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Abstract 
 

Multimedia processing in software has been significantly accelerated by the addition of 
subword-parallel instructions to the instruction set architectures (ISAs) of modern 
microprocessors. While some of these multimedia instructions are simple and effective, others are 
very complex, requiring large, special-purpose functional units that are not practical for 
constrained environments such as handheld multimedia information appliances. For such 
environments, low-power and low-cost are as important as the high performance required for 
real-time multimedia processing and the general-purpose programmability required to support 
an ever growing range of applications. In this paper, we introduce PLX, a concise ISA that 
selects the most useful features from the first two generations of multimedia instructions added to 
microprocessors, and explores new ISA features for high-performance yet low-cost multimedia 
processing with small footprint processors. PLX is unique in that it is designed from scratch as a 
fully subword-parallel architecture with novel features like datapath scalability from 32-bit to 
128-bit words, and a new definition of predication for reducing conditional branches. We 
illustrate the use of PLX’s architectural features with four frequently used multimedia kernels: 
discrete cosine transform, pixel padding, clip test and median filter. Our performance results 
show that a 64-bit PLX implementation achieves significant speedups compared to a basic 64-bit 
RISC processor and to IA-32 processors with MMX and SSE multimedia extensions. PLX’s 
datapath scalability feature often provides an additional 2x speedup in a cost-effective way. 
 
 
1.  Introduction 
 

This paper starts with the premise that information processing in the 21st century will involve 
significant amounts of multimedia processing. Hence all programmable processors will need to 
support fast processing of multimedia data. Two characteristics distinguish multimedia 
information processing from earlier general-purpose workloads: large amounts of data parallelism 
and use of low-precision data [1,2]. Subword parallelism [1,3] exploits these properties by 
partitioning the processor’s functional units into multiple lower-precision segments called 
subwords, and operating on subwords in parallel using subword-parallel instructions. Subword 
parallelism has also been called packed parallelism or microSIMD parallelism [4]. 

All modern microprocessors have now added multimedia instructions to their base instruction 
set architectures (ISAs). These include: MAX [1] and MAX-2 [3,5] added to Hewlett-Packard’s 
PA-RISC; MMX [6], SSE and SSE-2 [7] to Intel’s IA-32; VIS [8] to Sun’s UltraSparc; and 



AltiVec [9] to Motorola’s PowerPC. Intel’s newest ISA, IA-64 [10,11], also includes multimedia 
instructions as an integral part of the ISA. These multimedia architectures are compared in [12]. 

Some of the instructions found in these multimedia extensions are simple and effective while 
others are very complex, having multi-cycle execution latencies and requiring large functional 
units. Even for the minimalist multimedia extensions like MAX and MAX-2, the base 
architecture may have more complexity than needed for the most cost-effective processors for 
constrained environments like multimedia personal digital assistants and 3GPP (3rd Generation 
Partnership Project) wireless multimedia devices [13]. Here, low-power and low-cost are as 
important as the high performance required for real-time multimedia processing and the general-
purpose programmability required for supporting an ever growing range of applications. In 
general, microprocessor architectures with multimedia extensions can provide high multimedia 
performance, but are unnecessarily complicated for use in wireless multimedia devices. 

Media processors have been designed specifically for multimedia processing, but they are still 
more complicated than needed, often containing special-purpose circuitry for specific multimedia 
kernels. Typical examples are the MAP and MAP-CA processors by Equator [14,15]. These 
processors use a VLIW (Very Long Instruction Word) architecture with a large instruction set and 
special functional units tuned to perform common image processing kernels in hardware. 
Contrasting with these approaches, we believe that high-performance and low-cost multimedia 
processing can be achieved by using a concise ISA for a RISC-like, general-purpose processor 
that is designed from scratch to support very fast subword-parallel processing. 

In this paper, we introduce PLX [16], a fully subword-parallel ISA where every instruction 
can operate on subwords of different sizes. The subword sizes are 1, 2, 4 and 8-byte subwords 
packed into 32-bit, 64-bit or 128-bit words. In only a few instructions, some subword sizes are 
not supported because the extra cost is not warranted by the expected low use. 
 
