
Performance Model of the Argonne Voyager Multimedia Server

Terrence Disz, Robert Olson, and Rick Stevens
hl athematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

(disz,olson,stevens)@mcs.anl.gov

Abstract
koyager Multimedia Server is being

developed in the Futures Lab of the Mathematics and
Computer Science Division at .4 rgonne iVational Lab-
omtory. A s a network-based service for recording and
playing multimedia streams, it is important that the
Voyager system be capable of sustaining certain mini-
mal levels of performance in order for it to be a viable
system. In this article, we examine the performance
characteristics of the server. As we examine the ar-
chitecture of the system, we try to determine where
bottlenecks lie, show actual cs potential performance,
and recommend a ~ a s for improvement through custom
architectures and system tuning.

1 Introduction
The Argonne Computing and Communications In-

frastructure Fu tu r s Laboratory (Futures Lab) [l]
was created to explore, develop, and prototype next-
generation computing and communications infrastruc-
ture systems. An important goal of the Futures Lab
project is to understand hoiv to incorporate advanced
display and media server systems into scientific com-
puting environments. The objective is to create new
col I aborat ive environment technologies that combine
advanced network i n 5. virtual space technology, and
high-end virtua! environments to enable the construc-
tion of virtual teams for scientific research.

The Voyager multistream multimedia server is one
of the cornerstone projects in the Futures Lab. The
goal of this project is to develop the next-generation
hypermedia server architecture that will enable the
construction and rapid deployment of tools for build-
ing virtual organizations. Ioyager is designed to ul-
timately replace the types of servers that we cur-
rently use for supporting collaborative environments,
tools such as ftp servers, iVeb servers, and docu-
ment servers. In addition. Voyager will provide an
extensible environment for making audio, video, and
other stream-oriented recordings available to others

The Argonn
on the network. We envision Voyager as the tool that
each user in a virtual organization will use to publish
his/her information for the rest of the organization's
users.

Voyager is being designed to be deployed both
at the desktop level and as a large, scalable server
for high-performance media-serving applications. W e
have demonstrated the server at the Supercomputing
95 Conference, at the Supercomputing 96 Conference
and at various DOE technology demonstrations. The
voyager server is online now for users to view archives.
We hope to soon make the server available to our col-
leagues for recording purposes as well.

2 Multimedia Server Architecture

timedia server is shown in Figure l .
2.1 Client Side

Although we are concerned here mainly with the
server, a few words about the client side are appropri-
ate. With the growing presence of mu!timedia-enabled
systems (those with video/audio encode and decode
capabilities), we see an integration of collaborative
computing concepts into the everyday environments
of future scientific and technical workplaces. Desktop
teleconferencing is in common use today, while more
complex desktop teleconferencing technology that re-
lies on the availability of multipoint (greater than two
nodes) enabled tools is now starting to become avail-
able on PCs. It is this increasing desktop multimedia
presence that motivates the design of a multimedia
server. Ideally one would like the ability to capture.
record, playback, index, annotate, and distribute mul-
timedia stream data as easily as we currently handle
test or still image data.
2.2 Network

Another motivating force for the multimediaserver
is the growing availability and quality of network pres-
ence. Most universities and research institutions have
at least TI capability, and we are seeing increased use

The general model for a synchronous, scalable mul-

The submitted manuscript has been created
by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with
the U S Department of Enerev. The U.S
Government retains for itself, a id others act-
ing on its behalf, a paid-up. nonexclusive,
irrevocable worldwide license in said article
to reproduce. prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly. by or on behalf of
the Government.

mailto:disz,olson,stevens)@mcs.anl.gov

Portions of this doaunent may be iliegibie
in electronic image prodock h a g s are
produced fhm the bst avahble original
dOr_lnmmt

MM Clients
(encodeldecode)

Audio bandwidth requirements are generally less
stringent as shown in Table 2.

