even
on a trusted machine and a trusted JavaSeal kernel there may be a malicious host problem. The
difference is that JavaSeal does not allow an envlet to peek and poke in its children's memory,
nor learn. any secrets that they are not ready to divulge on their channel interface.

3.2 Communication

Synchronous message passing via named channels is the only inter-agent communication mech-
anism of the JavaSeal kernel. Channels are used for <'.Ommunication between neighbor seals:
a parent may send a message to one of its children or a child may send a message to its par-
ent. Ch.ann.els are named; thus it is possible to have different channels for different purposes.
Furthermore, the usage of channels is regulated by a separate access control mechanism called
portals.

Channels are synchronous. The sender blocks until the receiver accepts a message. In order
to have multiple outstanding requests a seal must create multiple threads. Values exchanged
over channels are transmitted by copy (in, so-called, capsule objects described in Section 5)
to avoid introducing sharing and thus avoids covert communication channels. Further security
considerations are detailed in Section 5 when the implementation of JavaSeal is discussed.

The primitives for channel based communication are send, receive and open, to, re-
spectively, send a message on a channel, receive a message on a channel and open a portal
Creation and destruction of channels is implicit. As an example consider seal CompA sending
a message to its parent on a channel named netreq:

send(netreq , parent , message)

The sender blocks until the parent accepts the message, which is written:

receive(netreq , self, val) ;

Object val is bound to a copy of message. But, for the communication to fire the parent
must have first opened a portal allowing CompA to use netreq:

Portal.open(netreq , CompA , 1) ;

This allows one use ofnetreq. Portals can be opened for any number of uses (including un-
bounded). Separating portals from communication allows seal designers to localize the security

J. Vitek and C. Bryce 97

code in an access control module independent from the main logic, and thus eases the task of
verifying security properties.

The choice of synchronous communication is somew'bat controversial as most other systems
offer asynchronous communication mechanisms [8, 2, 25]. 'The advantages of synchronous
communication are that (1) messages from the same thread are causally ordered, (2) acknowl-
edgments of message reception are not needed, and (3) the number of outstanding request is
.bounded by the number of threads in a seal. 1bis last property makes it easier to prevent denial
of service attacks that flood a server with requests. It is not possible to flood an agent with re-
quests and since JavaSeal limits the number of threads in any given seal (in practice the number
of threads in a seal is bound by a kernel imposed limit), and there is an upper bound on the
number of outstanding requests.

3.3 State Capture

The state capture mechanism of JavaSeal creates a machine independent portable representa-
tion of a seal. The procedure recursively traverses the seal hierarchy rooted at the target seal,
stops the threads in each seal and pickles the data and code of each one into a seal archive
format (SAF) object. 1bis format is suitable for storage on disk, or network transfer. The latter
is used to implement mobility. An archive can be 11sed as a basis to _create a seal. The creation
procedure first verifies the validity of the archive with extended bytecode verification (see Sec-
tion 5) and then unpickles the topmost seal in the archive. It is then up to that seal to decide if
its children should be awakened.

With the exception of kernel code, all the code used by a seal is included in its SAF. This
means that our archives are potentially quite large, definitely larger than those of agent systems
that do loading on demand. Our motivations for this choice are the following: (1) We cannot
rely on the connectivity of an agent's source. If an agent's source site is a portable PC, then the
site might not be connected to the Internet when an agent begins to execute at its destination
and discovers that a class that it needs is not present; (2) Versioning support in Java is weak, we
cannot guarantee faithfulness if, for example, two classes are released with the same interface
and version number (a common problem). The disadvantage is that the size of SAF files is
larger and thus their transfer costs more. JavaSeal uses a custom code compressor called Jazz
[6] (part of the JavaSeal project) which is able to reduce Java bytecode files to 24% of their
original size. Further reduction can be achieved by not transmitting code if it is certain that the
receiving site already has that class. This can be integrated in JavaSeal as a user-level service
inNetMgr.

The interface for archiving and loading seals consists of two operations: wrap which takes
the name of a subseal and returns an archive and unwrap which takes an archive object and a
subseal name and creates a new subseal.

safObj = wrap{ subsealName l

unwrap(safObj , subsealName

98 The JavaSeal Mobile Agent Kernel

These operations are consistent with the hierarchical control of the seal model. The kernel
ensures that only the direct parent of a seal can wrap it. Similarly, new seals are always rooted
in the currently executing seal. A single thread is started by default in each unwrapped seal.

4 Limitations of Java Security Model

The JavaSeal platfonn has strong security requirements since its goal is to enforce a strong
separation between seals. Since JavaSeal is desigtted to execute Java agents, we exploit Java
language verification mechanisms to enforce security .. We have considered the Java security
architecture [3 7, 17] for JavaSeal, but after a detailed investigation, we concluded that it is not
strong enough to guarantee the security properties of confinement, mediation and faithfulness
that we mentioned. Furthermore, we have identified some serious denial of service attacks that
can jeopardize the entire JavaSeal platform.

