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Abstract
This paper explores the problem of efficiently ordering interprocessor communication opera-

tions in statically-scheduled multiprocessors for iterative dataflow graphs. In most digital signal 
processing applications, the throughput of the system is significantly affected by communication 
costs. By explicitly modeling these costs within an effective graph-theoretic analysis framework, 
we show that ordered transaction schedules can significantly outperform self-timed schedules 
even when synchronization costs are low. However, we also show that when communication 
latencies are non-negligible, finding an optimal transaction order given a static schedule is an 
NP-complete problem, and that this intractability holds both under iterative and non-iterative 
execution. We develop new heuristics for finding efficient transaction orders, and perform an 
experimental comparison to gauge the performance of these heuristics.

1.  Background
This paper explores the problem of efficiently ordering interprocessor communication (IPC) 

operations in statically-scheduled multiprocessors for iterative dataflow specifications. An itera-
tive dataflow specification consists of a dataflow representation of the body of a loop that is to 
be iterated indefinitely. Dataflow programming in this form is used widely in the design and 
implementation of digital signal processing (DSP) systems.

In this paper, we assume that we are given a dataflow specification of an application, and an 
associated multiprocessor schedule (e.g., derived from scheduling techniques such as those dis-
cussed in [11, 14, 19]). Our objective is to reduce the overall IPC cost of the multiprocessor 
implementation, and the associated performance degradation, since IPC operations result in sig-
nificant execution time and power consumption penalties, and are difficult to optimize thor-
oughly during the scheduling stage. IPC is assumed to take place through shared memory, which 
could be global memory between all processors, or could be distributed between pairs of proces-
sors (e.g., hardware first-in-first-out queues or dual ported memory). Such simple communica-
tion mechanisms, as opposed to cross bars and elaborate interconnection networks, are common 
in embedded systems, due to their simplicity and low cost.
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1.1 Scheduling dataflow graphs
Our study of multiprocessor implementation strategies in this paper is in the context of homo-

geneous synchronous dataflow (HSDF) specifications. In HSDF, an application is represented as 
a directed graph in which vertices (actors) represent computational tasks of arbitrary complex-
ity; edges (arcs) specify data dependencies; and the number of data values (tokens) produced and 
consumed by each actor is fixed. An actor executes or “fires” when it has enough tokens on its 
input arcs, and during execution, it produces tokens on its output arcs. HSDF imposes the 
restriction that on each invocation, each actor consumes exactly one token from each input arc, 
and produces one token on each output arc. HSDF and closely-related models are used exten-
sively for multiprocessor implementation of embedded signal processing systems (e.g., see [4, 8, 
9]). We refer to an HSDF representation of an application as an application graph.

For multiprocessor implementation of dataflow graphs, actors in the graph need to be sched-
uled. Scheduling can be divided into three steps [9] — assigning actors to processors (processor 
assignment), ordering the actors assigned to each processor (actor ordering), and determining 
when each actor should commence execution. All of these tasks can either be performed at run-
time or at compile time to give us different scheduling strategies. To reduce run-time overhead 
and improve predictability, it is often desirable in embedded applications to carry out as many of 
these steps as possible at compile time [9].

Typically, there is limited information available at compile time since the execution times of 
the actors are often estimated values. These may be different from the actual execution times due 
to actors that display run-time variation in their execution times because of conditionals or data-
dependent loops within them, for example. However, in a number of important embedded 
domains, such as DSP, it is widely accepted that execution time estimates are reasonably accu-
rate, and that good compile-time decisions can be based on them. In this paper, we focus on 
scheduling methods that extensively make use of execution time estimates, and perform the first 
two steps — processor assignment and actor ordering — at compile time.