2.  PLX instruction set architecture 
 

Figure 1 shows the datapath of a PLX processor. PLX has fixed-length 32-bit instructions that 
require at most two operands and one result per instruction. Three types of functional units 
implement these instructions: the Arithmetic Logic unit (ALU), the Shift Permute unit (SPU), and 
the optional integer Multiplier unit (MUL), which is shown here with three pipelined stages. The 
instructions executed by each of these functional units are shown in Tables 1, 2 and 3, 
respectively. 
 
 
 
 
 
 
 
 
 
 

Figure 1. PLX Processor with three functional units 
 
2.1.  Datapath scalability 
 

While all instructions in PLX are 32 bits long, the word size and hence the datapath can be 32, 
64 or 128 bits wide. We call this variability in datapath size datapath scalability. PLX can 
support such different word sizes without any changes to the ISA. The “sweet spot” around which 
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the PLX ISA is optimized is a word size of 64 bits, which we call PLX-64. Datapath scalability 
gives more flexibility to a designer in balancing the cost of a system versus its performance.  

Subwords can be 1, 2, 4 or 8 bytes. Maximum subword parallelism is achieved when sixteen 
1-byte subwords are packed into a single register in a 128-bit PLX implementation. This allows 
sixteen subwords to be processed in parallel, resulting in a potential 16x speedup if the program 
can fully utilize this degree of subword-parallel execution. This performance is attained at only a 
fraction of the cost and complexity of a superscalar implementation with the same degree of 
operation parallelism, since subword parallelism requires only minor modifications to the 
processor’s functional units and datapaths [1,2]. In particular, subword-parallel instructions save 
on register ports, data buses, bypass paths, and instruction dispatch logic when compared to a 
superscalar or VLIW processor with the same degree of parallelism. 

 
2.2.  ALU instructions 

 
Table 1. ALU instructions* 

Instruction Description MAX-2 MMX + SSE-2 
padd 

iii bac +=  • • 
padd w/ saturation ,iii bac +=  ],[ HLci ∈  • • 
psubtract 

iii bac −=  • • 
psubtract w/ saturation ,iii bac −=  ],[ HLci ∈  • • 
paverage ),( iii baaveragec =  • •** 

psubtract average ),( iii baaveragec −=    

pshiftadd left  
iii bnac +<<= )(  •  

pshiftadd right 
iii bnac +>>= )(  •  

pmax ),max( iii bac =   •** 

pmin ),min( iii bac =   •** 

logical operations (and,or, 
not,xor,and complement) 

 c = a op b , where op is one 
of the logical operations 

• • 
(all except not) 

pcmp.rel   (parallel compare)  c = [( rel(am,bm),..,rel(a1,b1), 
rel(a0,b0)] 

 • (subword bit-
masks are generated) 

cmp.rel    (compare)  Pd1 = rel(a,b); Pd2 = !Pd1 N/A*** N/A 
cmp.rel.pw (compare parallel 
          write) 

see Section 2.5 N/A N/A 
* Variables ci, ai and bi, are subwords in the destination and source registers respectively. 
(If no subscript is given, the entire register is used as source or destination.) L and H 
represent the low and high saturation limits when saturation arithmetic is used. If used, n 
represents an immediate value in the instruction word. The function rel(a,b) compares a 
and b for a relation specified in the instruction. If true, rel(a,b) returns 1, otherwise it 
returns 0. Pd1 and Pd2 are destination predicate registers in compare instructions. 
** These instructions come from either SSE or SSE-2. 
*** Since PA-RISC 2.0 and IA-32 do not have predication, these predicate setting 
instructions are not applicable to MAX-2 and MMX + SSE-2. 

 
Table 1 summarizes the ALU instructions in PLX and shows whether a given instruction is 

also found in the MAX-2 extensions for PA-RISC 2.0 processors [3,5] or in the MMX, SSE and 
SSE-2 extensions for IA-32 processors [6,7]. MAX-2 is shown since PLX can also be considered 
“MAX-3”, except in a stand-alone processor rather than as an extension of the PA-RISC 
processor. MMX+SSE-2 is shown as the multimedia ISA available in the dominant 
microprocessor, IA-32, for desktop and notebook computers. 



