In Proceedings of the International Conference on Application Specific Systems, [l
Architectures, and Processors, San Jose, California, July 2002.

A Component Architecture for FPGA-based, DSP System Design

Gary Spivey Shuvra S. Bhattacharyya’ Kazuo NakajimaJr
ECE Department ECE Department and ECE Department
University of Maryland, UMIACS University of Maryland,
USA and University of Maryland, USA, and
Rincon Research Corp. USA Graduate School of
Tucson, AZ, USA ssb@eng.umd.edu Information Science,
spivey@rincon.com NaraInstitute of Science and
Technology,

Ikoma, Nara, Japan
kazuo@is.aist-nara.ac.jp

Abstract

Introducing FPGA components into DSP system implementations creates an assortment
of challenges across system architecture and logic design. Recognizing that some of the greatest
challenges occur in the integration of the various components, we have developed a component
architecture and an associated set of software tools, collectively called the Logic Foundry. Using
the Logic Foundry, an FPGA-based DSP system can be easily constructed from pre-built
components and implemented on a variety of back-end FPGA platforms. The resulting
implementation can then be encapsulated and integrated into a variety of front-end software
application environments. This paper develops the component architecture and integration
capabilities of the Logic Foundry, and examines a number of application case studies that we
have experimented with using the Logic Foundry.

1. Introduction

Introducing FPGA components into DSP system implementations creates an assortment of
challenges across system architecture and logic design. Where system architects may be
available, skilled logic designers are a scarce resource. There is agrowing need for tools to allow
system architects to be able to implement FPGA-based platforms with limited input from logic
designers. Unfortunately, getting designs translated from software algorithms to hardware
implementations has proven to be difficult.

Earlier efforts such as the GRAPE-II [1] system tended to focus on creating a
heterogeneous multiprocessor rather than an FPGA-based subsystem — typically
enforcing a static dataflow model. Current efforts like MATCH [2] have attempted to compile
high-level languages such as MatLab directly into FPGA implementations. Certain tools such as
C-Level Design [3] have attempted to convert “C” software into a hardware description language
(HDL) format such as Verilog or VHDL that can be processed by traditional FPGA design flows.
Other tools use derived languages based on C such as Handel-C [4], C++ extensions such as

* S. S. Bhattacharyya was supported in part by the National Science Foundation (Grant #9734275)
T Previously affiliated with NTT Communication Science Laboratories, Kyoto, Japan

SystemC [5], or Java classes such as JHDL [6]. These tools give designers the ability to more
accurately model the parallelism offered of the underlying hardware elements. While these
approaches attempt to raise the abstraction level for design entry, many experienced logic
designers argue that these higher levels of abstraction do not address the underlying complexities
required for efficient hardware implementations.

Another approach has been to use “block-based design” [7] where system designers can
behaviorally model at the system level, and then partition and map design components onto
specific hardware blocks which are then designed to meet timing, power, and area constraints. An
example of this technique is the Xilinx System Generator for the MathWorks Simulink Interface
[8]. Using this tool, a system designer can “develop high-performance DSP systems for Xilinx
FPGA’s. Designers can design and simulate a system using MatLab, Simulink, and a Xilinx
library of bit/cycle-true models. The tool will then automatically generate synthesizable
Hardware Description Language (HDL) code mapped to Xilinx pre-optimized algorithms” [8].
However, this block-based approach still requires that the designer be intimately involved with
the timing, and control aspects of cores in addition to being able to execute the back-end
processes of the FPGA design flow. Furthermore, the only blocks available to the designer are the
standard library of Xilinx IP Cores. Other “black-box” cores can be developed by a logic
designer using standard HDL techniques, but these cannot currently be modeled in the same
environment. Annapolis MicroSystems has developed a tool entitled “CoreFire” that uses pre-
built blocks to obviate the need for the back-end processes of the FPGA design flow, but is
limited in application to Annapolis MicroSystems hardware [9]. In both of the above cases, the
system designer must still be intimate with the underlying hardware in order to effectively
integrate the hardware into a given software environment.

