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Abstract a model of computation with strong formal properties such

This paper reviews a set of techniques for compiling as synchronous dataflow (SDF) [15] to specify the system,
dataflow-based, graphical programs for embedded signal and to do code-generation starting from this specification.
processing applications into efficient implementations on One reason that a compiler for a block diagram language
programmable digital signal processors. This is a critical is likely to give better performance than a compiler for an
problem because programmable digital signal processors imperative language is because the underlying model of
have very limited amounts of on-chip memory, and the computation often imposes restrictions on the control flow
speed and power penalties for using off-chip memory are of the specification, and this can be profitably exploited by
often prohibitively high for the types of applications, typi- the compiler.
cally embedded systems, where these processors are used. SDF [15] is a special case of dataflow. In SDF, a pro-
Moreover, off-chip memory typically needs to be static, gram is represented by a directed graph in which each ver-
increasing the system cost considerably. tex (actor) represents a computation, an edge specifies a

The compiling techniques described in the paper are FIFO buffer, and each actor produces (consumes) a fixed
developed for the synchronous dataflow model of compu- number of data valuesokens) onto (from) each output
tation, a model that has found widespread use for specify- (input) edge per invocation. A parameter on each edge
ing and prototyping DSP systems. specifies the number of initial tokens residing on that arc

1: Introduction (calleddelays.
The code-generation strategy followed in many block

described in [6], [12], [19], and [18] support code-genera- diagram enyironments ?s ca_lled threading;_in this method,
tion for programmable digital signal processors (PDSP) the underlying model (in this case, S.DF) IS sc_heduled to
used in embedded systems. Traditionally, PDSPs have 9enerate a sequence of actor invocations (provided that the
been programmed manually, in assembly language, andmOdel can be scheduled at comp|lt_e time of-coursg). A
this is a tedious, error-prone process at best. Hence, gener-COde generator then steps through this schedule and inserts
ating code automatically is a desirable goal. Since the the machine instructions necessary for the computation
amount of on-chip memory on such a PDSP is severely specified by each actor it encounters; these instructions are
limited, it is imperative that the generated code be parsi- obtained from a predefined library of actor code blocks. _
monious in its memory usage. Adding off-chip memory is We assume that the code-generator generates inline code;
often infeasible due to increased cost. increased powerthis is because the alternative of using subroutine calls can
requirements, and a speed penalty that will affect the feasi- havelzl l:nakc ceé)ta“ble oy?arheagbtle:spemﬁ!,ly if there are m;my
bility of real-time implementations. One approach to auto- smafl tasks. By ‘compiie an graph, we mean exactly
matic code generation is to specify the program in an the strategy described above for generating a software

imperative language such as C, C++, or FORTRAN and implem_entation from_ an SDF g_raph specification of the
use a good compiler. However, even the best compilers system in the block diagram environment.

today produce inefficient code [25]. In addition, specifica- A key problem that arises in this strategy is code-size
tions in imperative languages are difficult to parallelize, €xplosion since if an actor appears 20 times in the sched-
are difficult to change due to side effects, and offer few ule, then there will be 20 code blocks in the generated
chances for any formal verification of program properties. code. Clearly, such code duplication can consume enor-
An alternative is to use a block diagram language based on

Rapid prototyping environments such as those



mous amounts of memory, especially if high invocation sequence of code blocks is encapsulated within an infinite
counts are involved. loop to generate a software implementation of the SDF