PLX has parallel add and parallel subtract instructions with modular arithmetic or saturation 
arithmetic. Parallel add and subtract are the basic subword parallel arithmetic instructions, 
supported by all multimedia instruction sets [1-3, 5-12]. Paverage is used to compute the 
average of two source subwords and write the result to the destination subword. Psubtract 
average is used to compute the average of the first source subword and the negative of the 
second source subword. Pshiftadd left (or pshiftadd right) instructions shift the 
first source subword left (or right) by one, two or three bits before adding it to the second 
subword. The shift is implemented by the ALU using a small pre-shifter before the first ALU 
input. With these instructions, fixed-point and integer multiplication by constants can be done in 
the ALU without a separate multiplier [1,17]. Therefore, for some very low cost environments, 
the integer multiplier in a PLX processor may be omitted. 

Pmax and pmin instructions write the greater and smaller of the two source subwords to the 
destination subword respectively. These instructions are very useful for sorting algorithms since a 
single pmax and pmin pair can perform a swap operation for multiple pairs of subwords in a 
single cycle. Five logical operations included are and, and complement, or, xor and not.  

PLX defines two types of comparison instructions. The first type, pcmp, compares pairs of 
subwords from the two source registers for a relation and generates a 1 if the relation is true, or a 
0 if the relation is false. This sequence of m bits, one for each of the m pairs of subwords 
compared, is written to the low order m bits of the destination register. (In MMX, a bit-mask of 
all 1s (if rel true) or all 0s (if rel false) is generated for each destination subword, rather than a 
single bit per comparison.) The second type of compare instruction compares only the rightmost 
pair of subwords and it will be discussed in Section 2.5 with predication. 

PLX also supports immediate versions of many operations. For example, add immediate 
adds a source register and an immediate value given in the instruction to get the result.  
 
2.3.  Shift and permute instructions 

 
Table 2. Shift and permute instructions 

Instruction Description MAX-2 MMX + SSE-2 
pshift left nac ii <<=  • • 
pshift left variable bac ii <<=   • 
pshift right nac ii >>=  • • 
pshift right variable bac ii >>=   • 
shift right pair [ ]lowerhalfnbac >>= ],[  •  

mix [left|right] see text •  

permute see text • •** 
permute variable see text   

 
Basic shift instructions, pshift [left|right], are used to shift the subwords in a 

register to the left or right by an immediate amount specified in the instruction (Table 2). To 
specify the shift amounts in a register at runtime, pshift variable instructions are used. 

In the shift right pair instruction (Figure 2), two source registers are concatenated 
and shifted right. The lower half of the shifted result is placed in the destination register. This 
instruction is very useful for entities that span two registers. Also, when the same register is used 
as both operands, the result is a rotation of that register. 

Subword permutation instructions reorder the subwords in a register. Mix instructions, which 
come in two variants, write alternating (odd or even) subwords from the two source registers to 
the destination register (Figure 2). The permute variable instruction can perform any 



arbitrary permutation of 1-byte or 2-byte subwords, with or without repetitions of any subword. 
Mapping specifications for the permutation are provided in the second source register. For fixed 
permutations, the permute instruction can perform a selected subset of permutations [3,18].  

 
 
 
 
 
 
 
 

Figure 2. Shift right pair, mix left and mix right 
 

2.4.  Multiply instructions 
 

Table 3. Multiply instructions 
Instruction Description MAX-2 MMX + SSE-2 

pmultiply even 
iiii bacc 22122 *],[ =+    

pmultiply odd 
1212122 *],[ +++ = iiii bacc    

pmultiply shift right  
lowerhalfiii nbac ])*[( >>=    

 
While many multimedia algorithms only need multiplication by constants (Section 2.2), some 

require multiplication of two variables. The optional multiplier unit (Figure 1) supports this. 
Pmultiply [even|odd] instructions only multiply the even or odd subwords of the source 
registers respectively, generating full-sized products. The pmultiply shift right 
instruction allows four half-size (16-bit) products to be generated, by shifting the intermediate 32-
bit products right by 0, 8, 15 or 16 bits and selecting the lower 16 bits.  