Java treats classes as protection domains and uses Securi tyManager objects to ensure
that a class from one domain can only call methods that it has been authorized to invoke.
Access modifiers are a second form of protection. They are used to protect sensitive
fields of the JVM. For instance, a user cannot have a system class replaced by subtyping it
since these classes are declared with (the access modifier) final. Finally, bytecode verifica-
tion guarantees that programs are well formed and will not break language safety. In addition
to this, applet programs from different origins are separated from one another by a form of
namespace protection domains. That is, all classes of each applet are copied and considered
to have a distinct type from other copies. This ensures that applets do not acquire references
to objects belonging to other applets, and so any attempt to reference an object of another ap-
plet is signaled as a type violation. However, this also means that applets are not allowed to
communicate.

The main problem for enforcing security with this model comes from the choice of class-
based protection domains. A conservative estimate places the number of cross-domain opera-
tions per second at 30 OOO [37). This means that it is impossible on efficiency grounds to check
all operations, thus there can be no real reference monitor. Class domains do not facilitate
resource accounting: though one can control what code is using memory and CPU resources,
one cannot control who is using this ccide. The primary goal of this security architecture is to
protect the virtual machine from the programs running on top of it.

There are ways to circumvent Java security. We jdentified a few in earlier work [36), here
we focus o.n those related to three JavaSeal security properties.

Conftneme.nt: The difficulty in obtaining confinement is that the NM is one very large
shared data structure. There are numerous covert and storage channels for domains to com-
municate thanks to shared library classes. Java has static variables that can be used to
implement global variables. Many of these variables are also public meaning that they are
visible to all clients. Every object in Java has an associated lock. When two domains can see
the same lock they have a covert way to exchange information. Similarly the fields like the
threadCount of class Thread can be used as· a low bandwidth storage channel In Java,

J. Vitek and C. Bryce 99

a storage channel is opened if there is a way r.brough some sequence of calls to cause a static
variable to be modified and if it possible to read back that value. Threads also pose problems
as they can be stopped abruptly by their creator. For instance, if an agent creates a thread and
calls a method in the interface of another agent, then stopping that thread while it is executing
in the second agent could leave the victim in an inconsistent state.

Media.tion: Even if confinement holds, as soon as any inter-agent communication is allowed,
unchecked channels can arise r.brough dynamic aliasing. A good example is the security breach
found in the JDK 1.1.1 implementation of digital signatures which allowed untrusted code to
acquire extended access rights [30]. This was caused by mistakenly returning a reference to the
system's key ring which allowed any applet to increase its own access rights by adding signers
to the key ring. As we observe in [S] there is no systematic way to ensure that such channels
do not exist.

Faithfulness: Java version control does not guarantee faithfulness because version numbers
are not guaranteed to be unique. Further, subtyping can be used to mount code injection attacks.
In this attack, instead of sending an object of an expected type, the attacker sends an instance
of a subtype; this is allowed by the type system, and when the victim uses the object it is the
code of the attacker that is executed. For instance, one could define a subclass of some Java
collection type with an iterator that does not return, so that when a thread tries to traverse the
iterator its gets stuck and loops forever.

A further issue to consider is denial of service attacks. Java does not have a resource man-
agement interface that could allow us to account for the usage of resources such as CPU and
memory by a program. Simply creating an unbounded number of new threads can cause a de-
nial of service attack. Another problem is linked with finalization, if an object has a finalizer
method that contains an infinite loop, then when the garbage collector will be stuck and most
NM implementations crash in less than a minute. Finalizer also make domain termination
difficult to implement. The finalization code may be executed at any time and revive a killed
application.

Under these circumstances, in a system the size and complexity of the Java virtual machine
security breaches inevitably occur and proving that an application built over the NM is secure
is bound to be difficult. Op a more fundamental level, the problem with JDK is that the shared
kernel interface (comprised of the IDK core classes) is too big to reason with, and there are
no checks of the communication effected between the kernel and the protection domains. The
NM model is adequate for protecting a single user from the dangers of executable content
downloaded from remote Internet hosts but fails to provide a secure basis for building complex
applications composed of untrusted or fallible components such as agent applications.

100 The JavaSeal Mobile Agent Kernel

5 JavaSeal Implementation

JavaSeal consist of20 OOO lin.es of pure Java code. The systems runs on JDKI .2, though can run
on 1.1 with only slight modification. The body of the JavaSeal system is structured as several
Java packages (named seal . sys, seal. lib, seal. srv and seal. usr) whic.h almost
completely replace the standard JDK packages. User code can only be added to the package
seal. usr. 1bis restriction is enforced by the loader.

In this section, we first look at the implementation of JavaSeal concepts, and then look at
the security implementation issues.

5.1 JavaSeal Kernel classes

There are only few core classes in the kernel that are visible at user-level. The class Seal is
the base class of all user defined agents. Channels are instances of the Channel class and
they exchange capsules. Class Portal is used to control access to channels. Class Strand
is a restricted equivalent of Thread, the name has been changed to avoid confusion. Finally,
the Seal Loader class implements seal loading and verification. Some selected interfaces are
shown in Figure 3.

5.1.1 Seals

A seal consists of classes, objects and threads. The classes of a seal are loaded by a dedicated
SealLoader and are not shared with any other seal. All objects that are reachable from a seal
are owned by the seal. Every seal has a run method which is called to start execution.