Generally, the only mechanism to combat code size 9raph.
explosion while maintaining inline code is the use of loops SDF graphs for which valid schedules exist are called
in the target code. If an actor’s code block is encapsulated consistentSDF graphs. In [15], efficient algorithms are
by a loop, then multiple invocations of that actor can be presented to determine whether or not a given SDF graph
carried out without any code duplication. This paper is is consistent, and to determine the minimum number of
devoted to the construction of efficient loop structures times that each actor must be fired in a valid schedule. We
from SDF graphs to allow the advantages of inline code represent these minimum numbers of firings by a vector
generation under stringent memory constraints. dg, indexed by the actors i& . (we often suppress the
The predefined actor code blocks in the library can SubscriptifG is understood).
either be hand-optimized assembly language (feasible 3: Constructing memory-efficient loop
since the actors are usually small, modular components),Structures
or it can be an imperative language specification that is ) o _ ) )
compiled by a compiler. As already mentioned, a compiler This section informally outlines the interaction
for an imperative language cannot usually exploit the between the construction of pgriodic schedules for S_DF
restrictions in the overall control flow of the system. How- 9raphs and the memory requirements of the compiled
ever, the code blocks within an actor are usually much code.
simpler, and may even correspond to basic blocks that To understand the problem of scheduling SDF graphs
compilersare adept at handling. Hence, compiling an SDF to minimize memory requirements, it is useful to examine
graph using the methods we describe in this paper does notlosely the mechanism by which iteration is specified in
preclude the use of a good imperative language compiler; SDF. In an SDF graph, iteration of actors in a periodic
we expect this hybrid approach to eventually produce code schedule arises whenever the production and consumption
competitive to hand-written code, as compiler technology parameters along an edge in the graph differ. For example,
improves. However, in this paper, we only consider the consider the SDF graph in Figure 2(a), which contains
code and buffer memory optimization possible at the SDF three actors, labeled B am@@l .TBe do- mismatch
graph level. on the left edge implies that within a periodic schedBle,

2: Synchronous dataflow (SDF) must be invoked twice for every invocation Af . Simi-

Fig. 1(a) shows a simple SDF graph. Each edge is
annotated with the number of tokens produced (consumed) @) ° e e
by its source (sink) actor, and the “D” on the edge from 20 10 20 10
actor A to actoB specifies a unit delay. Each unit of

delay is implemented as an initial token on the edge. Given Periodic Schedules
an SDF edge , we denote the source actor, sink actor, and

delay ofe bysrc(e) ,snk(e) , andd(e) . Alsop(e) and 1. ABCBCCC
c(e) denote the number of tokens produced amto by 2. A(2B(2CQC))
src(e) and consumed frora by arshk(e) . (b) 3. A(2B)(4C)
A scheduleis a sequence of actor firings. We compile
an SDF graph by first constructingralid schedule— a 4. A2BC)(2C)
finite schedule that fires each actor at least once, does not
deadlock, and produces no net change in the number of code block for A
tokens queued on each edge. Corresponding to each actor for (i=0; i<2; i++) {
in the schedule, we instantiate a code block that is code block for B
obtained from a library of predefined actors. The resulting code block for C
}

© for (i=0; i<2; i++) {

(b) code block for C

}

(@) 2 5 13 1 Figure 2. An example used to illustrate the interac-

tion between scheduling SDF graphs and the mem-
Figure 1. Examples of SDF graphs. ory requirements of the generated code.



larly, the mismatch on the right edge implies that we must used, for example, in the SDF-based code generation
invoke C twice for every invocation & . described in [6], [12], [19]. More technical advantages of

Figure 2(b) shows four possible periodic schedules this buffering model are elaborated on in [17].
that we could use to implement Figure 2(a). For example, There are two natural angles for approaching the
the first schedule specifies that first we are to invéke , problem of joint minimization of code size and buffer
followed by B , followed byC , followed byB again, fol-  memory requirements. The first approach is to study the
lowed by three consecutive invocations@f . The paren- problem of constructing a minimum buffer memory sched-
thesized terms in schedul®s 3, a#d are used to ule, and then incorporate techniques for minimizing the
highlight repetitive invocation patterns in these schedules. code size into the approach that is developed for minimiz-
For example, the terfBC) in schedule represents a ing buffer memory. Here, the objective is to construct a
loop whose iteration count i2  and whose body is the minimum buffer memory implementation that has mini-
invocation sequencBC ; thu&BC) represents the fir- mum code size over all minimum buffer memory imple-
ing sequencé8CBC . Similarly, the ter(@B(2C)) rep- mentations. Conversely, first priority could be given to
resents the invocation sequerBECBCC . Clearly, in minimizing code size. This would yield the goal of com-
addition to providing a convenient shorthand, these paren- puting a minimum buffer memory schedule over all imple-
thesized loop terms, callexthedule loopspresent the mentations that require minimum code size. Once such a
code generator with opportunities to organize loops in the priority-based algorithm is established, post-processing
target program, and we see that sche@ule corresponds tdechniques can be developed to further balance the solu-
a nested loop, while schedulds ahd correspond to cas-tions computed by the priority-based algorithm according
cades of loops. For example, if each schedule loop is to the code size and buffer memory capacities of the target
implemented as a loop in the target program, the code gen-implementation.
erated from schedulé  would have the structure shown in This paper focuses on the latter angle of attack —

