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Abstract 
koyager Multimedia Server is being 

developed in the Futures Lab of the Mathematics and 
Computer Science Division at .4 rgonne iVational Lab- 
omtory. A s  a network-based service for recording and 
playing multimedia streams, it is important that the 
Voyager system be capable of sustaining certain mini- 
mal levels of performance in order for it to be a viable 
system. In this article, we examine the performance 
characteristics of the server. As  we examine the ar- 
chitecture of the system, we try  to determine where 
bottlenecks lie, show actual cs potential performance, 
and recommend a ~ a s  for improvement through custom 
architectures and system tuning. 

1 Introduction 
The Argonne Computing and Communications In- 

frastructure Fu tu r s  Laboratory (Futures Lab) [l] 
was created to explore, develop, and prototype next- 
generation computing and communications infrastruc- 
ture systems. An  important goal of the Futures Lab 
project is to understand hoiv to incorporate advanced 
display and media server systems into scientific com- 
puting environments. The objective is to create new 
col I aborat ive environment technologies that combine 
advanced network i n  5. virtual space technology, and 
high-end virtua! environments to enable the construc- 
tion of virtual teams for scientific research. 

The Voyager multistream multimedia server is one 
of the cornerstone projects in the Futures Lab. The 
goal of this project is to develop the next-generation 
hypermedia server architecture that will enable the 
construction and rapid deployment of tools for build- 
ing virtual organizations. Ioyager is designed to ul- 
timately replace the types of servers that we cur- 
rently use for supporting collaborative environments, 
tools such as ftp servers, iVeb servers, and docu- 
ment servers. In addition. Voyager will provide an  
extensible environment for making audio, video, and 
other stream-oriented recordings available to others 
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on the network. We envision Voyager as the tool that  
each user in a virtual organization will use to publish 
his/her information for the rest of the organization's 
users. 

Voyager is being designed to be deployed both 
at the desktop level and as a large, scalable server 
for high-performance media-serving applications. W e  
have demonstrated the server at the Supercomputing 
95 Conference, at the Supercomputing 96 Conference 
and at various DOE technology demonstrations. The 
voyager server is online now for users to view archives. 
We hope to soon make the server available to our col- 
leagues for recording purposes as well. 

2 Multimedia Server Architecture 

timedia server is shown in Figure l .  
2.1 Client Side 

Although we are concerned here mainly with the 
server, a few words about the client side are appropri- 
ate. With the growing presence of mu!timedia-enabled 
systems (those with video/audio encode and decode 
capabilities), we see an integration of collaborative 
computing concepts into the everyday environments 
of future scientific and technical workplaces. Desktop 
teleconferencing is in common use today, while more 
complex desktop teleconferencing technology that re- 
lies on the availability of multipoint (greater than two 
nodes) enabled tools is now starting to become avail- 
able on PCs. It is this increasing desktop multimedia 
presence that motivates the design of a multimedia 
server. Ideally one would like the ability to capture. 
record, playback, index, annotate, and distribute mul- 
timedia stream data as easily as we currently handle 
test or still image data. 
2.2 Network 

Another motivating force for the multimediaserver 
is the growing availability and quality of network pres- 
ence. Most universities and research institutions have 
at least TI capability, and we are seeing increased use 

The general model for a synchronous, scalable mul- 
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Audio bandwidth requirements are generally less 
stringent as shown in Table 2. 
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Figure 1: MultiMedia Server 

of the Internet Protocol over high-speed ATM (Asyn- 
chronous Transfer Mode) networks [2] [3]. The evo- 
lution of networks such as the Metropolitan Research 
and Education Network (iMREN), a high-performance 
ATM network; vBSS (very high speed Backbone Net- 
work Service) , a national high-performance network 
devoted to meritorious research projects; and the Bay 
Area Gigabit Network (BAGSet) [4] are providing ev- 
eryday access to high-speed networks for researchers 
and educators, making practical the transmission of 
multimedia streams. The evolution of the MBONE 
and regular use of these networks for teleseminars, as 
showcased by BAGSet, gives us a glimpse of the fu- 
ture of network-based multimedia conferencing. 