When a seal is created it is assigned its own class loader. The seal's class is linked into
the JVM using this loader. Each class subsequently referenced by the seal is thus loaded by
the same SealLoader, and each seal bas its own copy of all of its classes. There is a small
number of exceptions: classes like Object must be shared. The set of classes loaded by a
loader, along with all of the instan.ces of these classes foon a protection domain. A type cast
error is generated if an object of one domain attempts to directly reference an object of another
domain.

A SealLoader has two possibilities for finding classes. System classes are found in pre-
defined locations on disk. User-defined classes are stored in a seal.'s archive. The archive is
used to enforce faithfulness: a seal always uses the classes with which it was defined. It does
not rely on any other seal, or its environment, to furnish it with a (perhaps infected) version
of its classes. Furthermore, seal archive files are immutable. That is, a seal may not add new
classes to its SAF during execution. The advantage of immutability is that the SAF may be
digitally signed and any attempt to tamper with the code can thus be detected.

A seal creates a child seal through a kernel operation - a class archive ·is created and a new
loader is allocated for the child. The parent can subsequently wrap the child seal. Wrapping
a seal entails stopping its threads, serializing its data into a byte array, and then packing this
byte array and the class archive into a SAF. 1bis SAF can be use<l to re-instantiate the seal, or

J. Vitek and C. Bryce

public abstract class Seal implements Rurmable, Serializable {
public static Seal currentSeal()

}

public static void dispose(Name subseal)
public static void rename(Name subseal, Name subseal)
public static SAF wrap(Name subseal)
public void run();

public final class Channel {
private Channel(Name me);
public static Capsule receive(Name channel, Name seal);

101

public static void send(Name channel, Name seal, Capsule caps);
}

public final class Portal {
private Portal();

}

public static int status(Name channel, Name seal);
public static int open(Name channel, Name seal);
public static int close(Name channel, Name seal);

public class Capsule implements Serializable{
public Capsule(Object obj);
public Object open();

}

public class Strand {
private Strand();

}

public static Strand create(Rurmable target);
public static Strand currentStrand();
public void start();
public void stop();

Figure 3: Tue JavaSeal kernel classes

alternatively it can be sent over a channel and then re-instantiated within another seal. This is
how agent migration is done in JavaSeal.

S.1.2 Strands

The threads that execute inside of seals are called Strands. A strand is bound to the seal in
which it is created. It cannot leave the seal or cannot be used to gain information about strands
in other seals. This is a crucial different between strands and Java threads. Each seal object

102 The JavaSeal Mobile Agent Kernel

has a run () method; when a seal is created or unwrapped, a strand is automatically created to
execute this method.

In the implementation, there is a mapping between threads and strands. An initial strand is
explicitly created when a seal is started, and to handle parallelism, daemon strands should be
started to service el(temal calls. In practice, the daemon has a limit on the number of strands,
and manages strands by reusing passive strands when possible.

5.1.3 Channels

The channel class has methods send and receive to transfer an object of type Capsule
from a sender seal to a receiver. Both operations are blocking; the strands issuing them will be
blocked until the communication is allowed to fire.

String x =new String("req");
Chan eh= new Chan(x);
Capcule cp - new Capculc(ctr) 1

ch.send(x, cp, Seal.getParent());

String x = new String ("req") ;
Chan eh= new Chan(x);
Portal. open (x, Name ("Agentl") , 1) ;
ch.receive(x, Name(''Agentl' '), cp);
Strings= (String) cp.open();

The first code fragment tries to send a string object str along channel x, the second code
fragment waits on channel x and unpacks the value received into a string. A portal acts as a
control on a communication channel, and must be explicitly opened by the owning seal for any
communication to take place. In JavaSeal, this is r.epresented by the Portal class. Its open
method opens a portal for a channel and seal pair, enabling the named seal to communicate
with the owning seal over the channel. The close method has the reverse effect.

5.1.4 Capsules

Capsules transfer data across channels. A capsule contains a copy of a group of objects. The
copy is done in kernel mode and ensures that the capsule does not share references with the
sender. Capsules are currently implemented with Java serialization. Opening a capsule re-
leases its contents into the local environment. A capsule is opened successfuJly only if the
SealLoader of the rece.iver is able to resolve all the classes required by the objects in the
capsule.

A capsule is creat.ed by specifying an object, the root, which will be· copied into the-capsule.
The copy is a deep copy, that is all the objects in the transitive closure of the root object are
copied as well. A complete capsule thus contains a disjoint copy of a portion of the object
graph, i.e. there is no sharing or aliasing between objects in the application and the objects in a
capsule.

J. Vitek and C. Bryce 103

A capsule may only be opened once. Opening a capsule releases its content. This pro-
cess requires finding matching classes definitions. The important point to note is that the
ClassLoader must be able to find all classes required by the capsule contents in its en-
vironment. The classes found might have different versions, currently we rely on Java type
compatibility rules to verify the validity of a capsule. The open operation fails if some of the
classes required by the capsule are not found in the local environment.

seal A Channel Ponal sealB

open() send() I .
[C8DSUfa Ii I

I recv() -I

I

I close() .•
I

I
~ r-

I (caosu1oli1 I I

Figure 4: Channel based communication offered by the MPI.