Currently, only 16-bit subwords are supported by these multiply instructions for cost reasons. 
16-bit subwords are the most common in multimedia applications needing such multiplication. A 
64-bit PLX implementation can choose to implement all three multiply instructions with one, two 
or four 16-bit multipliers. Since the pmultiply even (and pmultiply odd) instruction 
involves only two 16-bit multiplications on a 64-bit PLX, it can be implemented using two 16-bit 
pipelined multipliers. If only one such multiplier is available, then the second 16-bit 
multiplication can be started with a single-cycle delay, and the whole instruction can be 
completed with one extra cycle of latency. Similarly, the pmultiply shift right 
instruction involves four 16-bit multiplications and can be completed with the minimum number 
of cycles of latency with four 16-bit multipliers, or with only one extra cycle if two pipelined 
multipliers are implemented, or with three extra cycles if only one multiplier is implemented.  
 
2.5.  Predication 

 
PLX allows all instructions to be predicated. There are 128 1-bit predicate registers, grouped 

into 16 predicate register sets of 8 predicate registers each. Only one set is active at any time, and 
the 8 predicate registers in that set are addressed P0 through P7. The active predicate register set 
is changed in software. This definition of predication is novel to PLX and requires only three bits 
in each instruction to specify a predicate register compared to the seven bits that would be 
required if 128 predicate registers were addressed directly. Of the eight predicate registers in the 
active set, P0 always returns true. Any instruction predicated with P0 is unconditionally executed. 
The remaining seven predicate registers, P1-P7, can be set and cleared using compare 
instructions. 

 

Rs1: 
 
Rs2: 
 
 
Rd: 

b) mix.left 

 

Rs1: 
 
Rs2: 
 
 
Rd: 

c) mix.right 

a) shift right pair 

 

Rs1: 
 

 

:Rs2 
 
 
 
 

:Rd 



The first type of compare instruction is cmp.rel, which takes two general registers as 
sources, and two predicate registers as destinations, and compares the two source registers for the 
relation specified in the rel field. If the relation is true, 1 is written to the first predicate register 
and 0 to the second one; or if the relation is false, 0 is written to the first predicate register and 1 
to the second one.  

The second type of compare instruction is cmp.rel.pw1, where the pw1 modifier stands for 
parallel write one and indicates that only a 1 can be written to the first destination predicate 
register and not a 0. This instruction is identical to cmp.rel except that nothing is written to 
either of the predicate registers if the relation is false. This means that the initial values of the two 
predicate registers are preserved. The program should initialize the predicate registers to known 
values before executing the cmp.rel.pw1 instruction. This definition allows multiple 
cmp.rel.pw1 instructions targeting the same predicate registers to be executed simultaneously. 
Examples for both types of instructions are given below. 

 
Type 1: cmp.rel (rel field specifies the relation to be tested.) 
Example: cmp.eq R1,R2,P1,P2 
Operation: If R1==R2, P1 � 1 and P2 � 0, else P1 � 0 and P2 � 1. 
 
Type 2: cmp.rel.pw1 (pw1 stands for parallel write one.) 
Example: cmp.eq.pw1 R1,R2,P1,P2 
Operation: If R1==R2, P1 � 1 and P2 � 0, else P1 and P2 are unchanged. 

 
2.6.  Other instructions 

 
PLX has load and store instructions for accessing memory, with base plus displacement 

addressing. Loads also have indexed addressing. Program flow can be changed with jump 
instructions. This includes jump and link instructions for procedure calls. Conditional branches 
are achieved with predicated jump instructions. Ideally, a PLX program attempts to eliminate 
most of the conditional branches with the in-line predicated instruction execution feature to 
reduce performance penalties for pipeline stall cycles due to conditional branches. 
 