Figure 2(c). assigning first priority to code size minimization, and sec-
We see that if each schedule loop is converted to a ond priority to minimizing the buffer memory require-
loop in the target code, then eagbpearancenf an actor ment. This approach is preferable because for practical

in the schedule corresponds to a code block in the targetsynchronous dataflow graphs, giving first priority to code
program. Thus, since act@  appears twice in schetlule size minimization typically yields a significantly more
of Figure 2(b), we must duplicate the code blockGr in favorable code size/buffer memory trade-off than giving
the target program. Similarly, we see that the implementa- first priority to buffer memory minimization. A practical
tion of schedulel , which corresponds to the same invoca- example to illustrate this will be given in the final paper.
tion sequence as schedule  with nollooplng applied, 4- Notation

requires seven code blocks. In contrast, in schedules and

3, each actor appears only once, and thus no code duplica- Given anedge G , we define ttetal number of
tion is required across multiple invocations of the same samples exchangedn e, denotedTNSHe, G) , or sim-
actor. We refer to such schedulessasyle appearance ply TNSKe) if G is understood, by

schedules, and we see that neglecting the code size over- _

head associated with the loop control, any single appear- TNSHe) = dg(sre(e)) x p(e). @
ance schedule yields an optimally compact inline Thus, TNSHe) is the number of tokens produced amto
implementation of an SDF graph with regard to code size. in one period of a valid schedule.

Typically the loop overheat_j is small, particularly in many For Fig. 1(a), q(A B C) = (3,6 2 ,
programmablg DSPS, which usually have provisions to TNSH(A, B)) = 6, and one valid schedule is
manage loop indices and perform the loop test in hard- B(2AB)CA(3B)C.

ware, without explicit software control.

Gi SDF = (V. , lid schedul
Scheduling can also have a significant impact on the ven an grap ( ) avalid schedule

S, and an edge i max_tokeng, § denotes the

?hmount (.)f mergngy requrireFd to implelme_nt ;he bugel;s (t): maximum number of tokens that are queueceon  during
e arcs in an graph. For example, in Figure 2(b), the an execution of . For Fig. 1(a), if

buffering requirements for the four schedules, assuming = (3A)(6B)(2C = (3A(2B))(2C) . th
that one separate buffer is implemented for each arc, are ﬁqlax (tok)e(né(,z\( B))’Sls)z - (7 a(nd ))(2C), then

50, 40, 60, and 50 respectively. max_token§(A, B), S,) = 3

Note that this model of buffering — maintaining a We define thebuffer memory requirement of a
separate memory buffer for each data flow arc — is conve- scheduleS by

nient and natural for code generation, and it is the model

3



buffer_memor(sS) = max_tokené e )5 (Z4 n Z,) is nonempty, and the subgraphs associated
- egE - ' with Z, andZ, are both tightly interdependent, then the

subgraph associated wifZ, 0 Z,) s tightly interdepen-
buffer_memor¢S,) = 3+ 6 = 9. A valid single appear- dent. Thgs each .SDF grapm . has a unique set of non-
ance schedule that minimizes the buffer memory require- ovgrlappmg “maX|m-aI" t|ghtly interdependent subgraphs,
ment over all valid single appearance schedules is called avx;hg:h are called thtightly interdependent components
buffer memory optimal schedule f)Pa'rtitioning a loosely interdependent SDF grdph

If Z is a subset of actors in a connected, consistent p,sed on subindependence cannot decompose a tightly