Another related approach is the use of high-level, embedded system design tools, such as
Ptolemy [10], and Polis [11]. These tools emphasize overall system simulation and software
synthesis rather than the details required in creating and integrating FPGA-based hardware into
an existing system. An effort funded by the DARPA Adaptive Computing Systems (ACS) was
performed by Sanders (now BAE Systems) [12] that was successful in transforming an SDF
graph into a reasonable FPGA implementation. However, this effort was strictly limited to the
implementation of a signal processing datapath with no provisions for runtime control of
processing elements. Another ACS effort, Champion [13], was implemented using Khoros's
Cantata [14] as a development and simulation environment. This effort was also limited to
datapaths without runtime control considerations. While datapath generation is easily scalable,
control synthesisis not. Increased amounts of control will rapidly degrade system timing, oftento
the point where the design becomes unusable.

In the brief survey above of relevant work, we have observed that while some of these efforts
have focused on the design of FPGA-based DSP processing systems, there has been less work in
the area of implementing and integrating these designs into existing software application
environments. Typically a specific hardware platform has been targeted and integration into this
platform is left as a task for the user. Software front-ends are generally designed on an
application-by-application basis and for specific software environments. Because requirements
are often rapidly changing and increasing in complexity, it is necessary for any solution to be
rapidly designed and modified, portable to the latest, most powerful processing platform, and
easily integrated into a variety of front-end software application environments. In other words, in
addition to the challenge of creating an FPGA-based DSP design, there is another great challenge
in implementing that design and integrating it into a working software application environment.

To help address this challenge we have created the “Logic Foundry”. The Logic Foundry uses
a “platform-based” design approach. Platform-based design starts at the system level and
“achieves its high productivity through extensive, planned design reuse ... productivity is

increased by using predictable, pre-verified blocks that have standardized interfaces’ [7]. To
facilitate the rapid implementation and deployment of these platform-based designs, we have
created a component-based architecture that allows for run-time control of processing elements.
Using this architecture, an FPGA-based DSP system can be easily constructed from pre-built
components and implemented on a variety of back-end FPGA platforms. The resulting
implementation can then be automatically encapsulated and integrated into a variety of front-end
software application environments.

2. Component Architecture

A Logic Foundry component specifies attributes and portals. Essentialy, an attribute is any
publicly accessible part of the component, providing state inspectors and behavioral controls.
Portals are the elements on a component that provide interconnection to the outside and are made
up of user-defined pins.

2.1 The Attribute Interface

Other attempts at component-based FPGA-based development systems have assumed that the
FPGA implementation is simply a static data modifying piece in a processing chain [12],[13].
Logic Foundry components are designed assuming that they will require run-time control and
thus are specified as having a single attribute interface through which all data-asynchronous
control information flows. Each FPGA in a system has exactly one controlling attribute interface
and every component has exactly one attribute interface. All data-asynchronous communications
to the components are done through this interface.

An attribute interface consists of : an attribute bus, a strobe signal from the controlling attribute
interface, and an event signal from each component. We have implemented the attribute bus with
a tri-state bus that traverses the entire chip and connects each component’s attribute interface to
the controlling attribute interface. Because attribute accesses are relatively infrequent and
asynchronous, the attribute bus uses a multi-cycle path to eliminate timing concerns and
minimize routing resources.

Each component in a system has a unique address in the system. The controlling attribute
interface decodes this address and enables the component via a unique strobe line from the
controlling attribute interface to the addressed component. These strobe lines are distributed via
delay chains and are also used by the components for attribute bus synchronization. Using delay
chains costs very little in an FPGA as there are typically a large number of unused registers
throughout a design. Data and control are multiplexed on the bus and handled by state machines
in each component which provide address, control, and data buses inside each component.

Each component also has an individual event signa that is passed back to the controlling
attribute interface. With the strobe and the event lines, communication can be initiated by each
end of the system. This architecture elegantly handles data-asynchronous communication
requirements for our FPGA-based processing systems.

2.2 Data Portals

Components may have any number of input/output portals, and in a DSP system, these are
generally characterized by a streaming data portal. Each streaming portal isimplemented using a
FIFO with ready and valid signals. Using FIFO's on the inputs and outputs of a component
isolates both the input and the output of each cell from timing concerns as all signals going to and

coming from an interface are registered. This allows components to be assembled in a larger
system without fear of timing restrictions arising from component loading.

