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Abstract
This paper reviews a set of techniques for compiling

dataflow-based, graphical programs for embedded signal
processing applications into efficient implementations on
programmable digital signal processors. This is a critical
problem because programmable digital signal processors
have very limited amounts of on-chip memory, and the
speed and power penalties for using off-chip memory are
often prohibitively high for the types of applications, typi-
cally embedded systems, where these processors are used.
Moreover, off-chip memory typically needs to be static,
increasing the system cost considerably.

The compiling techniques described in the paper are
developed for the synchronous dataflow model of compu-
tation, a model that has found widespread use for specify-
ing and prototyping DSP systems.

1: Introduction
Rapid prototyping environments such as those

described in [6], [12], [19], and [18] support code-genera-
tion for programmable digital signal processors (PDSP)
used in embedded systems. Traditionally, PDSPs have
been programmed manually, in assembly language, and
this is a tedious, error-prone process at best. Hence, gener-
ating code automatically is a desirable goal. Since the
amount of on-chip memory on such a PDSP is severely
limited, it is imperative that the generated code be parsi-
monious in its memory usage. Adding off-chip memory is
often infeasible due to increased cost, increased power
requirements, and a speed penalty that will affect the feasi-
bility of real-time implementations. One approach to auto-
matic code generation is to specify the program in an
imperative language such as C, C++, or FORTRAN and
use a good compiler. However, even the best compilers
today produce inefficient code [25]. In addition, specifica-
tions in imperative languages are difficult to parallelize,
are difficult to change due to side effects, and offer few
chances for any formal verification of program properties.
An alternative is to use a block diagram language based on

a model of computation with strong formal properties su
as synchronous dataflow (SDF) [15] to specify the syste
and to do code-generation starting from this specificatio
One reason that a compiler for a block diagram langua
is likely to give better performance than a compiler for a
imperative language is because the underlying mode
computation often imposes restrictions on the control flo
of the specification, and this can be profitably exploited 
the compiler.

SDF [15] is a special case of dataflow. In SDF, a pr
gram is represented by a directed graph in which each v
tex (actor) represents a computation, an edge specifie
FIFO buffer, and each actor produces (consumes) a fix
number of data values (tokens) onto (from) each output
(input) edge per invocation. A parameter on each ed
specifies the number of initial tokens residing on that a
(calleddelays).

The code-generation strategy followed in many blo
diagram environments is called threading; in this metho
the underlying model (in this case, SDF) is scheduled
generate a sequence of actor invocations (provided that
model can be scheduled at compile time of-course).
code generator then steps through this schedule and ins
the machine instructions necessary for the computat
specified by each actor it encounters; these instructions
obtained from a predefined library of actor code block
We assume that the code-generator generates inline c
this is because the alternative of using subroutine calls 
have unacceptable overhead, especially if there are m
small tasks. By “compile an SDF graph”, we mean exac
the strategy described above for generating a softw
implementation from an SDF graph specification of th
system in the block diagram environment.

A key problem that arises in this strategy is code-si
explosion since if an actor appears 20 times in the sch
ule, then there will be 20 code blocks in the generat
code. Clearly, such code duplication can consume en
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mous amounts of memory, especially if high invocation
counts are involved.

Generally, the only mechanism to combat code size
explosion while maintaining inline code is the use of loops
in the target code. If an actor’s code block is encapsulated
by a loop, then multiple invocations of that actor can be
carried out without any code duplication. This paper is
devoted to the construction of efficient loop structures
from SDF graphs to allow the advantages of inline code
generation under stringent memory constraints.

The predefined actor code blocks in the library can
either be hand-optimized assembly language (feasible
since the actors are usually small, modular components),
or it can be an imperative language specification that is
compiled by a compiler. As already mentioned, a compiler
for an imperative language cannot usually exploit the
restrictions in the overall control flow of the system. How-
ever, the code blocks within an actor are usually much
simpler, and may even correspond to basic blocks that
compilersare adept at handling. Hence, compiling an SDF
graph using the methods we describe in this paper does not
preclude the use of a good imperative language compiler;
we expect this hybrid approach to eventually produce code
competitive to hand-written code, as compiler technology
improves. However, in this paper, we only consider the
code and buffer memory optimization possible at the SDF
graph level.