Communication between a sender seal A and receiver seal B is illustrated in Figure 4. We
assume that A and B agree on a channel name, initial agreement is achieved using a set of
"standard" channel names. A strand executing within A invokes the send primitive on the
channel with a capsule as argument. A 's strand blocks until the communication completes.
Seal B must at some point (possibly after the call to send) open a portal for A on the agreed
channel. Then B must invoke a receive operation on the channel. This primitive blocks until
a matching offer appears. In this case, the communication proceeds: the portal is first closed,
the capsule is copied into B, and then both strands are notified that the communication was
successful.

5.2 JavaSeal Security

Seals are protection domains in JavaSeal and language mechanisms enforce their security. Con-
finement is achieved by a combination of two main means. First, each seal is assigned its own
loader, meaning that there is no sharing (nor storage channels) between seals. Second, capsules
are designed to prevent dynamic aliases from occurring by using a deep copy mechanism to
copy parameters.

The isolation imposed by seal loaders may appear a bit drastic as we effectively separate
each seal from most of the JDK. One may argue that it may be possible to prove the JDK classes
free of storage channels and then it would be safe to share them. The problem is that we cannot
be sure in which environment a JavaSeal platform will be used. Depending on which classes

104 The JavaSeal Mobile Agent Kernel

are loaded on the JVM, or which versions of the classes, storage channels may exist. It takes
only one class to break the entire security.

Seal loaders also perform extended bytecode verification to impose a fairly stringent restric-
tion on finalizers: they are forbidden from containing loops or calls to methods, as the latter
conld be an invocation of a non-terminating method. A more sophisticated analysis could be
used to allow more behavior in finalizers but we have not yet encountered practical cases where
this is needed in applications written for JavaSeal.

Channels enforces another aspect of domain isolation through Strands. Strands only exist
in a single seal. Thus we prevent attacks that rely on killing a thread while it executes within
some other protection domain.

Mediation is obtained by nesting a target seal in another seal. the second seal being respon-
sible for interposing on sensitive channels.

Domain termination is achieved by simply stopping all of the strands of a seal and setting all
domain-specific kernel pointers to null. Memory will eventually be reclaimed by the garbage
collector. The resources used by a seal are relativt:ly t:asily accounted for. They include olooaes
loaded by the seal's loader and objects reachable from the seal class. Thread objects are ac-
countable through the strands. In the current version of JavaSeal, precise control over memory
and CPU is not provided. It would be fairly straightforward to approximate resource usage by
instrumentation of the bytecode, but a cleaner approach would be to extend the JVM interface
with hooks for that purpose [10].

As mentioned, faithfulness is enforced by the seal loader. When a seal is created all of
its classes are extracted from its archive. In addition, when messages are exchanged, the seal
loader checks that no opened capsule tries to inject new classes.

5.3 Kernel Security

An important property of a reference monitor is that it must be encapsulated. We cannot en-
force strong isolation for the kernel classes since some key JDK classes have to be shared.
This is a design choice of the Sun JVM implementation. The JavaSeal kernel classes are also
shared. This sharing is a security worry since it can be the source of storage channels. The
basic idea is to have a well-defined and small interface, and to use a combination of access
modifiers and type abstraction [26] to ensure that this interface is correctly used. The kernel
interface is restricted to 8 JavaSeal kernel types and 25 standard Java types most of them ex-
ceptions (this includes classes Object, String and StringBuffer, as well as interfaces
j ava. io. Seriali zable and j ava. lang. Runnable). All arguments and return val-
ues of these types are also part of the kernel. These classes have no static variables and instances
have no accessible fields that are not instances of kernel types.

Another reason for insisting on a srnall interface is to prohibit security leaks from dynamic
typing. In Java, an object can only reference an object of a class loaded by the same loader, or
by the system loader1• However, dynamic typing can lead to a bypassing of this rule. Consider

11his explains how the core JDK classes can be shared. These classes are loaded with the system loader. Since
all domains need to have access to these classes, the typing rule is "bent" to accommodate this.

J. Vitek and C. Bryce 105

a class C which is loaded by two loaders; we denote the resulting class instances C1 and C2•

Suppose that the class C implements the Java interface I and that this interface is loaded by
the system loader. If some class has a variable of type I then objects of this class may refer-
ence instances of classes C 1 and C2• This is because I is visible in all domains, and dynamic
typing permits an object of a subclass (e.g., C1 or C2) to replace an instance of I. This clearly
constradicts the name space approach ofJava.2

The only point where a seal is allowed to give arbitrary objects to the kernel is as an argu-
ment to a capsule of a message that the seal exchanges with the root seal. However, the capsule
is opened in the receiving environment and can at no time "reference a kernel object.

The final part of the kernel security is obtained by selective access modifiers which are
enforced by a form of extended bytecode verification. We extend the standard Java access
modifiers with a more fine-grained version enforced at load time by the Sea.lLoader. We
introduce directives that specify selective access modifiers. An example directive sequence is
the following:

see java.lang.Object;
final seal.sys.Capsule;
private java.lang.Object.getClass();

The first directive specifies that class Object is visible. In other words, the runni.n,g seal object
may link against this (shared) class. The second specifies that a class is to be treated as final;
thus no subclasses are allowed in the seal. The l.ast directive specifies that an attribute of a class
cannot be used within a seal. These modifiers are read in by the Seal Loader and all classes
loaded are checked to conform to these restrictions. The directives are enough to ensure that
the only types exchanged using shared classes are those permitted in the kernel interface.