By using FIFO's to monitor data flow, flow control is automatically propagated throughout the
system. It is the responsibility of every component to ensure that this behavior is followed inside
the component. When an interface cannot accept data, the component is responsible for stopping.
If the component cannot stop, then it is up to the component to handle any dropped data. In our
DSP environment, each data transfer represents a sample. By using flow control on each stream,
there is no need to insert delay elements for balancing stream paths — synchronization is self-
timed [15].

FIFO's are extremely easy to implement in modern FPGA's by using the Lookup Table (LUT)
as a smal RAM component. So, rather than providing a flip-flop for each bit as a registration
between components, a single LUT can be used and (in the case of the Xilinx Virtex part), a 16
deep FIFO is created. In the Virtex parts, each FIFO controller requires but 4 configurable logic
blocks (CLB's). In the larger FPGA's that we are targeting, this usage of resources is barely
noticeable.

3. Platform Integration

When designing on a particular platform, certain aspects of the component such as memory
and control interfaces are often built into the design. This poses adifficulty in atering the design,
even on the same platform. Changing a data source from an external source to Direct Memory
Access (DMA) from the PCI bus could amount to a considerable design change as memory
resources and data availability are considerably altered. This problem is exacerbated when
completely changing platforms. As considerably better platforms are aways being developed, it
is necessary to be able to rapidly port to these platforms.

Some work has recently been undertaken in this arena as a joint venture between Wind River
with their Board Support Package (BSP) and Celoxica's Platform Abstraction Layer (PAL) [16].
A similar methodology was undertaken by JHDL [6] with its HWSystem Class. These efforts
attempt to abstract the 1/O interfaces between a processing platform and its host software
environment, allowing an application that is developed on one platform to be migrated to another
platform. However, the issues of platform-specific I/O to destinations other than the host software
environment and on-board memory interfaces are not specifically addressed.

To combat this problem, the Logic Foundry employs an abstract portal for all design level
interfaces. A Logic Foundry design consists of Logic Foundry components with abstract portals
and is thus platform independent. Abstract portals are connected to the component portals when
building a design. These abstract portals can then be mapped to a specific platform portal in a
platform implementation. This form of interface abstraction is common in the design of reusable
software; our contribution here is to develop its capabilities in the context of FPGA
implementation and DSP hardware/software integration.

There are various portal types for differing needs. While new portal types can easily be
developed to suit any given need, each abstract portal type requires a corresponding
implementation portal for every platform. For this reason, we attempt to reuse existing portals
whenever possible. We currently support three portal types: the Streaming Portal, the Memory
Portal, and the Block Portal.

3.1 The Sreaming Portal

A streaming portal is used whenever an application expects to stream data continuously.
Depending on the implementation, this may or may not be the case (compare an A/D converter
direct input to a PCl businput that is buffered in memory viaaDMA), but the design will be able
to handle a streaming input with flow control. A streaming input portal consists of a data output,
a data valid output, and a data ready input. Streaming portals connect directly to the streaming
portals of a component.

Streaming portals may be implemented in many different ways — among these, adirect DMA
input to the design, a direct hardware input, a gigabit Ethernet input, or a PMC bus interface. At
the design level, al of these interface types can be abstracted as a streaming portal.

3.2 TheMemory Portal

In the case of the off-chip dedicated memory, it may be desirable to pipeline memory accesses
so that data can be rapidly streamed with a little latency. In the case of an off-chip arbitered
memory, the memory portal must follow atransaction model, holding its memory access request
until an acknowledgement is given. These two conflicting models must be merged into a single
abstract memory portal. We do this by changing the read enable and write enable lines to read
request and write request lines, respectively, and adding control pins for an access
acknowledgement. By using these control signals for every external memory portal, the
implementation will be able to map the abstract memory portals to available memory resources,
using arbitered or dedicated memories wherever appropriate.

For many FPGA applications, we allow the assumption that the design has access to some
amount of dedicated local memory (e.g. Block RAMS in a Xilinx Virtex Part). The Logic
Foundry integrates such local memories as sub-nodes of a design rather than memory portals as
the performance and control gains are too significant to be ignored. This does not greatly affect
portability as successive generations of FPGA's tend to have more local memory rather than less.
Additionally, drastically limiting the amount of memory available to a design would likely
reguire algorithmic changes that would render the design unportable anyway.