2: Synchronous dataflow (SDF)
Fig. 1(a) shows a simple SDF graph. Each edge is

annotated with the number of tokens produced (consumed)
by its source (sink) actor, and the “D” on the edge from
actor  to actor  specifies a unit delay. Each unit of
delay is implemented as an initial token on the edge. Given
an SDF edge , we denote the source actor, sink actor, and
delay of  by , , and . Also,  and

 denote the number of tokens produced onto  by
 and consumed from  by and .

A schedule is a sequence of actor firings. We compile
an SDF graph by first constructing avalid schedule — a
finite schedule that fires each actor at least once, does not
deadlock, and produces no net change in the number of
tokens queued on each edge. Corresponding to each actor
in the schedule, we instantiate a code block that is
obtained from a library of predefined actors. The resulting

sequence of code blocks is encapsulated within an infin
loop to generate a software implementation of the SD
graph.

SDF graphs for which valid schedules exist are call
consistentSDF graphs. In [15], efficient algorithms are
presented to determine whether or not a given SDF gra
is consistent, and to determine the minimum number
times that each actor must be fired in a valid schedule. 
represent these minimum numbers of firings by a vec

, indexed by the actors in . (we often suppress t
subscript if  is understood).

3: Constructing memory-efficient loop
structures

This section informally outlines the interaction
between the construction of periodic schedules for SD
graphs and the memory requirements of the compil
code.

To understand the problem of scheduling SDF grap
to minimize memory requirements, it is useful to examin
closely the mechanism by which iteration is specified 
SDF. In an SDF graph, iteration of actors in a period
schedule arises whenever the production and consump
parameters along an edge in the graph differ. For exam
consider the SDF graph in Figure 2(a), which contai
three actors, labeled ,  and . The -to-  mismatc
on the left edge implies that within a periodic schedule,
must be invoked twice for every invocation of . Sim

Figure 1. Examples of SDF graphs.

A B C
2 1 3 1D

(a)

A B C
2 1 1 3D

(b)

A B

e
e e( )src e( )snk e( )d e( )p

e( )c e
e( )src e e( )snk

qG G
G

Figure 2. An example used to illustrate the interac-
tion between scheduling SDF graphs and the mem-
ory requirements of the generated code.

20 10 1020
A B C

Periodic Schedules

1. ABCBCCC

2. A(2 B(2 C))

3. A(2 B)(4 C)

4. A(2 BC)(2 C)

(a)

(b)

code block for A
for (i=0; i<2; i++) {

code block for B
code block for C

}
for (i=0; i<2; i++) {

code block for C
}

(c)

A B C 2 1
B

A
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larly, the mismatch on the right edge implies that we must
invoke  twice for every invocation of .

Figure 2(b) shows four possible periodic schedules
that we could use to implement Figure 2(a). For example,
the first schedule specifies that first we are to invoke ,
followed by , followed by , followed by  again, fol-
lowed by three consecutive invocations of . The paren-
thesized terms in schedules ,  and  are used to
highlight repetitive invocation patterns in these schedules.
For example, the term  in schedule  represents a
loop whose iteration count is  and whose body is the
invocation sequence ; thus,  represents the fir-
ing sequence . Similarly, the term rep-
resents the invocation sequence . Clearly, in
addition to providing a convenient shorthand, these paren-
thesized loop terms, calledschedule loops, present the
code generator with opportunities to organize loops in the
target program, and we see that schedule  corresponds to
a nested loop, while schedules  and  correspond to cas-
cades of loops. For example, if each schedule loop is
implemented as a loop in the target program, the code gen-
erated from schedule  would have the structure shown in
Figure 2(c).