6 HyperNews: Selling News on the Web

HyperNews is a system for the electronic distribution ofnews articles in which a client can only
read the contents of an article that he has paid for [29). This section describes the implementa-
tion ofHyperNews over JavaSeal . .

6.1 The HyperNews Business Model

The goal of HyperNews is to Support the electronic sale of news articles. The actors are the
consumers, the press agencies producing articles, and the credit institutions (Cls) that manage
payments. A typical HyperNews transaction is illustrated in Figure 5. A consumer requests a set
of sports related articles from a news agency. These articles are downloaded to the consumer's
site. To read an article the consumer must have paid for it. For this reason an article's contents
are encrypted with a symmetric key k. The article contains k encrypted with the public key of

2Tuis feature is nonetheless exploited in the JavaSeal implementation to implement hierarchial operations such
a.s wrapping and seal creation. It is nevertheless hidden from user seals.

106 The JavaSeal Mobile Agent Kernel

the Cl. If the consumer is reading the article for the first time, the Cl is contacted and the article
price is debited from the consumer's account. The Cl extracts the value of k for the consumer
and sends it to the consumer with a receipt of payment. It is only with the key k that the article
can be read. Subsequent uses of the article simply require presenting the receipt to the Cl, after
validation of which k is extracted and returned.

4:~
k

k(contents)

Figure 5: HyperNews allows customers to request news articles from news agencies. Payment is han-
dled through trusted credit institutions. All exchanges between any two sites are encrypted by a session
key negotiated between those sites.

HyperNews is designed as a large scale distributed application. Not only are there many
consumers, but there are, of course, also multiple competing news agencies and credit insti-
tutions. A consumer is at liberty to buy articles from any news agency. There is also certain
symmetry in the architecture. For instance, a client can act as a press agency. He can collect
articles of some class, annotate them with his own comments, and later resell them; HyperNews
nevertheless guarantees that whenever the original article is viewed, its rightful owner still gets
paid.

6.2 The HyperNews Security Model

HyperNews is built with the goal of doing electronic commerce over the Internet. With respect
to security, this implies having well-specified and maintainable trust relations and the use of
encryption.

Regarding trust, a consumer trusts his credit institution to store his credit account. Similarly,
news agencies trust the Cls with the keys k to their articles which they see when handling
payments. At the same time, Cls are also trusted to archive public keys.

The detail of the payment is as follows. Each article's contents is encrypted with a symmet-
ric key k that is chosen by the news agency. The key k is then encrypted with the public key of
the Cl, yielding CI(k). The encrypted contents and CI(k) are packed into the article agent which

J. Vitek and C. Bryce 107

is downloaded to the consumer. At the consumer's site the local HyperNews platform manages
payment requests. Whenever a user asks to read an article, HyperNews sends a request to the
Cl and this request contains CJ (k) . If the customer has sufficient funds to pay for the article, the
Cl debits the consumer's account and then forwards a receipt of payment and k back to the con-
sumer. The HyperNews system can now decrypt the article contents. Immediately following
the decryption, the key k is discarded by the runtime in order to reduce the risk that an attack
on the consumer platform can lead to k being revealed. The next time the user wishes to read
the same article, the Cl must again be contacted. This time, the user sends a copy of his receipt,
which the Cl validates, and replies with k.

Security of the article keys relies on the integrity of the HyperNews platform on the client's
site. Clearly, a hacker may tamper with the system and steal keys. But this requires some skills,
and a key only unlocks a single article. Further keys are obtained only after the document
has been paid for. In this way, the worst that an attacker can do is to distribute the article
contents free of charge. For commercialization of short-lived, low-value, documents such as
news articles, this is not likely to be a major problem.

HyperNews uses agents to customize the treatment and user interface of different news
sources. Thus, each provider is allowed to install a news feed agent at the customer. The
news feed is responsible for verifying receipt of payment before access to the article, and for
decrypting the contents and then throwing the key k away. Articles also may contain code
for interacting with the user. The remaining security measures in HyperNews are directed
to guaranteeing that different news agencies are not able to disrupt each other, at preventing
malicious agents damaging the consumer's system, and at preventing denial of service attacks.

6.3 Implementing HyperNews

The main attraction of agents for implementing HyperNews is that they allow different news
providers to customize the application installed on the customer's station with value-added
services on a per-document basis. The advantage over a client-server solution is that no con-
nectivity with the news provider is needed.

The HyperNews application is built as a collection of cooperating seals. A HyperNews
platform is a Java.Seal kernel load~ with the HyperNews seals. The entire application has been
designed using agent technology. Everything from session key negotiation to news articles is
done with agents.