3.3 TheBlock Portal

A block porta is similar to the memory portal and provides the same memory interface to
access a block of data. It differs from the memory portal in that the block portal also provides
transfer initiation control signals that allow an entity on the other side of the portal to transfer in/
out the block. The block portal differs from the streaming portal in the location of the transfer
initiation control. In the streaming portal, all transfers are initiated outside of the design block and
the design block responds in a continuous manner. In the block portal, transfer initiation and
block size are dictated by the block portal.

4. Software Integration

Like the hardware portability challenges, software portability can be challenging as unique
driver calls and system access methodologies become embedded deeply in the software
application program. This can require an application program to be substantially rewritten for a
new FPGA platform. Furthermore, it is desirable to be able to make use of the same FPGA
acceleration platform from different software environments such as Python, straight C code,
MATLAB, or Midas 2k [17]. For example, the same application could be used in afielded Midas

2k application as a researcher would access in a MATLAB simulation. Porting the application
amongst the various software environments can be a difficult endeavor. In order to accommodate
awide variety of software front-ends, the Logic Foundry isolates front-end software applications
environments and back-end processing environments through a standardized API. While other
tools such as Handel-C and JHDL provide and API that allows software to abstractly interact
with the I/O interfaces, the application must still be aware of internal hardware details. Our AP,
known as the DynamO AP, provides dynamic object creation for the software front-end that
completely encapsulates both /O details and component control parameters such register
addresses and control protocols. Using the DynamO object and API, an application programmer
interacts solely with the conceptual objects provided by the logic designer.

4.1 The Dynamic Object (DynamO)

The DynamO object consists of atop level system component. Thisisa container for the entire
back-end system. DynamO components can contain portals, attributes, and other components. In
addition to these objects, methods and parameters are provided that alow the DynamO API to
uniquely interact with the given object. Consider a digital downconverter [18] with a tuner, a
filter, and a decimator (TFD). This component would contain an input portal, an output portal,
and three components, tuner, filter, and decimator. Each of these components would themselves
contain an attribute, frequency, taps, and amount, respectively (see Figure 1).

TFD

Tuner Filter Decimator
Import Export

Amuount

Freguency

Figure 1: The DynamO Object

Along with the abjects, the DyanmO Starfire back-end would attach methods for attribute sets
and gets, and portal reads and writes. Embedded within each object isthe information required by
the back-end to uniquely identify itself. For example, while the frequency attribute of the tuner
component, the taps attribute of the filter component, and the amount attribute of the decimator
component would all use the same set/get methods for attributes, the component and attribute
addresses embedded within them would be different.

Using the DynamO methodology, any back-end reconfigurable system can dynamically be
built by a back-end based on the current configuration of the hardware. While the L ogic Foundry
uses a consistent attribute interface for all components and thus has but one interface method, a
DynamO back-end could be constructed with different types of attribute access and multiple
methods. By attaching these different methods to the required attributes on object build, the same
level of software application independence can be achieved.

4.2 The DynamO API

The DynamO API represents the contract that DynamO back-ends and front-ends need to
follow. The DynamO API consists of calls to allocate a system, set and get attributes, and write
and read portals. These calls are implemented by the back-end library as the functionality is
unique to each back-end platform (see Figure 2).

The APl *System’ call requires a system specification file as an argument. The very beginning
of thisfile points to a back-end implementation and alibrary to parse the rest of the specification
file. In this manner, different back-ends can, if desired, have their own specifications unique to a
given platform. By making the parsing of a specification file the responsibility of the back-end,
there is no limitation on future back-end implementations. The result of the system call is an
object representing the system being allocated (typically an FPGA board).

Each attribute in the system is writable by the back-end, front-end, or even both. This can be
specified in the component specification file. The back-end is responsible for providing a method
for attribute sets/gets. If a user is using the complete Logic Foundry implementation, then
software wrappers around the board drivers exist that use the FPGA attribute porta to write the
component attributes.