We see that if each schedule loop is converted to a
loop in the target code, then eachappearanceof an actor
in the schedule corresponds to a code block in the target
program. Thus, since actor  appears twice in schedule
of Figure 2(b), we must duplicate the code block for  in
the target program. Similarly, we see that the implementa-
tion of schedule , which corresponds to the same invoca-
tion sequence as schedule  with no looping applied,
requires seven code blocks. In contrast, in schedules  and

, each actor appears only once, and thus no code duplica-
tion is required across multiple invocations of the same
actor. We refer to such schedules assingle appearance
schedules, and we see that neglecting the code size over-
head associated with the loop control, any single appear-
ance schedule yields an optimally compact inline
implementation of an SDF graph with regard to code size.
Typically the loop overhead is small, particularly in many
programmable DSPs, which usually have provisions to
manage loop indices and perform the loop test in hard-
ware, without explicit software control.

Scheduling can also have a significant impact on the
amount of memory required to implement the buffers on
the arcs in an SDF graph. For example, in Figure 2(b), the
buffering requirements for the four schedules, assuming
that one separate buffer is implemented for each arc, are
50, 40, 60, and 50 respectively.

Note that this model of buffering — maintaining a
separate memory buffer for each data flow arc — is conve-
nient and natural for code generation, and it is the model

used, for example, in the SDF-based code generat
described in [6], [12], [19]. More technical advantages 
this buffering model are elaborated on in [17].

There are two natural angles for approaching t
problem of joint minimization of code size and buffe
memory requirements. The first approach is to study t
problem of constructing a minimum buffer memory sche
ule, and then incorporate techniques for minimizing t
code size into the approach that is developed for minim
ing buffer memory. Here, the objective is to construct
minimum buffer memory implementation that has min
mum code size over all minimum buffer memory imple
mentations. Conversely, first priority could be given t
minimizing code size. This would yield the goal of com
puting a minimum buffer memory schedule over all impl
mentations that require minimum code size. Once suc
priority-based algorithm is established, post-processi
techniques can be developed to further balance the s
tions computed by the priority-based algorithm accordi
to the code size and buffer memory capacities of the tar
implementation.

This paper focuses on the latter angle of attack 
assigning first priority to code size minimization, and se
ond priority to minimizing the buffer memory require
ment. This approach is preferable because for practi
synchronous dataflow graphs, giving first priority to cod
size minimization typically yields a significantly more
favorable code size/buffer memory trade-off than givin
first priority to buffer memory minimization. A practical
example to illustrate this will be given in the final paper.

4: Notation
Given an edge  in , we define thetotal number of

samples exchanged on , denoted , or sim-
ply  if  is understood, by

. (1)

Thus,  is the number of tokens produced onto
in one period of a valid schedule.

For  F ig .  1 (a ) , ,
,  and  one  va l id  schedu le  i s

.

Given an SDF graph , a valid schedul
, and an edge  in ,  denotes the

maximum number of tokens that are queued on  duri
an execution of . For Fig. 1(a), if

, then
 and
.

We define thebuffer memory requirement of a
schedule  by

C B
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Thus,  and
. A valid single appear-

ance schedule that minimizes the buffer memory require-
ment over all valid single appearance schedules is called a
buffer memory optimal schedule.

If  is a subset of actors in a connected, consistent
SDF graph ,

,1

and we refer to this quantity as therepetition count of .

5: Subindependence
The following useful facts have been established con-

cerning the existence of a single appearance schedule for a
given SDF graph [4].
• An SDF graph has a single appearance schedule if and
only if each strongly connected component has a single
appearance schedule.
• A strongly connected SDF graph has a single appearance
schedule only if we can partition the actors into two sub-
sets  and  such that  is precedence-independent
of  throughout a single schedule period. That is, for
each arcα directed from a member of  to a member of

, .