I Web Server Interface 1
\ ,

I Data FilteWScheduling 1
,
1 i ReaderANriter

Multimedia Flle

Figure 1: MultiMedia Server

of the Internet Protocol over high-speed ATM (Asyn-
chronous Transfer Mode) networks [2] [3]. The evo-
lution of networks such as the Metropolitan Research
and Education Network (iMREN), a high-performance
ATM network; vBSS (very high speed Backbone Net-
work Service) , a national high-performance network
devoted to meritorious research projects; and the Bay
Area Gigabit Network (BAGSet) [4] are providing ev-
eryday access to high-speed networks for researchers
and educators, making practical the transmission of
multimedia streams. The evolution of the MBONE
and regular use of these networks for teleseminars, as
showcased by BAGSet, gives us a glimpse of the fu-
ture of network-based multimedia conferencing.

For reference, Table 1 shows a summary of esti-
mates of bandwidth requirements for various video en-
codings.

Table 1: Bandwidth Requirements
I Encoding I Frame Size I Frame Rate I Bandwidth -

JPEG 320x240 30 fps 5 Mbps
h.261 352x288 20 fps 128Kbps
h.261 3.52~288 30 fps 256K bps
Uncompressed 320x240 30 fps 17 Mbps

Uncompressed 640x480 30 fps
8 bits per pixel

24 bits per pixel I I 210 Mbps

Table 2: Audio Bandwidth Requirements
Encoding Sample Size Mode Rate Bandwidth
PCM 8 bit mono 8 KHz 64 Kbps
PCM 8 bit stereo 16 KHz 256 Kbps
PCM 16 bit stereo 44 KHz 114 Mbps

2.3 The Multimedia Server
To effectively serve a wide community, a Web-based

multimedia server must be scalable and robust, yet
easy to use and easily accessible. At a minimum, it
must provide the following functions:

0 Web service to manage the client interaction.

0 Data filters/transcoders to provide consistent
storage formats while maintaining the ability to
play back streams in different modes, as requested
by users.

0 Scheduling mechanisms to ensure correct play-
back timing and synchronization.

0 Ability to store and play continuous-time data.

We believe the server should provide these func-
tions using readily available software and using Inter-
net standards, in order to reach the widest possible
community.
2.4 Multimedia File System

Central to the performance of a multimediaserver is
the filesystem into which the mediastreams are stored.
Normal filesystems are not designed for continuous-
time data; under load, a conventional file system may
provide lower throughput and higher response times,
thereby causing the server to drop incoming data when
recording or miss playout deadlines on playback. A
multimedia filesystem, on the other hand, is designed
to support the demands of real-time storage and play-
back of continuous-time data streams.

3 The Voyager Implementation
The Voyager server is implemented on an IBM SP2

using a suite of commonly available software tools:

0 The IBM Tiger Shark multimedia file system [5]

The Per1 language [6] [i]

0 The Nexus run-time communications package [SI

0 The ACE communications toolkit [9] 1101

0 The LBNL multimedia tools Vic and Vat [ll] catalogued by a relational database. The session dae-
mons are instantiated by a set of CGI programs on

Standard Transport (RTp) the Web server that participate in a distributed nPerl
[I21 server control application.

The media streams are transported by using RTP,
the Realtime Transport Protocol as specified in RFC

using either Motion JPEG [15] or h.261 [IS]. Audio
typically is encoded by using PCM.
3.3 Client Hardware

3.1 Voyager Hardware

IBM 9076 SP2 [13].

are configured as follows:

The current voyager system is on an 1889 [12], and RFC 1890 [14]. Video is encoded by

This is a twelve-node machine. Eight of the nodes

SP1 thin node (Rs6000/370 planar)

256M memory

2G disk

lOMbps ethernet

OC3 ATM

TB2 HPS adapter

The other four nodes are configured as follows:

SP2 wide node (RS6000/590 planar)

256M memory

0 8G local disk

2 Fast/Wide SCSI adapters

0 18G Fast/Wide SCSI disk

0 IOMbps ethernet

TB2 HPS adapter

The connection to the Internet on the ATM-
equipped nodes is via OC3 ATM to a Cisco 7513
router. Son-ATXI nodes connect to the Internet via
ethernet to an RS/SOOO 970 with an ATM connection
to the same Cisco router.