Portals are designed to have simple read/write interfaces. The DynamO API uses a packet
structure to communicate with portals. This allows portals to differentiate between control and
data and allows data-synchronous control to be passed into the portal rather than asynchronously
through the attribute interface. The underlying FPGA hardware must be configured to handle
these packets as well.

[e [e [}
StarFire

Fortal Wirite

Figure 2: The DynamO API
4.3 DynamO back-ends

The DynamO back-end connects a platform to the DynamO API. When the DynamO is
allocated, the back-end provides a library method to parse the specification file, and returns a
hierarchical DynamO object that contains all of the information for the requested system. In this
manner, the application environment is given an object with methods that represent the
architecture of the system that is to be interacted with. No understanding of the implementation
details of the underlying hardware is required.

While we hope that others find the Logic Foundry easy to use, it is important to note that the
DynamO specification file does not require anything from the Logic Foundry. A designer could
build a completely unique implementation, and then specify the underlying objects and methods
for accessing them in a specification file.

Additionally, a software emulator could be constructed as a back-end. Future plans call for the
inclusion of a DynamO back-end wrapper for a software emulator written in SystemC. System
designers can do the first stages of algorithm definition in a C-based environment that can be
more readily ported to an FPGA by alogic designer. By using a software emulator as a DynamO
back-end, the entire front-end application can be developed and run before the FPGA-based
application is completed. When the FPGA is complete, a new specification file for that back-end
is used and the application requires no change.

4.4 DynamO Front-Ends

The DynamO front-end is responsible for taking the DynamO object returned by the system
method and transforming it into an object that the software environment can understand and
access. For instance, using a Python front-end, the DynamO object is recreated in Python objects,
with its methods mapped to the supplied DynamO object methods. Figure 3 demonstrates how a
Python application script would interact with the DynamO APl and the DynamO object in the
TFD mentioned in Section 4.1. Note that there is absolutely no evidence of implementation-
specific details such as register addresses or communication protocols.

load the library in Python # Create a dynanp packet

i mport dynano p = dynano. Dat aPacket (' d' 1000)

open up a dynanop obj ect # initialize p

tfd = dynano. system("tfd. spec") for i in xrange(1000):
p.data[i] = i*2

get an attribute
tune_freq = tfd.tuner.frequency # wite data to the inport portal
tfd.inport.wite(p)

set an attribute
tfd. deci mator. anount = 10 # read data fromthe export portal
p = tfd.export.read()

set an attribute with an array
taps = dynano.array('d , 2)
taps[0] = 123

taps[1l] = 456

tfd.filter.taps = taps

Figure 3: Python DynamO Example
5. Design Case Sudies

We have developed the Logic Foundry including all of the major building blocks described —
attribute interfaces, component abstractions and interface portals, the get/set and data write/read
portions of the DynamO API, DynamO back-ends for an Annapolis MicroSystems Starfire board
[19], and Dynamo front-ends for C++, Python, and Midas 2k. To test the effectiveness of the
Logic Foundry, three systems have been developed, a series incrementer, the TFD, and a Turbo
Decoder.

5.1 Incrementer Design

The incrementer component consists of a streaming input portal, a streaming output portal, and
an amount attribute that is added to the input before being passed to the output. We experimented
with the incrementer component using an Annapolis MicroSystems Starfire board. This platform
consists of four memory ports attached to an FPGA. Annapolis MicroSystems provides a shell
for the FPGA, DMA bridges to transfer data from the PCI busto the memory, and software driver
calls to perform the DMA's. To create the streaming input and output portals, we modified the
DMA bridgesto add control for streaming datainto and out of memory. Additionally, a DynamO
library was created that provided portal write and read methods using the Annapolis DMA Driver
calls wrapped with the extra control to manage the modifications to the DMA bridges.

To control the Starfire card, Annapolis MicroSystems supplies driver calls to do addressable I/
O via the PCI bus. However, the control is tightly timed and the Annapolis MicroSystems
architecture implementing our portal functionality requires 7 control elements at the top level.
When the number of elements attached to the control bus begins to exceed 10 or so elements,
achieving the required timing of 66 MHz on a Xilinx XCV 1000-4 can be difficult. For the Logic
Foundry, we have built an attribute interface for all component control in the Starfire system and
created DynamO interfaces to set/get attributes via this interface. The Starfire control busis thus
required to connect only to the DMA bridges, the attribute interface, and any top level control
registers required for operation. These connections remain constant with the addition of new
components.