For reference, Table 1 shows a summary of esti- 
mates of bandwidth requirements for various video en- 
codings. 

Table 1: Bandwidth Requirements 
I Encoding I Frame Size I Frame Rate I Bandwidth - 

JPEG 320x240 30 fps 5 Mbps 
h.261 352x288 20 fps 128Kbps 
h.261 3.52~288 30 fps 256K bps 
Uncompressed 320x240 30 fps 17 Mbps 

Uncompressed 640x480 30 fps 
8 bits per pixel 

24 bits per pixel I I 210 Mbps 

Table 2: Audio Bandwidth Requirements 
Encoding Sample Size Mode Rate Bandwidth 
PCM 8 bit mono 8 KHz 64 Kbps 
PCM 8 bit stereo 16 KHz 256 Kbps 
PCM 16 bit stereo 44 KHz 114 Mbps 

2.3 The Multimedia Server 
To effectively serve a wide community, a Web-based 

multimedia server must be scalable and robust, yet 
easy to use and easily accessible. At a minimum, it 
must provide the following functions: 

0 Web service to manage the client interaction. 

0 Data filters/transcoders to provide consistent 
storage formats while maintaining the ability to 
play back streams in different modes, as requested 
by users. 

0 Scheduling mechanisms to ensure correct play- 
back timing and synchronization. 

0 Ability to store and play continuous-time data. 

We believe the server should provide these func- 
tions using readily available software and using Inter- 
net standards, in order to reach the widest possible 
community. 
2.4 Multimedia File System 

Central to the performance of a multimediaserver is 
the filesystem into which the mediastreams are stored. 
Normal filesystems are not designed for continuous- 
time data; under load, a conventional file system may 
provide lower throughput and higher response times, 
thereby causing the server to drop incoming data when 
recording or miss playout deadlines on playback. A 
multimedia filesystem, on the other hand, is designed 
to support the demands of real-time storage and play- 
back of continuous-time data streams. 

3 The Voyager Implementation 
The Voyager server is implemented on an IBM SP2 

using a suite of commonly available software tools: 

0 The IBM Tiger Shark multimedia file system [5] 

The Per1 language [6] [i] 

0 The Nexus run-time communications package [SI 

0 The ACE communications toolkit [9] 1101 



0 The LBNL multimedia tools Vic and Vat [ll] catalogued by a relational database. The session dae- 
mons are instantiated by a set of CGI programs on 

Standard Transport (RTp) the Web server that participate in a distributed nPerl 
[I21 server control application. 

The media streams are transported by using RTP, 
the Realtime Transport Protocol as specified in RFC 

using either Motion JPEG [15] or h.261 [IS]. Audio 
typically is encoded by using PCM. 
3.3 Client Hardware 

3.1 Voyager Hardware 

IBM 9076 SP2 [13]. 

are configured as follows: 

The current voyager system is on an 1889 [12], and RFC 1890 [14]. Video is encoded by 

This is a twelve-node machine. Eight of the nodes 

SP1 thin node (Rs6000/370 planar) 

256M memory 

2G disk 

lOMbps ethernet 

OC3 ATM 

TB2 HPS adapter 

The other four nodes are configured as follows: 

SP2 wide node (RS6000/590 planar) 

256M memory 

0 8G local disk 

2 Fast/Wide SCSI adapters 

0 18G Fast/Wide SCSI disk 

0 IOMbps ethernet 

TB2 HPS adapter 

The connection to  the Internet on the ATM- 
equipped nodes is via OC3 ATM to a Cisco 7513 
router. Son-ATXI nodes connect to the Internet via 
ethernet to an  RS/SOOO 970 with an ATM connection 
to the same Cisco router. 

A SPARCstation 20 serves as the Voyager Web and 
database server. 
3.2 Server Software 

Voyager relies on the IBJI Tiger Shark filesystem 
[5], now part of the IBM Multimedia Server product, 
to provide reliable access to the 72 GB of fast/wide 
SCSI disk that is striped across several nodes. 

The Tiger Shark filesystem is present on the eight 
thin nodes. We use the IBJl Virtual Shared Disk to 
make the fast/wide disk devices, resident on the wide 
nodes, visible to the filesystem on the thin nodes. 