A SPARCstation 20 serves as the Voyager Web and
database server.
3.2 Server Software

Voyager relies on the IBJI Tiger Shark filesystem
[5], now part of the IBM Multimedia Server product,
to provide reliable access to the 72 GB of fast/wide
SCSI disk that is striped across several nodes.

The Tiger Shark filesystem is present on the eight
thin nodes. We use the IBJl Virtual Shared Disk to
make the fast/wide disk devices, resident on the wide
nodes, visible to the filesystem on the thin nodes.

Media streams are played between disk and network
with Voyager playback and recording daemons that
run on the fileserver nodes. The available content is

The hardware that we have used at ANL includes

RS/6000 41T workstations, with the IBM Ultime-
dia video and audio adapters and Turboways OC3
ATM adapters. This platform supports hardware
JPEG compression and decompression with ana-
log video output.

RS/6000 43P workstation, with the onboard au-
dio, Parallax video capture adapter, and Cheetah
PCI ATM adapter. This platform also supports
hardware JPEG compression and decompression.

PCs running Windows95 and Windows NT. We
currently do not have video capture available
in these machines, but audio capture and au-
diojvideo playback are operational.

Other Unix workstations, including Sun SPARG
station and SGI Onyx, Indigo, and Indy.

For playback, no specific hardware is required.
3.4 Client Software

record media sessions in Voyager:
A client needs the following software to view and

0 .4 Web browser that supports forms

RTP-compliant video and audio clients

We use the Vic [ll] video client and the Vat au-
dio clients from LBNL on the workstation platforms.
Ports of these tools are also available for Microsoft
Windows. We have also used the RTP tools from Pre-
cept [171.

4 Theoretical Voyager Performance

In this section we discuss the performance limita-
tions of the Voyager system that are dictated by the
architecture of the system we are using. Figure 2 is a
detailed schematic our SP system.

For each interconnect in the system we can deter-
mine (by reading hardware specifications or by other

Limitations

1 I
! !

Figure 2:

Table 3: Ideal COI

Component
OC3 ATM
Microchannel Bus
TB2 Adapter
SP Switch
Fast/lVide SCSI Bus
SCSI Disk

lponent Bandwidths

(Mb/s) Streams

1200 240

28

Wide

server. There are eight 155 Mb/s OC3 AT31 connec-
tions coming into the server. Hence, the ATM network
imposes a maximum of 8 nodes x 31 streams per node
= 248 streams.

Other absolute maximums include

0 TB2 adapter bandwidth imposes a 256-stream
limit

0 Total SCSI bus bandwidth imposes a 256-stream
limit

0 Total disk bandwidth imposes a 201-stream limit

We can see that from a theoretical standpoint the
system is fairly well balanced. The limiting factor in
the total bandwidth is the SCSI disk bandwidth, limit-
ing the server to 201 streams. However, we know that
we will not achieve in practice the bandwidths that
we have laid out in this section. In order to optimally

means) the best possible bandwidth. Given a max-
imum bandwidth on a connection, we then compute
the maximum number of 5 Mb/s streams that we can
transfer on that connection. Table 3 summarizes the
bandwidth limits and the resulting stream capacities.

We can first draw some conclusions about the abso-
lute maximum number of streams supportable by the

configure the server, we must empirically determine
the bottlenecks in the system.

5 Experiments
We have been running a Voyager server in the Fu-

tures Laboratory for roughly two years as a resource
for the development of the server itself and for inter-
mittent demonstration and production use. We are
currently upgrading the SP hardware on which Voy-
ager runs and plan on making Voyager a solid part of
the Futures Laboratory infrastructure. Toward that
end, we wish to examine the performance of the Voy-
ager system on the hardware we have in place in order
to more completely understand the system, optimize
the configuration, and plan for expansion.

We have performed several experiments to probe
the actual performance of our SP hardware. These
experiments exercise three of the potential bandwidth
chokepoints in the system: the ATM network interface
at the filesystem nodes, raw disk bandwidth and scala-
bility, and performance of VSD-extended raw disk de-
vices. We also probe the performance observed when
running both the ATM network and the Tiger Shark
file system.