In relation to the scheduling taxonomy of Lee and Ha [9], there are three general strategies 
with which we are primarily concerned in this paper. In the fully-static (FS) strategy, all three 
scheduling steps are carried out at compile time, including the determination of an exact firing 
time for each actor. In the self-timed (ST) strategy, on the other hand, processor assignment and 
actor ordering are performed at compile time, but run-time synchronization is used to determine 
actor firing times: an ST schedule executes by firing each actor invocation  as soon as it can be 
determined via synchronization that the actor invocations on which  is dependent have all 
completed execution. 

The FS and ST methods represent two extremes in the class of scheduling algorithms consid-
ered in this paper. The ST method is the least constrained scheme since the only constraints are 
the IPC dependencies, and it is tolerant of variations in execution times, while the FS strategy 
only works when tight worst case execution times are available, and forces system performance 
to conform to the available worst case bounds. When we ignore IPC costs, the ST schedule con-
sequently gives us a lower bound on the average iteration period of the schedule since it executes 
in an ASAP (as soon as possible) manner. 

The ordered transaction (OT) method [18] falls in-between these two strategies. It is similar 
to the ST method but also adds the constraint that a linear ordering of the communication actors 
is determined at compile time, and enforced at run-time. The linear ordering imposed is called 
the transaction order of the associated multiprocessor implementation.

The FS and OT strategies have significantly lower overall IPC cost since all of the sequencing 
decisions associated with communication are made at compile time. The ST method, on the 
other hand, requires more IPC cost since it requires synchronization checks to guarantee the 
fidelity of each communication operation — that is, to guarantee that buffer underflow and over-
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flow are consistently avoided. Significant compile-time analysis can be performed to streamline 
this synchronization functionality [2, 3].

The metric of interest to us in this paper is the average iteration period . Intuitively, in an 
iterative execution of a dataflow graph, the iteration period is the number of cycles it takes for 
each of the actors in a schedule to execute exactly once — i.e., to complete a single graph itera-
tion. Note that it is not necessary in a self-timed schedule for the iteration period to be the same 
from one graph iteration to the next, even when actor execution times are fixed [19]. The inverse 
of the average iteration period  gives us the throughput , which is the average number of 
graph iterations carried out per unit time.

1.2 Terminology and notation

We denote the set of positive integers by , the set of natural numbers  by , 
and the number of elements in a finite set  by .

With each actor  in an HSDF specification , we associate an integer , 
which denotes the execution time estimate of , and an integer , which denotes the pro-
cessor that  is assigned to in the assignment step. Each edge  has a non-negative 
integer delay associated with it, which is denoted by . These delays represent initial 
tokens, and specify dependencies between iterations of actors in iterative execution. For exam-
ple, if the tokens produced by an actor  on its th invocation are consumed by actor  on its 

th invocation, the edge between  and  would have a delay of 2. 
Every edge  induces the precedence constraint

, (1)
where  denotes the starting time of the  invocation of an actor . Here, 

 is set to  for  as initial conditions.
A path in a directed graph  is a finite sequence , where each  is in , 

and , for . We say that the path  is 
directed from  to . A path that is directed from some vertex to itself is called a 
cycle. Given a path , the path delay of , denoted , is given by

. (2)
Each cycle  in a dataflow graph must satisfy  to avoid deadlock.

The evolution of a self-timed implementation can be modeled by Sriram’s IPC graph model 
[18]. Given an application graph and an associated self-timed schedule, the IPC graph, denoted 

, is constructed by instantiating a vertex for each application graph actor, connecting an 
edge from each actor to the actor that succeeds it on the same processor, and adding an edge that 
has unit delay from the last actor on each processor to the first actor on the same processor. Also, 
for each application graph edge  that connects actors that execute on different processors, 
an inter-processor edge is instantiated in  from  to . A sample application graph and a 
self-timed schedule are illustrated in Figure 1, and the corresponding IPC graph is illustrated in 
Figure 3.

IPC costs (estimated transmission latencies through the multiprocessor network) can be incor-
porated into the IPC graph model by explicitly including communication (send and receive) 
actors, and setting the execution times of these actors to equal the associated IPC costs.