This form of precedence-independence is referred to
assubindependence. Thus a strongly connected SDF
graph has a single appearance schedule only if its nodes
can be partitioned into subsets  and such that  is
subindependent of . If such a partition exists, the
strongly connected SDF graph isloosely interdependent,
otherwise it istightly interdependent. The following the-
orem relates loose interdependence to single appearance
schedules [3]:

Theorem 1: A strongly connected, consistent SDF graph
 has a single appearance schedule if and only if every

strongly connected subgraph of  is loosely interdepen-
dent.

Thus, partitioning loosely interdependent SDF graphs
defines a decomposition process for hierarchically sched-
uling SDF graphs that leads to single appearances sched-
ules whenever they exist.

However, this method of decomposition is useful even
when single appearance schedules do not exist. This is due
to two key properties of tightly interdependent SDF
graphs:
• Tight interdependence is “additive”: If  and  are
two subsets of nodes in an SDF graph such that

1.  The greatest common divisor is denoted bygcd.

 is nonempty, and the subgraphs associat
with  and  are both tightly interdependent, then th
subgraph associated with  is tightly interdepe
dent. Thus each SDF graph  has a unique set of n
overlapping “maximal” tightly interdependent subgraph
which are called thetightly interdependent components
of .
• Partitioning a loosely interdependent SDF graph
based on subindependence cannot decompose a tig
interdependent subgraph of . Thus, if ,  partitio
the actors of  such that  is subindependent of
and if  is a subset of nodes whose corresponding s
graph is tightly interdependent, then  or .

Thus if a loosely interdependent SDF graph is recu
sively decomposed based on subindependence, the dec
position process will always terminate on the sam
subgraphs — the tightly interdependent components.

6: Loose Interdependence Algorithms
This property of tightly interdependent subgraphs h

been applied to develop a flexible scheduling framewo
for optimized compilation of SDF graphs. The schedulin
framework is based on a class of uniprocessor schedu
algorithms that we callloose interdependence algo-
rithms . A loose interdependence algorithm consists 
three component algorithms, which we call theacyclic
scheduling algorithm, thesubindependence partition-
ing algorithm , and thetight scheduling algorithm. The
acyclic scheduling algorithmis any algorithm for con-
structing single appearance schedules for acyclic S
graphs; thesubindependence partitioning algorithmis any
algorithm that determines whether a strongly connect
SDF graph is loosely interdependent and if so, finds a s
independent partition; and thetight scheduling algorithm
is any algorithm that generates a valid schedule fo
tightly interdependent SDF graph. The precise manner
which the three component sub-algorithms interact 
define a loose interdependence algorithm is specified
[3].

The following useful properties of loose interdepen
dence algorithms are established in [3].
• Any loose interdependence algorithm constructs a sin
appearance schedule when one exists.
• If N is an actor in the input SDF graph and N is not co
tained in a tightly interdependent component of G, th
any loose interdependence algorithm schedules G in s
a way that N appears only once.
• If N is an actor within a tightly interdependent compo
nent of the input SDF graph, then the number of times t
N appears in the schedule generated by a loose interde
dence algorithm is determined entirely by the tight sche
uling algorithm.