6.4 Architecture

The overall structure of a running HyperNews platform consists of a number of NewsFeed
agents and a large number of article agents (see Figure 6). The News.Feed agents are envlets
that manage all the data and services common to one news provider. For example, a News-
Feed may keep track of the news classiftcation of its provider, it may contain code for filtering
incoming articles acco.rding to user-defined criteria, as well as custom code for decryption or
decompression. Articles are complets which execute within their provider's envlet. They also

108

~
I

The JavaSeal Mobile Agent Kernel

-?" · ~ · _....-.;::: \__ --••••• -
Figure 6: The HyperNews application. NewsFeeds for the Times, Hebdo and a default news feed are
shown. These are envlets with couriers and articles as complets. The dotted line represents the trust
boundary, that isolates mobile seals and the network area from trusted immobile services.

may contain code. Articles can have special behavior with respect to payment, display or con-
sumer interaction.

Every HyperNews platform has a reception area implemented by a complet. The reception
area is a service seal with network access. Its role is to receive incoming seals, authenticate
them, and decide if they should be allowed to execute. The incoming seals can be either new
Article agents or Courier agents (A and C in Figure 6 respectively). An Article agent contains
articles, a Courier agent carries receipts or article keys. The former are expected only if the
user signed up for news from that particular press agency, the latter should belong to one of the
existing feeds. A NewsFeed is started on its own in the Sandbox (another envlet). Couriers are
forwarded to their feed and will be allowed to exec:ute within that envlet.

The services include a HTTP deamon for the Netscape browser used to visualize article
contents and a Swing-based GUI implements the HyperNews control panel. A storage agent is
used for storing serialized article agents; as soon as the environment detects that the platform is
becoming too heavily loaded, articles are selected for swapping to disk by the file storage agent.
An electronic commerce agent manages a purse GUI containing the consumer's credit, and
decides to ask for more credit when needed. Finally, a utility agent implements cryptographic
functions and manages the environment variables.

Starting JavaSeal creates a RootSeal. This creates the main application seal of the applica-
tion, whose name must have been passed as parameter in the command line. This seal proceeds
to create new seals.

After the RootSeal has instantiated itself, it starts the NetSeal that is responsible for commu-
nicating between sites. The kernel actually treats the NetSeal as being the parent ofRootSeal.
There are two reasons for this. First, the NetSeal represents the network, which from the hi-

J. Vitek and C. Bryce 109

erarchy point of view, encapsulates all platforms of the mobile agent network as children [34].
Second, the elements received from the network must be isolated from the system services and
other agents; for this reason this component is inside of the JavaSeal protection barrier. Net-
Seal is the only service that executes within JavaSeal; all other services exist outside of JavaSeal
though execute within the same NM.

After creating the NetSeal, RootSeal creates a Bridge object that is used to forward mes-
sages between seals and the services. Services like GUI, FileStorage, etc. are represented as
static classes; these classes are instantiated in the main () ofRootSeal, and use the basic sys-
tem loader. Services are represented in this way so that sharing with seals is kept to a minimum,
since the seals occupy different loader spaces - and protection domains.

6.5 Security

One important point related to security is that a HyperNews platform is a long-lived application.
The state capture mechanism is used to make the platform persistenl The implication is that
malicious agents should not be allowed to crash the system, and also that shutting down the
NM is not an appropriate response to a denial of service attack. JavaSeal tries to control
resources so as to reduce the potential for denial of service attacks, but there is plenty more
work to do in that field.

One problem that is solved by JavaSeal is the protection ofNewsFeeds from one another.
This is achieved by the faolation imposed by the seal model: all feeds are represented as child
seals of the main application seal. All potential interactions are subject to the reference monitor
and allowed only if there is a specific permission for two seals to communicate. By default,
NewsFeeds are not allowed to communicate. Security on the articles is enforced by the News-
Feeds which decide whether the articles that they host may communicate (usually there is no
need to). A further security property comes from the fact that the environment (root seal) is not
able to peek and poke the messages exchanged between a NewsFeed and its Courier agents,
rep.resented as children seals. 1bis is because communication is only possible betwee.n parent
and children, and Courier agents are started as children oftheir provider's news feed envlet. In
this way, the article key k is localized on the platform, and there is less risk of it escaping into
the environment.

7 Related Work

Mobile Agents are a combination of active objects' [2] and mobile objects [22]. Active objects
are objects that possess their own thread of control and which execute independently of their
creator. Mobile objects in Emerald could also be moved transparently between sites of a dis-
tributed system. The arrival of the Internet renewed interest in mobile objects, though mobility
could no longer be done transparently: an agent had to be aware of where it was executing
because resources and administration could differ between sites.

Among the first pJObile agent systems were Telescript [38], TACOMA [32] and MO (33].
The foaner two possess a coarse-grained notion of agent, the latter uses lightweight agents.

110 The JavaSeal Mobile Agent Kernel

Telescript transported much information with its agents; the model became too complicated and
eventually the project was stopped. MO, and other agent systems based on scripting languages
such as Tcl!I'k and FACILE are lighter weight agents; ironically, their simplicity mak~ coding
of envlets harder.