The IPC graph is an instance of Reiter’s computation graph model [16], also known as the 
timed marked graph model in Petri net theory [15], and from the theory of such graphs, it is well 
known that in the ideal case of unlimited bus bandwidth, the average iteration period for the 
ASAP execution of an IPC graph is given by the maximum cycle mean (MCM) of , which is 
defined by
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. (3)

The quotient in (3) is referred to as the cycle mean of the associated cycle . (4)

A similar data structure that is useful in analyzing OT implementations is Sriram’s ordered 
transaction graph model [19]. Given an ordering  for the communication 
actors in an IPC graph , the corresponding ordered transaction graph 

 is defined as the directed graph, , where , 
,

, (5)

 for , and . Thus, an IPC graph can be modi-
fied by adding edges obtained from the ordering  to create the ordered transaction graph.

2.  Previous Work
In [18], Sriram and Lee discuss some of the advantages and disadvantages of the OT strategy 

compared to the ST strategy — in particular, lower synchronization and arbitration costs for the 
IPC mechanism at the expense of some run-time flexibility. They also develop a method to com-
pute an optimum transaction order when a fully-static schedule is given beforehand. In this 
approach, a set of inequalities is constructed using the timing information of the given FS sched-
ule and represented as a graph. The Bellman-Ford shortest path algorithm is applied to this graph 
to obtain new starting times of the actors, thereby modifying the original FS schedule. A transac-
tion order is then obtained by sorting the starting times of the communication actors. We shall 
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Figure 1. An example of an application graph, 
and an associated self-timed schedule.
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term this method of finding the transaction orders, which is an efficient polynomial-time algo-
rithm, the Bellman Ford Based (BFB) method. Under an assumption that the cost (latency) of 
IPC is zero, Sriram shows that the transaction order determined by the BFB technique is always 
optimum. 

However, in this paper, we show that when IPC costs are not negligible, as is frequently and 
increasingly the case in practice, the problem of determining an optimal transaction order is NP-
hard. Thus, under nonzero IPC costs, we must resort to heuristics for efficient solutions. Further-
more, the polynomial-time BFB algorithm is no longer optimal, and alternative techniques that 
account for IPC costs are preferable.

3.  Finding optimal transaction orders
In the transaction ordering problem, our objective is to determine a transaction order  for a 

given IPC graph such that the MCM of the resulting ordered transaction graph is minimized (so 
that throughput is maximized). As mentioned in Section 2, it has been shown that this problem is 
tractable when IPC costs are ignored. In this section, we show that when IPC costs are consid-
ered, the transaction ordering problem becomes NP-complete. 

We show this by first showing that determining an optimal transaction order for non-iterative 
implementation, which is a more restricted (easier) problem, is NP-complete. To convert an iter-
ative IPC graph to a non-iterative one, it suffices to remove all edges in the graph that have 
delays of one or more. This results in an acyclic graph since any cycle in the original graph must 
have a delay of one or more for the graph not to be deadlocked.

Definition 1: Given an IPC graph , the associated non-iterative inter-processor 
communication (NIPC) graph is defined as , where 

.

Definition 2: Given an NIPC graph , and an ordering  of the communi-
cation actors, the corresponding non-iterative ordered transaction (NOT) graph

 is defined as , where , 
, and  is as defined in (5).

By definition, the total execution time (makespan) of a NOT graph  is finite, and this 
execution time can be determined in polynomial time — as the length of the longest cumulative-
execution-time path in  — since  is acyclic and the execution times of all actors are 
nonnegative. However, given an IPC graph, finding a transaction order that minimizes the 
makespan of the associated NOT graph is intractable.

Definition 3: The non-iterative transaction ordering problem is defined as follows. Given an 
NIPC graph , and a positive integer , does there exist a transaction order 

 such that  has a makespan that is less than or equal 
to ?

To show that non-iterative transaction ordering is NP hard, we have derived a reduction from 
the sequencing with release times and deadlines (SRTD) problem, which is known to be NP-
complete [6]. 