S( )buffer_memory e S,( )max_tokens
e E∈
∑≡

S1( )buffer_memory 7 6+ 13= =
S2( )buffer_memory 3 6+ 9= =

Z
G

ρG Z( ) qG A( ) A Z∈{ }( )gcd≡

Z

P1 P2 P1
P2

P2
P1 d α( ) c α( )q α( )snk( )≥

P1 P2 P1
P2

G
G

Z1 Z2

Z1 Z2∩( )
Z1 Z2

Z1 Z2∪( )
G

G
G

G P1 P2
G P1 P2

T
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The last property states that the effect of the tight
scheduling algorithm is independent of the subindepen-
dence partitioning algorithm, and vice-versa. Any subinde-
pendence partitioning algorithm guarantees that there is
only one appearance for each node outside the tightly
interdependent components, and the tight scheduling algo-
rithm completely determines the number of appearances
for actors inside the tightly interdependent components.
For example, if we develop a new subindependence parti-
tioning algorithm that is more efficient in some way (e.g. it
is faster, or reduces buffering cost more), we can substitute
it for any existing subindependence partitioning algorithm
without changing the compactness of the resulting looped
schedules. Similarly, if we develop a new tight scheduling
algorithm that schedules any tightly interdependent graph
more compactly than the existing tight scheduling algo-
rithm, we are guaranteed that using the new algorithm
instead of the old one will lead to more compact schedules
overall.

7: Minimizing buffer memory
In the scheduling framework above, the acyclic sched-

uling algorithm can be designed such that the total buffer-
memory requirement is minimized to a certain extent
(which we will elaborate on later). In this section, we
assume that the SDF graph is acyclic; the non-acyclic case
will be dealt with later.

It was shown in [17] that the buffer-memory minimi-
zation problem is NP-complete, even for arbitrary, acyclic
homogenous1 SDF graphs. Hence, heuristic techniques
have to be used. Two heuristics, along with a post-process-
ing algorithm have been developed; these two algorithms
are complimentary in the sense that one performs well on
graphs having a more regular topology and regular rate
changes, while the other performs well on graphs having
irregular topologies and irregular rate changes.

Essentially, for an acyclic graph, the problem of con-
structing a buffer-memory optimal single appearance
schedule boils down to generating an appropriate topolog-
ical ordering of the vertices in the graph, and then generat-
ing an optimal loop hierarchy. The number of topological
sorts in an acyclic graph can be exponential in the size of
the graph; for example, a complete bipartite graph with

 nodes has  possible topological sorts. Each topo-
logical sort gives a valid flat single appearance schedule
(i.e, a single appearance schedule with no nested loops).
The post-processing step then computes a buffer-memory
optimal loop hierarchy. For example, the graph in Figure 3
shows a bipartite graph with 4 nodes. The repetitions vec-
tor for the graph is given by , and there
are 4 possible topological sorts for the graph. The flat

1.  A homogenous SDF graph has  for all edges .

schedule corresponding to the topological sort
given by . This can be nested a

, and this schedule has a buffe
memory requirement of 208. The flat schedule corr
sponding to the topological sort , when neste
optimally, gives the schedule ,
with a buffer memory requirement of 120.

The post-processing step can be accomplished o
mally by using a dynamic programming algorithm [17
The running time of this algorithm on sparse SDF grap
is , where  is the set of vertices. We refer to th
post-processing algorithm asDPPO.

7.1 The Buffer Memory Lower Bound

In  [2 ]  the  fo l low ing  lower  bound  on
 is derived, given a consistent SDF

graph , an edge  in , and a valid single appearan
schedule .

Definition 1: Thebuffer memory lower bound (BMLB)
of an SDF edge , denoted , is given by

,

where .

I f  i s  an  SDF graph ,  then

 is called the BMLB of , and a valid

single appearance schedule  for  that satisfie

 for all  is called a

BMLB schedule for .

7.2 APGAN

The first of the two heuristics for generating topolog
cal orderings of acyclic SDF graphs with the objective 
buffer memory minimization is a bottom-up procedur
calledAcyclic Pairwise Grouping of Adjacent Nodes
(APGAN). In this technique, a cluster hierarchy is con
structed by clustering exactly two adjacent vertices at ea
step. At each clusterization step, a pair of adjacent actor

p e( ) c e( ) 1= = e

2n n!( )2

12 36 9 16, , ,( )T

A

B D

C3 4

4
4

1 3

94

Figure 3. A bipartite SDF graph to illustrate the dif-
ferent buffer memory requirements possible with
different topological sorts.

ABCD
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
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  G

S G

e S,( )max_tokens e( )BMLB= e E∈
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chosen that maximizes  over all adjacent pairs that
don’t introduce cycles in the graph when clustered.