Thus, buffer_memor¢S;) = 7+ 6 = 13 and

SDF graphG , interdependent subgraph 6f . ThusPif P,  partition
ps(2) = gcd({qG(A)‘A ozt the actors ofG such thd@; is subindependenPof
. . N and if T is a subset of nodes whose corresponding sub-
and we refer to this quantity as tfepetition count of Z. graph is tightly interdependent, th&rl P,  BEI P,
5: Subindependence Thus if a loosely interdependent SDF graph is recur-

The following useful facts have been established con- Sively decomposed based on subindependence, the decom-

cerning the existence of a single appearance schedule for £0Sition process will always terminate on the same
given SDF graph [4]. subgraphs — the tightly interdependent components.

* An SDF graph has a single appearance schedule if andg: Loose Interdependence Algorithms

only if each strongly connected component has a single This property of tightly interdependent subgraphs has

appearance schedule. . been applied to develop a flexible scheduling framework
« A strongly connected SDF graph has a single appearance, S . .

. - . for optimized compilation of SDF graphs. The scheduling
schedule only if we can partition the actors into two sub-

setsP, and®, suchthd, is precedence-independentframework is based on a class of uniprocessor scheduling

of P, throughout a single schedule period. That is, for algorithms that we calbose interdependence algo-

. rithms. A loose interdependence algorithm consists of
each ara directed from a member ¢, to a member of A . ]
three component algorithms, which we call goyclic

Py, d(a) = c(a)g(snka)). scheduling algorithm, thesubindependence partition-
Th?s form of precedence-independence is referred to ing algorithm, and thetight scheduling algorithm. The
assubindependence Thus a strongly connected SDF  acyclic scheduling algorithris any algorithm for con-
graph has a single appearance schedule only if its nodesstrycting single appearance schedules for acyclic SDF
can be partitioned into subsdtg @l  suchBat is graphs; theubindependence partitioning algorittisnany
subindependent oP, . If such a partition exists, the gjgorithm that determines whether a strongly connected

strongly connected SDF graphle®sely interdependent SDF graph is loosely interdependent and if so, finds a sub-
otherwise it igightly interdependent. The following the- independent partition; and thight scheduling algorithm

orem relates loose interdependence to single appearancgg any algorithm that generates a valid schedule for a
schedules [3]: tightly interdependent SDF graph. The precise manner in

Theorem 1: A strongly connected, consistent SDF graph which the three component sub-algorithms interact to
G has a single appearance schedule if and only if every define a loose interdependence algorithm is specified in
strongly connected subgraph @f is loosely interdepen- [3].

dent. The following useful properties of loose interdepen-
Thus, partitioning loosely interdependent SDF graphs dence algorithms are established in [3].

defines a decomposition process for hierarchically sched- « Any loose interdependence algorithm constructs a single

uling SDF graphs that leads to single appearances schedappearance schedule when one exists.

ules whenever they exist. * If N is an actor in the input SDF graph and N is not con-

However, this method of decomposition is useful even fained in a tightly interdependent component of G, then
when single appearance schedules do not exist. This is due2ny loose interdependence algorithm schedules G in such

to two key properties of tightly interdependent SDF @ way that N appears only once.
graphs: « If N is an actor within a tightly interdependent compo-

- Tight interdependence is “additive™ B, art, are nent of the input SDF graph, then the number of times that
two subsets of nodes in an SDF graph such that N appears in the schedule generated by a loose interdepen-
dence algorithm is determined entirely by the tight sched-
uling algorithm.