The following result, established in [7] based on a reduction from the SRTD problem, tells us 
that optimal transaction ordering is intractable even in a non-iterative context.
Theorem 1: The non-iterative transaction ordering problem is NP-complete.

In multiprocessor implementation of reactive applications, such as those that arise in DSP, we 
are typically interested in the performance under iterative execution. The iterative transaction 
ordering problem pertains to this context.
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Definition 4: The iterative transaction ordering problem (also called the transaction ordering 
problem) is defined as follows. Given an IPC graph  and a positive integer , does there 
exist a transaction order  such that  satisfies ?

The proof of Theorem 1 in [7] can be extended to establish the intractability of iterative trans-
action ordering (again using a reduction from the SRTD problem — details of this reduction can 
also be found in [7]). This yields the following result.
Theorem 2: The iterative transaction ordering problem is NP-complete.

Given the intractability of computing optimal transaction orders, we must resort to heuristics 
to achieve scalable compilation techniques. In the next three sections, we develop a number of 
effective heuristic approaches for deriving efficient transaction orders, and in Section 7, we 
present an experimental analysis of these approaches.

4.  The transaction partial order heuristic
The BFB technique does not take bus contention into consideration while scheduling the 

transaction order. Instead, it tries to find a transaction order that is similar to the pattern of trans-
actions in the associated self-timed schedule. However, we have demonstrated that in the pres-
ence of non-zero IPC, the OT method can, in fact, perform significantly better than the ST 
method [7], and thus, more direct consideration of OT execution is clearly worthwhile when 
scheduling transactions. For this purpose, we propose in this section a heuristic, called the trans-
action partial order (TPO) algorithm, that simultaneously takes IPC costs and the serialization 
effects of transaction ordering into account when determining the transaction order. Note that 
OT edges added to the IPC graph can only increase the MCM of the IPC graph, or leave the 
MCM unchanged. The MCM of the (original) IPC graph therefore represents a lower bound on 
the achievable average iteration period. By adding OT edges, we are effectively removing bus 
contention by making sure that no two communication actors submit conflicting bus requests, 
and this generally increases the MCM of the IPC graph. The TPO heuristic finds a transaction 
order on the basis that an OT edge that increases the MCM of the IPC graph by a comparatively 
smaller amount should be given preference. Therefore, to determine which communication actor 
should be scheduled first, we insert OT edges between communication actors that are contending 
for the bus (during the transaction ordering process), and calculate the corresponding MCM of 
the IPC graph. Actors whose corresponding MCMs are more favorable under such an evaluation 
are scheduled earlier in the transaction order. 

More specifically, a partial order of the communication (send and receive) actors is first com-
puted from the IPC graph : the transaction partial order (TPO) graph  is computed 
by first deleting all edges in  that have delays of one or more, and then deleting all of the 
computation actors.

Example 1: The transaction partial order graph computed from the IPC graph of Figure 3 is 
illustrated in Figure 2. Notice that all the dependencies imposed by the IPC graph are retained in 

 but only for the communication actors.

The heuristic proceeds by considering — one by one — each vertex of  that has no 
input edges (vertices in the TPO graph that have no input edges are called ready vertices) as a 
candidate to be scheduled next in the transaction order. Interprocessor edges are drawn from 
each candidate vertex to all other ready vertices in , and the corresponding MCM is mea-
sured. The candidate whose corresponding MCM is the least when evaluated in this fashion is 
chosen as the next vertex in the ordered transaction, and deleted from . The process is 
repeated until all communication actors have been scheduled into a linear ordering. A complete 
pseudocode specification of the TPO heuristic can be found in [7]. 
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The algorithm makes sense intuitively since the dependencies imposed by the edges drawn 
from the candidate vertices will remain when the transaction ordering  is enforced. These 
edges represent constraints in addition to the interprocessor edges that are already present in 

 and, thus, they can only increase the MCM or leave the MCM unchanged. Since we are 
interested in minimizing the MCM, we choose candidate vertices that increase the MCM by the 
least possible amounts. Thus, the algorithm follows a greedy strategy in choosing vertices, but it 
explicitly takes communication serialization and IPC costs into account. 