The benchmarks use two basic application pro-
grams: a simple stream source and a flexible event-
driven stream sink. Each is implemented in C++ and
uses an ACE Reactor [9, IO] object to handle the de-
multiplexing of multiple streams and the invocation of
timer callbacks.

The stream source is invoked with a desired band-
width, block size, and target host and UDP port. It
computes the packet transmission frequency

bandwidth
blocksize F =

and sends UDP datagrams of size blocksize at that
rate to the specified host. Each datagram is tagged
with a stream identifier and a sequence number. The
sender logs the number of packets it sends.

The stream sink listens on a given UDP port for
data streams from the sender. It demultiplexes mul-
tiple streams based on the stream identifier. For each
stream, it gathers statistics on the first and last se-
quence numbers received and the number of packets
received. These statistics are logged at the end of the
run. The packets received from the network can op-
tionally be routed to disk, one file per stream.

The stream sink application has the additional ca-
pability of determining precise CPU utilization for the
duration of the run. The IBM AIX operating system
maintains a set of counters that contain cumulative
counts of the number of clock ticks spent in idle, user

mode, kernel mode, and wait states. The stream sink
can be configured to probe the counters at the start
and finish of the run and at periodic intervals during
the run. We use this information to determine the
amount of CPU loading induced by the various exper-
iments.
5.1 ATM Network Performance

The network performance benchmark measures the
number of fixed-bandwidth streams that an SP node
can source or sink without losing packets. We tested
the capacity of the node both to send multiplestreams
and to receive multiple streams. The sending exper-
iment placed multiple stream sources on one SP thin
node, and distributed stream sinks across the other
seven thin nodes and three workstations. The receiv-
ing experiment placed a single stream sink on one SP
thin node and stream sources on the other thin nodes
and the same three workstations. For each run we
logged the CPU utilization and packet loss rates.

Figure 3 is a plot of the CPU utilization and packet
loss rate versus the number of streams for one of the
runs. Note that the sum of user and kernel CPU uti-
lization is roughly linear with respect to the number of
streams, up to full utilization. Hence, we can compute
a best-fit line for the CPU utilization and determine a
value for the percentage CPU utilization per stream.
Note also that the packet loss rate begins to rise when
full CPU utilization is reached. The point at which
the packet loss begins to rise defines the maximum
number of streams a node can sustain. We summarize
these results in Table 4.

IdbcFu f

W.l CPU -*
UsarrKemel CPU c

Kernel u u r c P U CPU -- -e--

PrkaI L ~ a r -*

Y

Figure 3: Node network-only performance

5.2 Raw Disk Performance
The next benchmark measures the performance of

the disks used in the Voyager multimedia filesystem.

8192

128Kb/s
Send

This experiment is somewhat different from the oth-
ers in that it does not compute a maximumnumber
of fixed-bandwidth streams: rather, it measures the
maximum bandwidth a single writer can obtain to a
disk or set of disks. The experiment used the AIX
dd command to write to the raw disk device. When
testing multiple disks multiple copies of dd were run,
each writing to a different disk device.

We ran two versions of this test. The first was run
on a SP wide node writing to locally attached disks.
The results of this test are plotted in Figure 4. The
second test was run on a SP thin node, accessing a set
of disks residing on one of the wide nodes via VSD.
The results of both runs are summarized in Table 5,
where we have computed the aggregate and average
per-disk bandwidths.