1. The greatest common divisor is denotedjty



The last property states that the effect of the tight schedule corresponding to the topological FoRCD is
scheduling algorithm is independent of the subindepen- given by (12A)(36B)(9C)(16D) . This can be nested as
dence patrtitioning algorithm, and vice-versa. Any subinde- (3(4A)(3(4B)C))(16D), and this schedule has a buffer
pendence partitioning algorithm guarantees that there is memory requirement of 208. The flat schedule corre-
only one appearance for each node outside the tightly sponding to the topological soABDC , when nested
interdependent components, and the tight scheduling algo-optimally, gives the schedul@(3A)(9B)(4D))(9C) ,
rithm completely determines the number of appearances with a buffer memory requirement of 120.

for actors insirie the tightly interdependent components. The post-processing step can be accomplished opti-
For example, if we develop a new subindependence parti- majly by using a dynamic programming algorithm [17].

tioning algorithm that is more efficient in some way (e.9. it The running time of this algorithm on sparse SDF graphs
is faster, or reduces buffering cost more), we can substitute jg O(|V|3) , whereV is the set of vertices. We refer to this

it for any existing subindependence partitioning algorithm ost-processing algorithm B$PO.

without changing the compactness of the resulting looped

schedules. Similarly, if we develop a new tight scheduling /-1~ The Buffer Memory Lower Bound

algorithm that schedules any tightly interdependent graph In [2] the following lower bound on
more compactly than the existing tight scheduling algo- max_tokenge, S is derived, given a consistent SDF
rithm, we are guaranteed that using the new algorithm graphG , an edge G , and a valid single appearance
instead of the old one will lead to more compact schedules scheduleS .

overall. Definition 1: Thebuffer memory lower bound (BMLB)
7: Minimizing buffer memory of an SDF edge , denotddMLB(e) |, is given by
' In the echeduling framework above, the acyclic sched- _On(e) + d(e)) if (d(e) <n(e))
uling algorithm can be designed such that the total buffer- BMLB(e) = O d4(e) if (d(e) >
memory requirement is minimized to a certain extent O (e) if (d(e) =n(e))
(which we will elaborate on later). In this section, we yheren(e) = p(e)c(e) _
assume that the SDF graph is acyclic; the non-acyclic case ged({ p(e), c(e)})
will be dealt with later. If G=(V,B) is an SDF graph, then

It was shown in [17] that the buffer-memory minimi- U )3 BMLB(e)H is called the BMLB ofG , and a valid
zation problem is NP-complete, even for arbitrary, acyclic efTe U

homogenous SDF graphs.. i-_ience, heuristic techniques single appearance schedufe f6r  that satisfies
have to be used. Two heuristics, along with a post-process- .

ing algorithm have been developed; these two algorithms max_tokenge, § = BMLB( efor all el E is called a
are complimentary in the sense that one performs well on BMLB schedulefor G.

graphs having a more regular topology and regular rate 72 APGAN

changes, while the other performs well on graphs having ] o ) )
irregular topologies and irregular rate changes. The first of the two heuristics for generating topologi-
cal orderings of acyclic SDF graphs with the objective of

buffer memory minimization is a bottom-up procedure
calledAcyclic Pairwise Grouping of Adjacent Nodes
(APGAN). In this technique, a cluster hierarchy is con-
structed by clustering exactly two adjacent vertices at each
step. At each clusterization step, a pair of adjacent actors is

Essentially, for an acyclic graph, the problem of con-
structing a buffer-memory optimal single appearance
schedule boils down to generating an appropriate topolog-
ical ordering of the vertices in the graph, and then generat-
ing an optimal loop hierarchy. The number of topological
sorts in an acyclic graph can be exponential in the size of
the graph; for example, a complete bipartite graph with
2n nodes hagn!)2 possible topological sorts. Each topo-
logical sort gives a valid flat single appearance schedule
(i.e, a single appearance schedule with no nested loops).
The post-processing step then computes a buffer-memory
optimal loop hierarchy. For example, the graph in Figure 3
shows a bipartite graph with 4 nodes. The repetitions vec-
tor for the graph is given b§12, 36 9 1§ , and there
are 4 possible topological sorts for the graph. The flat

Figure 3. A bipartite SDF graph to illustrate the dif-
ferent buffer memory requirements possible with
different topological sorts.