Fig. 4 illustrates the operation of APGAN. Fig. 4(a)
shows the  inpu t  SDF graph .  Here

,  and  fo r
,  represents the th hierarchical actor

instantiated by APGAN. The repetition counts of the adja-
cent pairs are given by

,  and
.  Thus ,

APGAN will select one of the three adjacent pairs
, , or  for its first clusterization

step.  introduces a cycle when clustered, while the
other two adjacent pairs do not introduce cycles. Thus,
APGAN chooses arbitrarily between  and
as the first adjacent pair to cluster.

Fig. 4(b) shows the graph that results from clustering
 into the hierarchical actor . In this graph,

, and it is easily verified
that  uniquely maximizes  over all adjacent
pairs. Since  does not introduce a cycle, APGAN
selects this adjacent pair for its second clusterization step.
Fig. 4(c) shows the resulting graph.

Fig.s 4(d&e) show the results of the remaining two
clusterizations in our illustration of APGAN. We define
the subgraph corresponding to  to be the subgraph
that is clustered in the th clusterization step. A valid sin-
gle appearance schedule for Fig. 4(a) can easily be con-
structed by recursively traversing the hierarchy induced by
the subgraphs corresponding to the s. We start by con-

structing a schedule for the top-level subgraph, the s
graph corresponding to . This yields the “top-leve
schedule  (we suppress loops that have an ite
tion count of one) for the subgraph corresponding to
We continue in this manner to yield the valid singl
appearance schedule  for Fig
4(a).

From  and Fig. 4(a) i t  easi ly verified that

 and , where  is

the set of edges in Fig. 4(a), are identically equal to
and thus in the execution of APGAN illustrated in Fig. 4,
BMLB schedule is returned.

The APGAN approach, as we have defined it her
does not uniquely specify the sequence of clusterizatio
that will be performed. The APGAN technique togeth
with an unambiguous protocol for deciding between ad
cent pairs that are tied for the highest repetition count fo
anAPGAN instance, which generates a unique schedu
for a given graph. We say that an adjacent pair is 
APGAN candidate if it does not introduce a cycle, and it
repetition count is greater than or equal to that of all oth
adjacent pairs that do not introduce cycles. Thus, 
APGAN instance is any algorithm that takes a consiste
acyclic SDF graph, repeatedly clusters APGAN cand
dates, and then outputs the schedule corresponding 
recursive traversal of the resulting cluster hierarchy.

It is shown in [2] that APGAN is optimal for a class o
acyclic SDF graphs in the following way:

Theorem 2: [2] If  is a connected, acyclic
SDF graph that has a BMLB schedule;  for a

; and  is an APGAN instance, then the schedu
obtained by applying  to  is a BMLB schedule for

Hence, whenever the achievable lower bound on t
buffer memory (that is, the buffer memory requirement 
the single appearance schedule having the lowest poss
buffer memory requirement) coincides with the BMLB
and the other conditions of Theorem 2 hold, APGAN w
find the BMLB schedule. If the achievable lower bound 
greater than the BMLB, then the schedule returned 
APGAN could have a buffer memory requirement great
than the achievable lower bound.

7.3 RPMC

APGAN constructs a single appearance schedule i
bottom-up fashion by starting with the innermost loop
and working outward. An alternative approach, calle
Recursive Partitioning by Minimum Cuts (RPMC),
computes the schedule by recursively partitioning the S
graph in such a way that outer loops are constructed be
the inner loops. Each partition is constructed by findin
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Figure 4. An illustration of APGAN.
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the cut (partition of the set of actors) across which the
minimum amount of data is transferred. The cut that is
produced must have the property that all edges that cross
the cut have the same direction. This is to ensure that all
actors on the left side of the partition can be scheduled
before any on the right side are scheduled. A constraint
that the partition be fairly evenly sized is also imposed.
This is to increase the possibility of having gcd’s that are
greater than unity for the repetitions of the actors in the
subsets produced by the partition, thus reducing the buffer
memory requirement [17].