Media streams are played between disk and network 
with Voyager playback and recording daemons that 
run  on the fileserver nodes. The available content is 

The hardware that we have used at ANL includes 

RS/6000 41T workstations, with the IBM Ultime- 
dia video and audio adapters and Turboways OC3 
ATM adapters. This platform supports hardware 
JPEG compression and decompression with ana- 
log video output. 

RS/6000 43P workstation, with the onboard au- 
dio, Parallax video capture adapter, and Cheetah 
PCI ATM adapter. This platform also supports 
hardware JPEG compression and decompression. 

PCs running Windows95 and Windows NT. We 
currently do not have video capture available 
in these machines, but audio capture and au- 
diojvideo playback are operational. 

Other Unix workstations, including Sun SPARG 
station and SGI Onyx, Indigo, and Indy. 

For playback, no specific hardware is required. 
3.4 Client Software 

record media sessions in Voyager: 
A client needs the following software to view and 

0 .4 Web browser that supports forms 

RTP-compliant video and audio clients 

We use the Vic [ll] video client and the Vat au- 
dio clients from LBNL on the workstation platforms. 
Ports of these tools are also available for Microsoft 
Windows. We have also used the RTP tools from Pre- 
cept [ 171. 

4 Theoretical Voyager Performance 

In this section we discuss the performance limita- 
tions of the Voyager system that are dictated by the 
architecture of the system we are using. Figure 2 is a 
detailed schematic our SP system. 

For each interconnect in the system we can deter- 
mine (by reading hardware specifications or by other 

Limitations 
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Figure 2: 

Table 3: Ideal COI 

Component 
OC3 ATM 
Microchannel Bus 
TB2 Adapter 
SP Switch 
Fast/lVide SCSI Bus 
SCSI Disk 

lponent Bandwidths 

(Mb/s) Streams 

1200 240 

28 

Wide 

server. There are eight 155 Mb/s OC3 AT31 connec- 
tions coming into the server. Hence, the ATM network 
imposes a maximum of 8 nodes x 31 streams per node 
= 248 streams. 

Other absolute maximums include 

0 TB2 adapter bandwidth imposes a 256-stream 
limit 

0 Total SCSI bus bandwidth imposes a 256-stream 
limit 

0 Total disk bandwidth imposes a 201-stream limit 

We can see that from a theoretical standpoint the 
system is fairly well balanced. The limiting factor in 
the total bandwidth is the SCSI disk bandwidth, limit- 
ing the server to 201 streams. However, we know that 
we will not achieve in practice the bandwidths that 
we have laid out in this section. In order to optimally 

means) the best possible bandwidth. Given a max- 
imum bandwidth on a connection, we then compute 
the maximum number of 5 Mb/s streams that we can 
transfer on that connection. Table 3 summarizes the 
bandwidth limits and the resulting stream capacities. 

We can first draw some conclusions about the abso- 
lute maximum number of streams supportable by the 



configure the server, we must empirically determine 
the bottlenecks in the system. 

5 Experiments 
We have been running a Voyager server in the Fu- 

tures Laboratory for roughly two years as a resource 
for the development of the server itself and for inter- 
mittent demonstration and production use. We are 
currently upgrading the SP hardware on which Voy- 
ager runs and plan on making Voyager a solid part of 
the Futures Laboratory infrastructure. Toward that 
end, we wish to examine the performance of the Voy- 
ager system on the hardware we have in place in order 
to more completely understand the system, optimize 
the configuration, and plan for expansion. 

We have performed several experiments to probe 
the actual performance of our SP hardware. These 
experiments exercise three of the potential bandwidth 
chokepoints in the system: the ATM network interface 
at the filesystem nodes, raw disk bandwidth and scala- 
bility, and performance of VSD-extended raw disk de- 
vices. We also probe the performance observed when 
running both the ATM network and the Tiger Shark 
file system. 

The benchmarks use two basic application pro- 
grams: a simple stream source and a flexible event- 
driven stream sink. Each is implemented in C++ and 
uses an ACE Reactor [9, IO] object to handle the de- 
multiplexing of multiple streams and the invocation of 
timer callbacks. 