1. A homogenous SDF graph hpée) = c(e) = 1 for all edges



chosen that maximizeg;  over all adjacent pairs that structing a schedule for the top-level subgraph, the sub-

don't introduce cycles in the graph when clustered. graph corresponding tQ, . This yields the “top-level”
Fig. 4 illustrates the operation of APGAN. Fig. 4(a) Schedule(2Q,)Q; (we suppress loops that have an itera-

shows the input SDF graph. Here tioncountof one) for the subgraph correspondin@jo

q(A/B,C D E =(62451, and for We continue in this manner to yield the valid single

i = 1,2 3 4, Q represents the th hierarchical actor 2ppearance schedu = (2(3A)B(2C))(5D)E  for Fig.
instantiated by APGAN. The repetition counts of the adja- 4(a).

cent pairs are given by From Sp and Fig. 4(a) it easily verified that

P({A B}) = p({A C}) = p({B,C}) = 2, and 0 0 ,

p({C,D}) = p({E,D}) = p({B,E}) = 1. Thus, buffer_memor{S,) andmg BMLB(e)5, whereE is
elTE

APGAN will select one of the three adjacent pairs
{A B}, {A C}, or{B, C} forits first clusterization the set of edges in Fig. 4(a), are identically equal3o
step.{ A, C} introduces a cycle when clustered, while the and thus in the execution of APGAN illustrated in Fig. 4, a
other two adjacent pairs do not introduce cycles. Thus, BMLB schedule is returned.
APGAN chooses arbitrarily betwedm, B} afi8, C} The APGAN approach, as we have defined it here,
as the first adjacent pair to cluster. does not uniquely specify the sequence of clusterizations
Fig. 4(b) shows the graph that results from clustering that will be performed. The APGAN technique together
{ A B} into the hierarchical actoR, . In this graph, with an unambiguous protocol for deciding between adja-
q(Q4,C,D,E) = (2451, and it is easily verified cent pairs that are tied for the highest repetition count form
that{Q,, C} uniquely maximizep over all adjacent anAPGAN instance which generates a unique schedule
pairs. Sincg{ Q,, C} does not introduce a cycle, APGAN for a given graph. We say that an adjacent pair is an
selects this adjacent pair for its second clusterization step. APGAN candidate if it does not introduce a cycle, and its
Fig. 4(c) shows the resulting graph. repetition count is greater than or equal to that of all other
Fig.s 4(d&e) show the results of the remaining two adjacent pairs that do not introduce cycles. Thus, an
clusterizations in our illustration of APGAN. We define APGAN instance is any algorithm that takes a consistent,
the subgraph corresponding toQ; to be the subgraph ~ acyclic SDF graph, repeatedly clusters APGAN candi-
that is clustered in the th clusterization step. A valid sin- dates, and then outputs the schedule corresponding to a
gle appearance schedule for Fig. 4(a) can easily be con-recursive traversal of the resulting cluster hierarchy.
structed by recursively traversing the hierarchy induced by It is shown in [2] that APGAN is optimal for a class of
the subgraphs corresponding to e s. We start by con-acyclic SDF graphs in the following way:

Theorem 2: [2] If G = (V, E) is a connected, acyclic
SDF graph that has a BMLB schedutde) <n(e) for all
e E; and P is an APGAN instance, then the schedule
obtained by applying® t& is a BMLB schedule f&r

Hence, whenever the achievable lower bound on the
buffer memory (that is, the buffer memory requirement of
the single appearance schedule having the lowest possible
buffer memory requirement) coincides with the BMLB,
and the other conditions of Theorem 2 hold, APGAN will
find the BMLB schedule. If the achievable lower bound is
greater than the BMLB, then the schedule returned by
APGAN could have a buffer memory requirement greater
than the achievable lower bound.