The arrival of Java brought a wave of Java-based agent systems. The reason for this is that
use of Java is widespread, it has enough utility classes and possesses notions of security and
mobility. Example systems include Mole [4], D'Agents (from TcVTk), Voyager, Ajanta and
Aglets. However, these systems do not provide a · level of security based on strict separation
between agents. since the kernel does not occupy a different domain the agent domains. The J-
Kernel implements capabilities [19). A protection domain in the J-Kemel is also a name space
implemented using a class loader. Communication between domains is achieved by invoking
a method on a capability object which acts as a mini-RMI stub. Parameters are deep-copied
between domains and only capabilities and core classes are shared. In the J-Keme\ service
classes are shared between agents, thus lending themselves to covert channels. Further, J-
Kernel does not possess the notion of hierarchy; this makes it difficult to implement envlets, as
required by HyperNews and other applications.

The Sun's NM (JDKl.2) includes many changes to the security model - including pro-
tection domains based on distinct class loader spaces. But as we argued here , distinct loader
spaces do not constitute real protection domains unless a real attempt is made to isolate the
variables shared between loaders - those variables whose classes are loaded by the system
loader. Further, we argue that no real change to the NM is needed to achieve this level of
security, rather a fundamental redesign of the JDK.

Protection domains are also an operating system issue and many of the ideas here are in-
fluenced by such work. For instance, the hierarchial model is influenced by Fluke [14] and
L3 [27], as well as by work on interposition [12, 15, 16).

8 Conclusion

This paper has described the JavaSeal platform. This is a secure kernel for mobile environments
(envlets) and mobile objects (complets). JavaSeal is a kernel in that it offers minimal service
funtionality. Since services differ between sites, one should be able to build different services
on a kernel. JavaSeal is secure in that it isolates agents (or seals) from one another by exploiting
the typing mechanism, and it extends the class loading verifier to ensure that seals do not use
forbidden or untrusted classes.

The main lesson that we have learned from the JavaSeal implementation is that it is possible
to implement a secure kernel based on Java. We qualify security in this case as strong separation
between agents, and between agents and services. Of course, some covert channels may remain
in the kernel though we believe these to be of insignificant bandwidth compared to the storage
channels that can exist in the JDK service classes. Like others [l], we have also learned that
full migration was not easy in the Sun JDK due to low-level implementation issues. Finally,
we also noted that Java still has some efficiency problems, with respect to wrapping sizes and
data transfer times. This motivated our work on compression. A more significant performance

J. Vitek and C. Bryce 111

problem is caused by the fact that messages are rerouted through common parents. Our current
work includes investigation of a shared object concept: this is an object that can be directly
shared between two domains without the security policy in place being violated.

Acknowledgments The authors thank Walter Binder, Manuel Oriol, and Karim Taha for their
work on JavaSeal, and Jean-Henri Morin for using our system to implement HyperNews.

References

[l] Acharya, M Ranganathan, and J. Saltz. Sumatra: A Language for Ressource-Aware Programs.
In Mobile Object Systems: Towards the Programmable Internet, volume 1222 of Lecture Notes in
Computer Science. Spri.nger-Verlag, April 1997.

[2) G. Agha. Actors - A model of concurrent computation in distributed systems. The MIT Press,
1986.

[3) G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java operating systems: Design and
implemen.lation. Technical Report UUCS-98-015, University of Utah, Department of Computer
Science, Aug. 6, 1998.

[4) J. Baumann, F. Hohl, K Rothermel, and M. Strasser. Mole - Concepts of a mobile agent system.
World Wide Web, 1(3): 123-137, 1998.

[5) B. Bakowski and J. Vitek. Confined Types. In Proceedings l4tl1 Annual A.CM SIGPLAN Con-
ference on Object-Orie11ted Programming Systems, Languages, and Applicatio11S (OOPSLA '99),
Denver, Colorado, USA, November 1999.

[6] Q. Bradley, R Horspool, and J. Vitek. JA'ZZ, compression of Java bytecode. In CASCON'98,
1998.

[7] C. Bryce, M. Oriol, and J. Vitek. A coordination model for agents based on secure spaces. In
P. Cian.cariniand A. Wolf, editors, Proceedings of the 3rd Coeference on Coordi11alionLa11guoges
and Models, volume 1594 of LNCS, pages 4-20. sv, 1999.

[8) L. Cardelli and A. D. Gordon. Mobile Ambient~. In M. Nivat, editor, Fo1111dotions of Softwa.re
Science and Computational Strnct11res, number 1378 in LNCE, pages 140--155. Springer-Verlag,
1998.

[9] Carriero and Gelernter. Applications experience with Linda. ACM Sympos. on Parallel Program-
ming, July 1985.

[10) G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for Java ACM SIGPLAN
Notices, 33(10):21-35, Oct. 1998.

[11] DOD. Tcsec: Trusted computer system evaluation criteria. Technical Report 5200.28-STD, U.S.
Department ofDefense, Dec. 1985.

[12) T. Fin.e and S. E. Minear. Assuring Distributed Trusted Mach. In IEEE, editor, Proceedings of
the 32nd IEEE Conference on Decision and Control, Son Antonio, TX, USA. December 15-17,
1993, pages 206-2l7, 1109 Spring Street, Suite 300, Silver Spring1 MD 20910, USA, 1993. IBEE
Computer Society Press.

112 The JavaSea/ Mobile Agent Kernel

[13] F. for Intelligent Physical Agents. FIPA 97 specification part 1: Agent management, Oct. 1998.
Version 2.0.