To test the scalability of the Logic Foundry architecture, we created incrementer designs
consisting of 1, 10, and 50 incrementer components connected together in series. In each case,
system timing remained the same as the synthesis and layout tools were able to achieve the
required 66 MHz control timing for the Starfire control bus, while the attribute interface scaled
using the multi-cycle attribute bus (see Table 1). It was initially our intention to do a design
consisting of 100 seria incrementers, however, we reached a limit for the XCV 1000 parts that
only alows atri-state net to drive 98 locations. This limits an XCV 1000 part to 98 components
which is acceptable for our typical designs.

5.2 TFD Design

The TFD design was created to test the component reuse aspects of the Logic Foundry
architecture along with the Logic Foundry’s automated design flow. By creating a tuner, filter,
and decimator component in the Logic Foundry, we were able to use the Logic Foundry software
to automatically implement the TFD design and corresponding DynamO object. In order to test
the ease of component reuse in the Logic Foundry, we opted to create a filter/tune/decimate
(FTD) system out of the TFD system components by rearranging the top level connection
specifications. In both cases, control timing was achieved and system timing limited by the speed
of the tuner component (see Table 1).

5.3 The Turbo Decoder Design

The Turbo Decoder was a large design (several thousand lines of VHDL code) constructed
with aview to fitting into the Logic Foundry attribute/portal design structure. This design created
unique challenges — firstly, the streaming portal design would not work as the Turbo Decoder
worked on blocks of dataand had to individually address these blocks of data. For this reason we
created the block portal interface described in Section 3.3.

The Turbo Decoder design required seven attributes and these were easily included via the
attribute interface model. Implementing the block portals was more difficult as the completed
Turbo Decoder design required eight unique block portals, five of which requiring simultaneous
access. Asthe Starfire board had but four memories, this was a problem. However, as some of the
portals did not require independent addressing, we were able to merge them into a single memory
and achieve an implementation that required four independently addressable memories.

5.4 Summary of Designs

Table 1 shows results for each of the test designs implemented for the XCV1000-4 FPGA on
the Annapolis MicroSystems Starfire board. Because control on this system is achieved via a 66
MHz PCI bus, the control clocks were all constrained to achieve this timing. In the case of the
incrementer designs, the system clock performance was limited by the portal implementations.
The other designs (TFD, FTD, TurboDecoder) were limited by issues internal to their design
components. Further development will be done to optimize the portal implementations for this
architecture. The differences within design groups (incrementers and downconverters) are
attributable to variances in the Xilinx software. The pseudo-random nature of the algorithms
often results in variances. By doing a more extensive place-and-route operation, we would likely
see these numbers converge.

Control Clk | System Clk LUT's Flip-flops | BlockRams
1 Incrementer 68.648 62.278 1328 1809 5
10 Incrementers 68.078 65.557 2007 2244 5
50 Incrementers 66.885 70.299 4959 4076 5
TFD 68.018 35.661 2873 2238 6
FTD 67.604 35.177 2873 2222 6
Turbo Decoder 67.290 39.787 17031 5600 27

Table 1: Summary of Designs
6. Conclusion

We have shown how the Logic Foundry approach allows for the rapid prototyping and
deployment of FPGA-based systems. Using design portals for interface abstractions, designs can
be created in a platform independent manner and easily ported from one FPGA platform to
another where implementation portals exist. By using the DynamO software construction,
applications can be built that have no dependence on the underlying FPGA platform and can
easily be ported from platform to platform. Inserting a platform into a different software
environment can also be done with relative ease.

Our future work will focus on the complete implementation of data-synchronous control
packets, component event control, and the control write/read portions of the DynamO API. We
will also be integrating the Chameleon board from Catalina Research Incorporated as a
demonstration of platform migration. We have implemented the Logic Foundry at Rincon
Research and the tool is being used extensively in the development of high performance FPGA

implementations of DSP applications, including turbo coding, digital downconversion, and
despreading applications.

7. References

[1] R.Lauwereins, M. Engels, M. Adé and J. Peperstraete, “Grape-1l: A system-level prototyping environment for
DSP applications’, IEEE Computer, vol. 28, no. 2, pp. 35-43, February, 1995.