7.3 RPMC

APGAN constructs a single appearance schedule in a
bottom-up fashion by starting with the innermost loops
and working outward. An alternative approach, called
Recursive Partitioning by Minimum Cuts (RPMC),
computes the schedule by recursively partitioning the SDF
graph in such a way that outer loops are constructed before
Figure 4. An illustration of APGAN. the inner loops. Each patrtition is constructed by finding




the cut (partition of the set of actors) across which the for each actov in the graph and take the best one as the
minimum amount of data is transferred. The cut that is minimum cut. Since there alé¢|  actors in the gr@p¥,
produced must have the property that all edges that crosscuts are examined. Moreover, the cut produced will have
the cut have the same direction. This is to ensure that all bounded sets since cuts that produce unbounded sets are
actors on the left side of the partition can be scheduled discarded.

before any on the right side are scheduled. A constraint RPMC now proceeds by partitioning the graph by
that the partition be fairly evenly sized is also imposed. computing the legal minimum cut and forming the sched-
This is to increase the possibility of having gcd's that are |e (Pa(V)S)(P(VR)SR) , whereS, Sy are sched-
greater than unity for the repetitions of the actors in the ,jes for G, andG, respectively that are obtained
subsets prodl_Jced by the partition, thus reducing the buffer recyrsively by partitionings, an@g . It can be shown
memory requirement [17]. that the running time of RPMC for sparse SDF graphs,
Suppose thatG = (V, E) is a connected, consistent including post-optimization by DPPO, ®(|V|3)  [17].

SDF graph. Acut of G is a partition of the actor s&t

. o R 7.4 Non-acyclic SDF graphs
into two disjoint set§/, and . The cutégalif for all yel grap

edgese crossingthe cut (that is all edges that have one The above a_lgorithms work on acyclic SDF graph_s,
incident actor inv, and the other My ), we have and thus are suitable for use as the acyclic scheduling
src(e) 0V, and snk(e) 0 Vi . Given @ounding con- component in the scheduling framework described in Sec-

stantK <|V], the cut results in bounded sets if it satisfies  tion 6. Hence, buffer-optimal single appearance schedules
for cyclic graphs can be obtained to a limited extent in this

VL\ <K. (2) manner. But because buffer-memory is not taken into
. . ' account in either the subindependence partitioning algo-
The weight of edge  is defined age) = TNSHe) rithm, or the tight scheduling algorithm, as described in
The weight of the cut is the total weight of all the Section 6, there is no guarantee that the resulting schedule
edges crossing the cut. The problem then is to find the will be buffer-memory optimal. Combining buffer-mem-
minimum weight legal cut into bounded sets for the graph. ory considerations into the latter two components in the
This problem is believed to be NP-complete, although a scheduling framework is a possibility for future work.
proof has not been discovered [17]. Kernighan and Lin
[10] devised a heuristic procedure for computing cuts into
bounded sets but they considered only undirected graphs.  APGAN and RPMG have been tested on many practi-
Methods based on network flows [7] do not work because cal examples, as well as randomly generated graphs. Many
the minimum cut given by the max-flow-min-cut theorem practical systems, such as QMF filterbanks fall into the
may not be legal and may not be bounded [17]. Hence, acategory of SDF graphs having BMLB schedules; hence,
heuristic solution is needed for finding legal minimum cuts on these APGAN performs optimally. It is interesting to
into bounded sets. note that on non-uniform filterbank structures, the BMLB

RPMC examines the set of cuts produced by taking an cannot be achieved, and on such structures, RPMC gives

actor and all of its descendants as the actovget  and thePetter schedules than APGAN. RPMC outperforms
set of cuts produced by taking an actor and all of its ances-APGAN by almost 2 to 1 on random SDF graphs. Details

tors as the se¥, . For each such cut, an optimization step©f this study can be found in [2, 17].

is applied that attempts to improve the cost of the cut. 8: Alternative Approaches for Scheduling
Consider a cut produced by setting SDF Graphs

VR =K,

7.5 Examples and Experiments

Vi = (anc{yO{v}), Vg = VIV, The techniques in this paper focus on compiling SDF
graphs to minimize the code size and data memory size. At
the Aachen University of Technology, as part of the COS-
SAP software synthesis environment for DSP, Ritz et al.
have investigated the minimization of code size in con-
fjunction with a different secondary optimization criterion:
minimization of the context-switch overhead, or the aver-

for some actov , and I&tz(v) be the set of independent,
boundary actorf v in V. Aboundary actor inVy is

an actor that is not the predecessor of any other actor in
V. Following Kernighan and Lin [10], for each of these