Suppose that  is a connected, consistent
SDF graph. Acut of  is a partition of the actor set
into two disjoint sets  and . The cut islegal if for all
edges crossing the cut (that is all edges that have one
incident actor in  and the other in ), we have

 and . Given abounding con-
stant , the cut results in bounded sets if it satisfies

, . (2)

The weight of edge  is defined as .

The weight of the cut is the total weight of all the
edges crossing the cut. The problem then is to find the
minimum weight legal cut into bounded sets for the graph.
This problem is believed to be NP-complete, although a
proof has not been discovered [17]. Kernighan and Lin
[10] devised a heuristic procedure for computing cuts into
bounded sets but they considered only undirected graphs.
Methods based on network flows [7] do not work because
the minimum cut given by the max-flow-min-cut theorem
may not be legal and may not be bounded [17]. Hence, a
heuristic solution is needed for finding legal minimum cuts
into bounded sets.

RPMC examines the set of cuts produced by taking an
actor and all of its descendants as the actor set  and the
set of cuts produced by taking an actor and all of its ances-
tors as the set . For each such cut, an optimization step
is applied that attempts to improve the cost of the cut.
Consider a cut produced by setting

for some actor , and let  be the set of independent,
boundary actors of  in . A boundary actor in  is
an actor that is not the predecessor of any other actor in

. Following Kernighan and Lin [10], for each of these
actors, we can compute the cost difference that results if
the actor is moved into . This cost difference for an
actor  in  is defined to be the difference between
the total weight of all input edges of  and the total weight
of output edges of . We then move those actors across
that reduce the cost. We apply this optimization step for all
cuts of the form  and

for each actor  in the graph and take the best one as
minimum cut. Since there are  actors in the graph,
cuts are examined. Moreover, the cut produced will ha
bounded sets since cuts that produce unbounded sets
discarded.

RPMC now proceeds by partitioning the graph b
computing the legal minimum cut and forming the sche
ule , where  are sched-
ules for  and  respectively that are obtaine
recursively by partitioning  and . It can be show
that the running time of RPMC for sparse SDF graph
including post-optimization by DPPO, is  [17].

7.4 Non-acyclic SDF graphs

The above algorithms work on acyclic SDF graph
and thus are suitable for use as the acyclic schedul
component in the scheduling framework described in S
tion 6. Hence, buffer-optimal single appearance schedu
for cyclic graphs can be obtained to a limited extent in th
manner. But because buffer-memory is not taken in
account in either the subindependence partitioning alg
rithm, or the tight scheduling algorithm, as described 
Section 6, there is no guarantee that the resulting sche
will be buffer-memory optimal. Combining buffer-mem
ory considerations into the latter two components in t
scheduling framework is a possibility for future work.

7.5 Examples and Experiments

APGAN and RPMG have been tested on many prac
cal examples, as well as randomly generated graphs. M
practical systems, such as QMF filterbanks fall into th
category of SDF graphs having BMLB schedules; henc
on these APGAN performs optimally. It is interesting t
note that on non-uniform filterbank structures, the BML
cannot be achieved, and on such structures, RPMC g
better schedules than APGAN. RPMC outperform
APGAN by almost 2 to 1 on random SDF graphs. Deta
of this study can be found in [2, 17].

8: Alternative Approaches for Scheduling
SDF Graphs

The techniques in this paper focus on compiling SD
graphs to minimize the code size and data memory size
the Aachen University of Technology, as part of the CO
SAP software synthesis environment for DSP, Ritz et 
have investigated the minimization of code size in co
junction with a different secondary optimization criterion
minimization of the context-switch overhead, or the ave
age rate at whichactor activations occur [Ritz93]. An
actor activation occurs whenever two distinct actors a
invoked in succession; for example, the schedu

 results in five activations per schedul
period. Activation overhead includes saving the conten
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of registers that are used by the next actor to invoke, if nec-
essary, and loading state variables and buffer pointers into
registers.