Figure 4: Raw disk bandwidth

Significant in the results of this experiment is the
fact that the bandwidth to locally attached disks
scales fairly well, showing that we have not yet sat-
urated the SCSI bus. However, the per-disk perfor-
mance of the VSD disks is disappointing in two re-
gards. Single-disk performance is degraded signifi-
cantly from the locally attached disk. and scaling is

8 192
512 2.7
1024

Max
Streams
9
14
50
8
12
37
66

Table 5: Raw disk performance
Number and Aggregate Per-disk

Type of Disks Bandwidth Bandwidth
1 local 3.58 3.58
2 local 7.04 3.52
3 local 10.42 3.47
4 local 13.14 3.28 I

1 VSD 2.80 2.80
2 VSD 4.43 2.22
3 VSD 4.81 1.60
4 VSD 5.56 1.39

poor. It is not immediately obvious from looking at
the architecture of the system that this should be the
case. There are a number of configuration and tuning
parameters in the AIX network interface, TB2 adapter
and VSD software; though we have already performed
some tuning of the system, we suspect that the poor
performance of VSD may be due to a misconfiguration
of one or more of these parameters.

5.3 ATM to Tiger Shark Performance
The final experiment involved a precise model of a

Voyager recording daemon. We ran a stream sink on
a SP thin node, configured to write the stream data to
a Tiger Shark filesystem. A varying number of stream
sources were placed on other nodes and the worksta-
tions. We gathered the same data as in the ATM net-
work performance benchmark: CPU utilization and
packet loss rate.

We also varied the configuration of the Tiger Shark
file systems into which the streams were written. We
tested file systems that consisted of one-, twc-, and
three-node stripes. In each case a single disk was con-
figured on each node.

Figure 5 is a plot of the CPU utilization and packet
loss rate versus the number of streams for a represen-
tative run. We again see that the sum of the user and
kernel CPU utilization is roughly linear with respect

Number of
Disk Nodes
1
1
1
2
2
2
3
3

to the number of streams; we summarize the results
of performing the best-fit calculations for this data in
Table 6.

Block %CPU per Max
Bandwidth Size Stream Streams
5Mb/s 4096 18.6 5
5Mb/s 8192 13.3 7
128Kb/s 512 7.5 37
5Mb/s 4096 18.3 5

128Kb/s 512 2.7 37
5Mb/s 4096 16.2 5
5MbIs 8192 11.2 8

5Mb/s 8192 11.8 8

Figure 5: Node networkldisk performance

5.4 Analysis
The clearest result of this set of experiments is the

severe penalty paid in CPU use for driving streams
to or from the AT11 network interface. This penalty
is due to the processing that the UDP and IP pro-
tocols require: checksum calculations, segmentation
and reassembly, context switching, and data copy-
ing. Relieving the system CPU of the responsibility of
this processing will increase the capacity of the node
by making more CPU time available for the Voyager
server application daemons.

Zero-copy ATM adapter technology is one solution
to this problem. Researchers a t IBM have built a pro-
totype ATSI adapter called Cheetah which uses DMA
to transfer data between the ATM network and main
memory [18, 191. ‘The system CPU is only involved in
the setup of packet transfers. We have demonstrated
the use of this adapter in a Voyager client machine,

where it proved to work very efficiently.
Such technology would prove very useful in the

server itself. Unfortunately, we cannot currently uti-
lize the Cheetah technology in the server: Cheetah
is restricted to use on the PCI bus, while the nodes
in the Voyager SP are based on a microchannel bus.
However, we can make use of the newly-available raw
AAL5 ATM interface on the SP nodes, which bypasses
the UDP and IP protocol stacks. We will be exper-
imenting with this technology after the upgrade of
the Voyager SP hardware, performing another set of
benchmark experiments to determine the new balance
of bandwidth chokepoints in the upgraded hardware.

6 Concluding Remarks
In this article, we have presented a technical de-

scription of a scalable multimedia server. We have
shown theoretical limits in our implementation and
measured actual limitations through a series of exper-
iments. Through these experiments, we have sought
to determine the sources of loss of performance in the
server. We have investigated sources of contention and
overhead and have identified at least two actionable
sources.

We have discovered that file system overhead is
more than expected and does not scale as well as we
had expected. More investigation into file system tun-
ing for Tiger Shark and the IBM Virtual Shared Disk
is needed. We will continue these experiments and
seek to improve the file system performance.

Secondly, we have discovered a source of overhead
in the protocol stack driving the ATM connection. We
have some evidence that the newly available zerecopy
ATM driver from IBM or a raw AAL5-ATM interface
will work well to reduce this overhead.