actors, we can compute the cost difference that results i

the actor is moved int®, . This cost difference for an . o 8
actora inTx(v) is defined to be the difference between 29€ rate at whichctor activations occur [Ritz93]. An
the total weight of all input edges af  and the total weight actor activation occurs whenever two distinct actors are

of output edges o& . We then move those actors across!Voked in succession; for example, the schedule

that reduce the cost. We apply this optimization step for all (2(2B))(5C) results in five activations per schedule
cuts of the form(ancg Y 0 {v}) anddesd y O {v}) period. Activation overhead includes saving the contents



of registers that are used by the next actor to invoke, if nec- parallel processing context is explored by Govindarajan

essary, and loading state variables and buffer pointers intoand Gao in [9]. Here the goal is to minimize the buffer cost

registers. without sacrificing throughput — just as one of the goals
In multiprocessor computers, different iterations of a ?n this paper is to minimize buffering cost without sacrific-

loop can be executed in parallel on different processors. To INg code compactness.

achieve this, the code for the loop is replicated across theg- Summary

processors. This is in contrast to our problem, which

involves a uniprocessor implementation target, and in

which there are no explicitly specified loops (within the

schedule period). We would like to detect the opportunit
P ) PP y programmable processors. The techniques have focused

to construct multiple invocations of the same firing the minimizati f code si d the minimizati f
sequence, and we wish to group these invocations succesOn 1N€ Minimization ot code siz€, and th€ minimization o

sively in time so that they form successive iterations of a the memory required for the buffers that implement the
single loop. arcs in the input dataflow graph. Even though some of the

o , associated problems are NP-complete, we have described
_ Loop distribution and loop fusion [23] can be used 10 5154rithms that solve subsets of these problems optimally,
improve data locality for looped schedules of SDF graphs. gnq have described the manner in which these can be com-
Also, the use of iteration space tiling, as discussed in [22

: ) 24 bined with heuristics to give a comprehensive solution.
23], can be used to improve locality for code synthesized .
There are two central themes that underlie the tech-

for a looped schedule of an SDF graph. However, each . di din thi Th th based
loop transformation and schedule rearrangement applies to'gues discussed in this paper. These themes are based on
the concept osingle appearance scheduleshich is a

a localized section of the target code. Our clusterin . N
g g class of code-size-minimizing schedules for SDF pro-

scheme uses dataflow properties to guide a scheduler to : . . .
grams. The first theme is a uniprocessor scheduling frame-

more efficient solutions; loop transformations can then be K that tes by d ina the inout SDF h
applied to refine the resulting schedules. We believe that work that operales by decomposing the inpu grap

this will be more efficient than constructing naive sched- into acyclic subgraphs. The scheduling framework con-

ules, and relying solely on loop transformations to achieve structs smglle appearance schedules whenever the_y exist,
adequate data locality. and when single appearance schedules do not exist, the

. framework guarantees optimal code size for all actors that
In [1], Ade, Lauwereins, and Peperstraete develop e not contained in a certain type of subgraph called
upper bounds on the minimum buffer memory require- sy independent subgraphighe second theme involves
ment for certain classes of SDF graphs. Since these " hair of complimentary algorithms that construct single
bounds attempt to minimize over all valid schedules, and appearance schedules for acyclic SDF graphs that mini-
since single appearance schedules generally have muchyze the buffer memory requirement. These complimen-
larger buffer memory requirements than schedules that aretary algorithms can easily be incorporated into the

optimized for minimum buffer memory only, these bounds  gcpeqyling framework to handle the acyclic graphs that
cannot consistently give close estimates of the minimum result from the decomposition process.

buffer memory requirement for single appearance sched- . . .
yreq gle app These techniques have all been implemented in the

ules. . :
. Ptolemy software environment [6]. A detailed, compre-
In [11], Lauwereins, Wauters, Ade, and Peperstraete ponsijve treatment of the techniques discussed in this

present a generalization of SDF calglo-static data-  paper; including complete pseudocode specifications of
flow. A major advantage of cyclo-static dataflow is that it 4 algorithms, can be found in [5].

can eliminate large amounts of token traffic arising from
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