Example 2: When we apply the TPO heuristic to the IPC graph of Figure 3, the schedule 
that we obtain is illustrated by the Gantt chart of Figure 4 The corresponding OT graph is illus-
trated in Figure 5. 

The OT edges corresponding to the actors that have already been scheduled are added as the 
heuristic proceeds since they represent the schedule of the bus, and hence, make the heuristic 
more accurate for the later stages of the transaction order. The maximum number of nodes in the 
ready list at any given instant is  (where  is the number of processors). The complexity of the 
algorithm is thus  since the complexity of computing the MCM of a graph 

 is .
The edge of the transaction order that connects the last communication actor in the ordering to 

the first one has a delay of unity (to represent the transition to the next graph iteration). We can 
improve the performance of the TPO algorithm by introducing this edge at the beginning 
because it will give a more accurate estimate of the MCM in choosing vertices later as the heu-
ristic proceeds. Under this modification, the heuristic proceeds as before, except that the “last” 
(unit-delay) transaction ordering edge is drawn at the beginning. Since  has a maximum of 

 communication actors that can be scheduled last in the transaction order, the modified heuris-
tic has a complexity of . 

5.  Genetic algorithm for transaction scheduling
Since the transaction ordering problem is intractable, we are unable to efficiently find optimal 
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transaction orders on a consistent basis. We have implemented a branch and bound strategy to 
explore the search space comprehensively, but this technique requires excessive amounts of time 
for graphs that have significant numbers of IPC edges. To develop an alternative to this branch 
and bound approach, and the TPO heuristic, we have implemented a genetic algorithm (GA) to 
search for the best transaction order. The GA exploits the increased tolerance for compile time 
that is available for many embedded applications [10], and can leverage the TPO heuristic by 
incorporating its solution in the “initial population.” 

In our GA formulation, candidate transaction orders are encoded using the matrix-based 
sequence-encoding method described in [5]. Using this method, the partial order of the commu-
nication actors is converted into a precedence matrix and randomly completed to yield a random 
transaction order that is valid. Mutation is carried out by swapping rows and columns, and 
recombination is performed using the intersection operator explained in [5]. The intersection 
operator takes subsequences that are common among the parents by taking the boolean “and” of 
the two parent matrices to form the “offspring,” and the undefined part is randomly completed. 

For details on the underlying GA concepts, we refer the reader to [1]. The mutation step takes 
 time multiplied by the number of swaps carried out since each time we have to check 

whether the swap was valid by comparing it with the partial boolean matrix  correspond-
ing to the transaction partial order graph . The recombination step takes  time, and 
the evaluation step takes  time. The overall complexity of each iteration is also 
influenced by the population size and the overhead involved in generating random numbers. 

Further details on this GA technique for transaction ordering can be found in [7].

6.  Dynamic reordering
Once we obtain a transaction order (e.g., using the TPO heuristic or the GA approach defined 

in Section 5), it is possible to swap the position of consecutive communication actors in the 
transaction order as long as the new positions do not violate the dependencies imposed by the 
transaction partial order. This method has the advantage that it cannot degrade the transaction 
order since we can discard any solution that is worse. The concept is similar to dynamic variable 
reordering used in OBDD’s (Ordered Binary Decision Diagrams) [13]. We have implemented an 
adaptation to ordered transaction scheduling, called dynamic transaction reordering (DTR), of 
the Sifting Algorithm introduced by Rudell [17], and have observed that from DTR, we consis-
tently obtain improvements in the iteration period, regardless of the method used to find the 
transaction order.

7.  Results
Experiments were carried out to compare the ST method and the OT method, and to measure 

the performance of the TPO, GA, and DTR heuristics in finding transaction orders. The algo-
rithms presented in Sections 4-6 were implemented in C/C++ using the LEDA [12] framework 
for fundamental graph-theoretic data structures and algorithms. The benchmarks are standard 
DSP applications that have been scheduled using the classic HLFET algorithm [6].