In multiprocessor computers, different iterations of a
loop can be executed in parallel on different processors. To
achieve this, the code for the loop is replicated across the
processors. This is in contrast to our problem, which
involves a uniprocessor implementation target, and in
which there are no explicitly specified loops (within the
schedule period). We would like to detect the opportunity
to construct multiple invocations of the same firing
sequence, and we wish to group these invocations succes-
sively in time so that they form successive iterations of a
single loop.

Loop distribution and loop fusion [23] can be used to
improve data locality for looped schedules of SDF graphs.
Also, the use of iteration space tiling, as discussed in [22,
23], can be used to improve locality for code synthesized
for a looped schedule of an SDF graph. However, each
loop transformation and schedule rearrangement applies to
a localized section of the target code. Our clustering
scheme uses dataflow properties to guide a scheduler to
more efficient solutions; loop transformations can then be
applied to refine the resulting schedules. We believe that
this will be more efficient than constructing naive sched-
ules, and relying solely on loop transformations to achieve
adequate data locality.

In [1], Ade, Lauwereins, and Peperstraete develop
upper bounds on the minimum buffer memory require-
ment for certain classes of SDF graphs. Since these
bounds attempt to minimize over all valid schedules, and
since single appearance schedules generally have much
larger buffer memory requirements than schedules that are
optimized for minimum buffer memory only, these bounds
cannot consistently give close estimates of the minimum
buffer memory requirement for single appearance sched-
ules.

In [11], Lauwereins, Wauters, Ade, and Peperstraete
present a generalization of SDF calledcyclo-static data-
flow. A major advantage of cyclo-static dataflow is that it
can eliminate large amounts of token traffic arising from
the need to generate dummy tokens in corresponding
(pure) SDF representations. Although cyclostatic dataflow
can reduce the amount of buffering for graphs having cer-
tain multirate actors like explicit down samplers, it is not
clear whether this model can in general be used to get
schedules that are as compact as single appearance sched-
ules for pure SDF graphs but have lower buffering require-
ments than those arising from the techniques given in this
paper.

A linear programming framework for minimizing the
memory requirement of a synchronous dataflow graph in a

parallel processing context is explored by Govindaraj
and Gao in [9]. Here the goal is to minimize the buffer co
without sacrificing throughput — just as one of the goa
in this paper is to minimize buffering cost without sacrific
ing code compactness.

9: Summary
This paper has reviewed a set of techniques for m

ping SDF programs for embedded digital signal proce
ing applications into efficient implementations o
programmable processors. The techniques have focu
on the minimization of code size, and the minimization 
the memory required for the buffers that implement th
arcs in the input dataflow graph. Even though some of 
associated problems are NP-complete, we have descr
algorithms that solve subsets of these problems optima
and have described the manner in which these can be c
bined with heuristics to give a comprehensive solution.

There are two central themes that underlie the tec
niques discussed in this paper. These themes are base
the concept ofsingle appearance schedules, which is a
class of code-size-minimizing schedules for SDF pr
grams. The first theme is a uniprocessor scheduling fram
work that operates by decomposing the input SDF gra
into acyclic subgraphs. The scheduling framework co
structs single appearance schedules whenever they e
and when single appearance schedules do not exist,
framework guarantees optimal code size for all actors t
are not contained in a certain type of subgraph call
tightly independent subgraphs. The second theme involves
a pair of complimentary algorithms that construct sing
appearance schedules for acyclic SDF graphs that m
mize the buffer memory requirement. These complime
tary algorithms can easily be incorporated into th
scheduling framework to handle the acyclic graphs th
result from the decomposition process.

These techniques have all been implemented in 
Ptolemy software environment [6]. A detailed, compre
hensive treatment of the techniques discussed in t
paper, including complete pseudocode specifications
the algorithms, can be found in [5].
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