Acknowledgments
This work was supported by the Mathematical, In-

formation, and Computational Sciences Division sub-
program of the Office of Computational and Technol-
ogy Research, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38.

References
[l] Terrence L. Disz, Remy Evard, Mark W. Hender-

son, William Nickless, Robert Olson, Michael E.
Papka, and Rick Stevens, “Designing the future
of collaborative science: Argonne’s futures labo-
ratory,” IEEE Parallel and Distributed Technol-
ogy Systems and Applications, vol. 3, no. 2, pp.
14-21, Summer 199.5.

[2] D. McDysan and D. Spohn, ATM: Theory and
Application, McGraw Hill, 1995.

.-
[3] hI. Laubach, .*IP over ATM and the construction

of high-speed subnet backbones.’ ConneXions,
vol. 8 , no. 7, July 1994.

[4] D. Wiltzus, L. Berc, and S. Devadhar, “BAGNet:
Experiences with an AT11 metropolitan-area net-
work,” ConneSions-The Intemperability Report,
vol. 10, no. 3, March 1996.

151 R. Haskin and F. Schmuck, “The Tiger Shark file
system,” in Proceedings of the IEEE Computer
Conference, 1996. IEEE, March 1996.

[6] Randall Schwartz, Learning P e d , O’Reilly and
Associates, 1993.

[7] Larry Wall, Tom Christiansen: and Randall
Schwartz, Programming P e d , O’Reilly and As-
sociates, 1996.

[8] I. Foster, C. Kesselman, and S . Tuecke, “The
Nexus approach to integrating multithreading
and communication,” JPDC, vol. 37, pp. ”70-
82”. 1996.

[9] Douglas C. Schmidt, “The adaptive communica-
tion environment an object-oriented network pro-
gramming toolkit for developing communication
software,” in Proceedings of Sun Users Group
Conference, December 1993.

[15] L. Berc, W. Fenner, R. Frederick, and S. Mc-
Canne, “RTP payload format for JPEG-
compressed video,” October 1996, Network
Working Group, RFC 2035.

[16] T. Turletti and C. Huitema, “RTP payload for-
mat for H.261 video streams,” October 1996, Net-
work Working Group, RFC 2032.

[17] Inc. Precept Software, Precept IP/TV Viewer
Users Manual, Precept Software, Inc., initial re-
lease edition, June 1996, Part Number 201.

I181 Ronald Mraz, Douglas Freimuth, Edward Now-
icki, and Gabriel Silberman, “Using commod-
ity networks for distributed computing research,”
Tech. Rep., IBM T.J. Watson Research Center,
1995.

[19] Lucas Womack, Ronald Mraz, and Abraham
Mendelson, “A study of virtual memory MTU
reassembly (VMMR) within the PowerPC archi-
tecture,” in Pmeedings of the Fifth International
Symposium on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Sys-
tems (MASCOTS ’97). IEEE MASCOTS97, Jan-
uary 1997.

[lo] Douglas C. Schmidt, Pattern Languages of Pro-
gmm Design, chapter Reactor: An object behav-
ioral pattern for concurrent event demultiplexing
and event handler dispatching, Xddison-Wesley,
199.5.

[ll] S. McCanne and V. Jacobsen, -.Vie: A flexible
framework for packet video,” in -4 Chd iVfultimedia
95. XCM, November 199.5, pp. 51 1-522.

[12] H. Schulzrinne. S. Caner , R. Frederick, and
V. Jacobsen, -‘RTP: X transport protocol for
real-time applications,” January 1996, Network
Working Group. RFC 1889.

[13] T. Xgerwala. J. L. Martin, J. H. Mirza, D. C.
Sadler. D. &I. Dias, and >I. Snir: “SP2 systems
architecture,“ IBM Systems Journal, vol. 34, no.
2 , 199.5.

[14] H. Schulzrinne. --RTP profile for audio and video
conferences with minimal control.” January 1996,
Network Working Group, RFC 1890. DISCLAIMER

Thihis report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, OK
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