The IPC graphs are fairly complicated, ranging from between 50-150 nodes, and the numbers 
of processors involved range from 2 to 8. The examples fft1, fft2, and fft3 result from three repre-
sentative schedules for Fast Fourier Transforms based on examples given in [11]; karp10 is a 
music synthesis application based on the Karplus Strong algorithm in 10 voices; and qmf4 is a 4 
channel multi-resolution QMF filter bank for signal compression.

In the simulation of the ST schedule, we ignore the overhead of synchronization so as to give 
us a worst-case comparison with the OT schedule. In practice, of course, synchronization has 
nonzero cost, and thus, depending on the actual synchronization overhead in the target architec-
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ture, the benefit of the OT schedules examined will be even more that what the results here dem-
onstrate. Thus, our analysis in this section gives a lower bound on the improvement we can 
expect using the OT implementation strategy in conjunction with our proposed transaction 
ordering techniques. 

Table 1 compares the performance (iteration period) of the ST and the OT schedules. Here, 
the average iteration period ( ) of the OT schedule is obtained by taking the best perfor-
mance using the algorithms proposed in Sections 4-6, and  denotes the average iteration 
period of the corresponding ST schedule. In each of the cases, we see that the OT strategy can 
outperform the ST strategy, and that this holds even though we are ignoring synchronization 
costs, which gives us a very optimistic view of the performance under ST execution.

Table 2 gives us a comparison between the different heuristics in finding transaction orders. 
Each entry is the iteration period when the transaction order found by the heuristic is enforced. 
Column 2 shows the iteration period when a randomly-generated transaction order is enforced. 
From the table we can conclude that all the heuristics work fairly well compared to the random 
transaction order. The TPO heuristic for which the results are demonstrated is the enhanced ver-
sion where the delays are inserted beforehand. In all cases, the TPO heuristic performs better 
than the BFB technique — especially for fft1 and fft3 — and the heuristic that combines the TPO 
heuristic and DTR performs best (even better than the GA, which takes significantly more time 
to execute). The GA was implemented with a population size of 100 and the number of iterations 
was set to 1000. The GA for the experiments that we tried generally stabilized before the 1000 
iteration limit was reached.

When we use the transaction ordering obtained by the TPO heuristic combined with DTR in 
the initial population of the GA, we achieve the best results since we simultaneously obtain the 
benefits of all three approaches. The results are shown in Table 3.

8.  Conclusions
We have demonstrated that in the presence of accurate estimates for actor execution times, the 

ordered transaction method — which is superior to the self-timed method in its predictability, 
and its total elimination of synchronization overhead — can significantly outperform self-timed 
implementation, even though ordered transaction implementation offers less run-time flexibility 
due to a fixed ordering of communication operations. We have also shown that in the presence of 

Table 1. Comparison of ST and OT schedules.
Application

fft1 263 245
fft2 312 300
fft3 263 245

karp10 312 308
qmf4 147 140

Table 2. Comparison of algorithms.
Application

fft1 392 280 245 255 245
fft2 395 340 320 300 300
fft3 390 300 255 255 245

karp10 482 312 309 308 309
qmf4 196 148 145 140 145

TOT
TST

TST TOT

Trandom TBFB TTPO TGA TTPO+DTR



non-zero IPC costs, finding an optimal transaction order is an NP-complete problem, and we 
have developed a variety of heuristic techniques to find efficient transaction orders. These tech-
niques include a low-complexity, deterministic heuristic for rapid design space exploration, and 
a genetic algorithm for exploiting extra compile time when generating final implementations. 
Useful directions for further work include integrating transaction ordering considerations into 
the scheduling process, and the exploration of hybrid scheduling strategies that can combine 
ordered transaction, self-timed, and fully-static strategies in the same implementation based on 
subsystem characteristics. 
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