[2] P Banerjeeeta, “MATCH: A MATLAB Compiler for Configurable Computing Systems,” Technical Report,
Center for Parallel and Distributed Computing, Northwestern University, Aug. 1999, CPDC-TR-9908-013.

[3] http://www.synopsys.com/C-level .html
[4] OXFORD Hardware Compilation Group, The Handel language, Technical Report, Oxford University 1997.

[5] J. Gerlach and W. Rosenstiel, “ System Level Design Using the SystemC Modeling Platform,” http://www.sys-
temc.org/papers/sda-2000.pdf.

[6] P Belowsand B. Hutchings. “JHDL — an HDL for Reconfigurable Systems,” Proceedings of the |EEE Sympo-
siumon FPGA's for Custom Computing Machines, pp. 175-184, April 1998.

[7] H.Chang, L. Cooke, M. Hunt, G Martin, A. McNelly and L. Todd, Surviving the SOC Revolution: A Guide to
Platform-Based Design, Kluwer Academic Publishers, 1999.

[8] Xilinx System Generator v2.1 for Smulink Reference Guide, Xilinx, 2000.

[9] J. Donaldson, “From Algorithm to Hardware — The Great Tools Disconnect”, COTS Journal, pp. 48-54, Octo-
ber 2001.

[10] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. “ Ptolemy: A framework for simulating and prototyping
heterogeneous systems,” International Journal of Computer Smulation, Vol. 4, pp. 155-182, April 1994.

[11] F. Balarin, et a., Hardware-Software Co-Design of Embedded Systems: The Polis Approach, pp. 10-33, Kluwer
Academic Publishers, 1997.

[12] E. Pauer, C. Myers, P. D. Fiore, C. M. Crawford, E. A. Lee, J. A. Lundblad, and C. X. Hylands. “ Algorithm anal-
ysis and mapping environment for adaptive computing system,” Proc. Second Annual Workshop on High Perfor-
mance Embedded Computing. Boston, MA, pp. 264-265, Sept. 1998.

[13] S. Natargjan, B. Levine, C. Tan, D. Newport, and D. Bouldin, “Automatic Mapping of Khoros-based Applica-
tionsto Adaptive Computing Systems’, Proc. of 1999 Military and Aerospace Applications of Programmable Devices
and Technologies International Conference (MAPLD) , pp. 101-107, Laurel, MD, Sept. 1999.

[14] D. Argiro, S. Kubica, “Cantata: The Visual Programming Environment for the Khoros System”, Visualization,
Imaging and Image Processing (VIIP) Conference Proceedings, Sep. 2001.

[15] S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchronization, Marcel Deck-
ker, 2000.

[16] M. Newman and S. Newman, “New Solutions for Reconfigurable Electronics: Developing Prototypes and
Reconfigurable Equipment with Celoxica and Wind River”, Celoxica White Paper, http://www.embedded-solu-
tions.Itd.uk/products/technical_papers/white_papers

[17] Rincon Research Corporation, Introduction to Midas 2k, Tucson, AZ, Jan 2000.

[18] R. Andraka, “High Performance Digital Down-Converters for FPGAS’, Xcell Journal, Issue 38, Winter 2000,
Xilinx, pp. 48-51.

[19] Annapolis Micro Systems Incorporated, WILDSTAR Reference Manual, rev 3.1, Annapolis, MD, 2000.

	Abstract
	1. Introduction
	2. Component Architecture
	2.1 The Attribute Interface
	2.2 Data Portals

	3. Platform Integration
	3.1 The Streaming Portal
	3.2 The Memory Portal
	3.3 The Block Portal

	4. Software Integration
	4.1 The Dynamic Object (DynamO)
	4.2 The DynamO API
	4.3 DynamO back-ends
	4.4 DynamO Front-Ends

	5. Design Case Studies
	5.1 Incrementer Design
	5.2 TFD Design
	5.3 The Turbo Decoder Design
	5.4 Summary of Designs

	6. Conclusion
	7. References

	annot: In Proceedings of the International Conference on Application Specific Systems, Architectures, and Processors, San Jose, California, July 2002.