The stream source is invoked with a desired band- 
width, block size, and target host and UDP port. It 
computes the packet transmission frequency 

bandwidth 
blocksize F =  

and sends UDP datagrams of size blocksize at that 
rate to the specified host. Each datagram is tagged 
with a stream identifier and a sequence number. The 
sender logs the number of packets it sends. 

The stream sink listens on a given UDP port for 
data streams from the sender. It demultiplexes mul- 
tiple streams based on  the stream identifier. For each 
stream, it gathers statistics on the first and last se- 
quence numbers received and the number of packets 
received. These statistics are logged at  the end of the 
run. The packets received from the network can op- 
tionally be routed to disk, one file per stream. 

The stream sink application has the additional ca- 
pability of determining precise CPU utilization for the 
duration of the run. The IBM AIX operating system 
maintains a set of counters that contain cumulative 
counts of the number of clock ticks spent in idle, user 

mode, kernel mode, and wait states. The stream sink 
can be configured to probe the counters at  the start 
and finish of the run and at periodic intervals during 
the run. We use this information to determine the 
amount of CPU loading induced by the various exper- 
iments. 
5.1 ATM Network Performance 

The network performance benchmark measures the 
number of fixed-bandwidth streams that an SP node 
can source or sink without losing packets. We tested 
the capacity of the node both to send multiplestreams 
and to receive multiple streams. The sending exper- 
iment placed multiple stream sources on one SP thin 
node, and distributed stream sinks across the other 
seven thin nodes and three workstations. The receiv- 
ing experiment placed a single stream sink on one SP 
thin node and stream sources on the other thin nodes 
and the same three workstations. For each run we 
logged the CPU utilization and packet loss rates. 

Figure 3 is a plot of the CPU utilization and packet 
loss rate versus the number of streams for one of the 
runs. Note that the sum of user and kernel CPU uti- 
lization is roughly linear with respect to the number of 
streams, up to full utilization. Hence, we can compute 
a best-fit line for the CPU utilization and determine a 
value for the percentage CPU utilization per stream. 
Note also that the packet loss rate begins to rise when 
full CPU utilization is reached. The point at  which 
the packet loss begins to rise defines the maximum 
number of streams a node can sustain. We summarize 
these results in Table 4. 
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Figure 3: Node network-only performance 

5.2 Raw Disk Performance 
The next benchmark measures the performance of 

the disks used in the Voyager multimedia filesystem. 



8192 

128Kb/s 
Send 

This experiment is somewhat different from the oth- 
ers in that it does not compute a maximumnumber 
of fixed-bandwidth streams: rather, it measures the 
maximum bandwidth a single writer can obtain to a 
disk or set of disks. The experiment used the AIX 
dd command to write to the raw disk device. When 
testing multiple disks multiple copies of dd were run, 
each writing to a different disk device. 

We ran two versions of this test. The first was run 
on a SP wide node writing to locally attached disks. 
The results of this test are plotted in Figure 4. The 
second test was run on a SP thin node, accessing a set 
of disks residing on one of the wide nodes via VSD. 
The results of both runs are summarized in Table 5, 
where we have computed the aggregate and average 
per-disk bandwidths. 

Figure 4: Raw disk bandwidth 

Significant in the results of this experiment is the 
fact that the bandwidth to locally attached disks 
scales fairly well, showing that we have not yet sat- 
urated the SCSI bus. However, the per-disk perfor- 
mance of the VSD disks is disappointing in two re- 
gards. Single-disk performance is degraded signifi- 
cantly from the locally attached disk. and scaling is 

8 192 
512 2.7 
1024 

Max 
Streams 
9 
14 
50 
8 
12 
37 
66 

Table 5:  Raw disk performance 
Number and Aggregate Per-disk 

Type of Disks Bandwidth Bandwidth 
1 local 3.58 3.58 
2 local 7.04 3.52 
3 local 10.42 3.47 
4 local 13.14 3.28 I 

1 VSD 2.80 2.80 
2 VSD 4.43 2.22 
3 VSD 4.81 1.60 
4 VSD 5.56 1.39 

poor. It is not immediately obvious from looking at 
the architecture of the system that this should be the 
case. There are a number of configuration and tuning 
parameters in the AIX network interface, TB2 adapter 
and VSD software; though we have already performed 
some tuning of the system, we suspect that the poor 
performance of VSD may be due to a misconfiguration 
of one or more of these parameters. 