[14] B. Ford, M. Hibler, J. Lepreau, P. Tulbnan, G. Back, and S. Clawson. Microkemels meet recursive
virtual machines. Jn USENIX, editor, 2nd Symposium on Operating Systems Design and Imple-
mentation (OSDI '96), October 28-31, 1996. Seattle, WA, pages 137-151, Berkeley, CA, USA,
Oct. 1996. USENIX.

[15] D. P. Ghormley, D. Petron, S. H. Rodrigues, and T. E. Anderson. SLIC: An extensibility system for
commodity operating systems. Jn Proceedings of the USEMX 1998 Annual Technical Conference,
pages 39-52, Berkeley, USA, June 15-19 1998. USENIX Association.

[16] D. P. Ghormley, S. H. Rodrigues, D. Petron, and T. E. Anderson. Interposition as an operating
system extension mechanism. Technical Report CSD-96-920, University of California, Berkeley,
Apr. 9, 1997.

[17] L. Gong. Java security architecture (JDK 1.2). Technical report, JavaSoft, July 1997. Revision 0.5.

[l B] Il S. Gray. Agent Tel: A floxible nnd oecure mobile-agent system. Technical Report Pr.~-TR 98-
327, Dartmouth College, Computer Science, Hanover, NH, Jan. 1998.

[19] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von Eicken. Implementing Multiple
Protection Domains in Java Technical Report 97-1660, Cornell University, Department of Com-
puter Science, 1997.

[20] M. Hicks,P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: Apacketlanguageforactive
networks. Jn Proceedings of the Third ACM SIGPLAN International Conference on Functional
Programming Languages, pages 86--93. ACM, 1998. Available at www. cis. upenn. edu/
-switchware/ papers/ plan.ps.

[21] N. Jamali, P. Thati, and G. A. Agha. An Actor-based architecture for customizing and controlling
agent ensembles. IEEE Intelligent Systems, 1998.

[22] E. Jui. Object Mobility in a Distributed Object-Oriented System. PhD thesis, University of Wash-
ington, Computer Science Department, Dec. 1988.

[23] G. Karjoth, D. B. Lange, and M. Oshima A security model for Aglets. Lecture Notes in Computer
Science, 1419: 188-??, 1998.

[24] B. W. Lampson. A note on the confinement problem. Communications of the ACM, 16, 1973.

[25] D. B. Lange and M. Oshima. Mobile agents with Java: The Aglet API. World Wide Web Journal,
1998.

[26] X. Leroy and F. Rouaix. Security properties of typed applets. Jn Conference Record of POPL '98:
The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
391-403, San Diego, California, 19-21Jan.1998.

[27] J. Liedtke. Improving JPC by kernel design. Jn B. Liskov, editor, Proceedings of the 14th Sym-
posium on Operating Systems Principles, pages 175-188, New York, NY, USA, Dec. 1993. ACM
Press.

[28] D. Milojicic, M. Breugst, I. Busse, and J. Campbell. MASIF: The OMG mobile agent system
interoperability facility. Lecture Notes in Computer Science, 1477, 1998.

J. Vitek and C. Bryce 113

[29] J.-R. Morin and D. Konstantas. HyperNews: A MEDIA application for the commercialization
of an electronic newspaper. In Proceesi11gs of SAC '98 - The 1998 ACM Symposium 011 Applied
Computing, Marriott Marquis, Atlanta, Georgia, U.S.A, Feb. 27 - Mar. l 1998.

[30] Secure Internet Programming Group. http://www.cs.princeton.edu/sip/news/apri129.btml. 1997.

[31] P. Sewell and I. Vitek. Secure composition of insecure components. In IEEE Computer Security
Foundations Workshop (CSFWJ 2), Mordano, ltaly, June 1999.

[32] Troms0 University and Cornell University. TACOMA Project, http://www.cs.uit.no/DOS/Tacoma/.

[33] C. Tschudin. The messenger environment MO - A condensed description. In Mobile Object Sys-
tems: Towards tire Programmable Internet, pages 149-156. Springer-Verlag, Apr. 1997. Lecture
Notes in Computer Science No. 1222.

[34] J. Vitek. The Seal model of Mobile Computations. PhD thesis, University of Geneva, 1999.

[35] J. Vitek and G. Castagna. Towards a Cal.culus of Secure Mobile Computations. In Workshop
011 fnfernel Programmi11g Languages, Chicago, Ill., May 1998. reprinted in Electro11ic Business
Objects, Ed. Tsichritzis, University of Geneva, 1998,.

[36] J. Vitek, M. Serrano, and D. Thanos. Security and Communication in Mobile Object Systems. In
Mobile Object Systems: Towards the Programmable Internet, volume 1222 of Lecture Notes in
Computer Science. Springer-Verlag, April 1997.

[37] D. Wallach, D. Balfanz, D. Dean, and E. Felton. Extensible Security Architectures for Java In
Proceedings of the 16th Symposium on Operati11gSystem Principles, 1997.

[38] J. E. White. Telescripl technology: The foundation for the electronic marketplace. White paper,
General Magic, Inc., 2465 Latham Street, MoUlltain View, CA 94040, 1994.