5.3 ATM to Tiger Shark Performance 
The final experiment involved a precise model of a 

Voyager recording daemon. We ran a stream sink on 
a SP thin node, configured to write the stream data to 
a Tiger Shark filesystem. A varying number of stream 
sources were placed on other nodes and the worksta- 
tions. We gathered the same data as in the ATM net- 
work performance benchmark: CPU utilization and 
packet loss rate. 

We also varied the configuration of the Tiger Shark 
file systems into which the streams were written. We 
tested file systems that consisted of one-, twc-, and 
three-node stripes. In each case a single disk was con- 
figured on each node. 

Figure 5 is a plot of the CPU utilization and packet 
loss rate versus the number of streams for a represen- 
tative run. We again see that the sum of the user and 
kernel CPU utilization is roughly linear with respect 



Number of 
Disk Nodes 
1 
1 
1 
2 
2 
2 
3 
3 

to the number of streams; we summarize the results 
of performing the best-fit calculations for this data in 
Table 6. 

Block %CPU per Max 
Bandwidth Size Stream Streams 
5Mb/s 4096 18.6 5 
5Mb/s 8192 13.3 7 
128Kb/s 512 7.5 37 
5Mb/s 4096 18.3 5 

128Kb/s 512 2.7 37 
5Mb/s 4096 16.2 5 
5MbIs 8192 11.2 8 

5Mb/s 8192 11.8 8 

Figure 5: Node networkldisk performance 

5.4 Analysis 
The clearest result of this set of experiments is the 

severe penalty paid in CPU use for driving streams 
to or from the AT11 network interface. This penalty 
is due to the processing that the UDP and IP pro- 
tocols require: checksum calculations, segmentation 
and reassembly, context switching, and data copy- 
ing. Relieving the system CPU of the responsibility of 
this processing will increase the capacity of the node 
by making more CPU time available for the Voyager 
server application daemons. 

Zero-copy ATM adapter technology is one solution 
to this problem. Researchers a t  IBM have built a pro- 
totype ATSI adapter called Cheetah which uses DMA 
to transfer data between the ATM network and main 
memory [18, 191. ‘The system CPU is only involved in 
the setup of packet transfers. We have demonstrated 
the use of this adapter in  a Voyager client machine, 

where it proved to work very efficiently. 
Such technology would prove very useful in the 

server itself. Unfortunately, we cannot currently uti- 
lize the Cheetah technology in the server: Cheetah 
is restricted to use on the PCI bus, while the nodes 
in the Voyager SP are based on a microchannel bus. 
However, we can make use of the newly-available raw 
AAL5 ATM interface on the SP nodes, which bypasses 
the UDP and IP protocol stacks. We will be exper- 
imenting with this technology after the upgrade of 
the Voyager SP hardware, performing another set of 
benchmark experiments to determine the new balance 
of bandwidth chokepoints in the upgraded hardware. 

6 Concluding Remarks 
In this article, we have presented a technical de- 

scription of a scalable multimedia server. We have 
shown theoretical limits in our implementation and 
measured actual limitations through a series of exper- 
iments. Through these experiments, we have sought 
to determine the sources of loss of performance in the 
server. We have investigated sources of contention and 
overhead and have identified at least two actionable 
sources. 

We have discovered that file system overhead is 
more than expected and does not scale as well as we 
had expected. More investigation into file system tun- 
ing for Tiger Shark and the IBM Virtual Shared Disk 
is needed. We will continue these experiments and 
seek to improve the file system performance. 

Secondly, we have discovered a source of overhead 
in the protocol stack driving the ATM connection. We 
have some evidence that the newly available zerecopy 
ATM driver from IBM or a raw AAL5-ATM interface 
will work well to reduce this overhead. 
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