3.  Examples and performance 
 

The examples below are chosen because they represent important code kernels in multimedia 
applications, and because they illustrate the use of the PLX instructions. We evaluate the 
performance of PLX by running simulations in four different setups using: 

 

1) A basic 64-bit RISC-like ISA without subword parallelism or predication, but 
otherwise using optimized code. Results from this setup are used as a baseline. 

2) IA-32 with MMX and SSE instructions. Since the default datapath size of the first 
setup and of PLX is 64-bits, we do not use SSE-2 instructions, which require a 128-bit 
datapath. The IA-32 with MMX and SSE setup is chosen to represent the dominant 
processor architecture in notebook processors. 

3) 64-bit PLX architecture including all PLX-specific optimizations.  
4) 128-bit PLX architecture. Compared to the 64-bit PLX, this shows the speedup due to 

the datapath scalability feature. 
 

All performance results are reported in Table 4 as speedups of the second, third and fourth 
setups over the first one. All results assume single-cycle instructions on a single-issue pipeline, 
and single-cycle loads and stores. Instructions are scheduled to minimize pipeline stalls due to 



data dependencies. A detailed listing of the instruction frequencies for each code example is 
given in the Appendix. 

 
3.1.  Discrete cosine transform 
 

Discrete cosine transform (DCT) and its inverse (IDCT) are extensively used in image and 
video compression applications, such as JPEG and MPEG. We simulate an 8x8 2-D DCT on 16-
bit pixels using the method described by Arai, Agui and Nakajima in [19] (AAN DCT), which 
minimizes the number of multiplications needed. 

The most time-critical steps of the AAN DCT algorithm are transposition of 8x8 blocks, and 
multiplication by fixed-point constants [1]. Matrix transposition uses mix instructions 
extensively. An 8x8 block of 16-bit subwords can be transposed in 32 instructions [2,3], which 
can execute in 16 cycles on a 2-way superscalar machine or 8 cycles on a 4-way superscalar 
machine. Multiplication by constants is efficiently achieved with pshiftadd right 
instructions. The PLX instructions used to perform two of the four different fixed-point 
multiplications used in the AAN DCT are shown below. An average of 3.5 instructions are 
needed per multiplication of a register by the corresponding fractional constant. Therefore, in a 
64-bit PLX processor, four 16-bit multiplications can be done simultaneously in 3.5 cycles on the 
average. This performance, achieved using the adder with subword parallelism [1,17], is even 
better than using one or two 16-bit integer multipliers, each multiplication taking at least 3 cycles 
of execution latency. 

 
Input: R1 is the source register that contains the four subwords to be multiplied. 
Output: R2 contains the product of R1 and the fractional constant multiplier.  
 

1st coefficient = (0.70711)10 = 0.10110101 
 

pshiftadd.2.right R2,R1,R1       # R2 = 1.01            * R1 
pshiftadd.3.right R2,R2,R2       # R2 = 1.01101         * R1 
pshifti.2.right   R3,R1,8        # R3 = 0.00000001      * R1 
pshiftadd.1.right R2,R2,R3       # R2 = 0.10110101      * R1 
2nd coefficient = (0.54120)10 = 0.10001010 
 

pshiftadd.2.right R2,R1,R1       # R2 = 1.01            * R1 
pshifti.2.right   R2,R2,5        # R2 = 0.0000101       * R1 
pshiftadd.1.right R2,R1,R2       # R2 = 0.1000101       * R1 

 
The most important factors contributing to performance for this algorithm are suitability of the 

algorithm for 4-way or 8-way subword parallelism, low-cost but high performance multiplication 
due to pshiftadd instructions, and fast matrix transposition due to mix instructions. 

 
3.2.  Pixel padding 
 

Pixel padding [20] is used in MPEG-4 [21]. MPEG-4 differs from previous video compression 
standards like MPEG-1 and MPEG-2 in that it works on structures called Video Object Planes 
(VOPs) rather than on frames. The VOP structure permits arbitrary shaped video objects. Padding 
of an entire 8x8 block is done in four phases: first horizontal padding, first transposition, second 
horizontal padding, and second transposition. Horizontal padding of the pixels is a simple 
operation that is efficiently handled by logical instructions. Transposition of blocks is done by the 
mix instructions. A special case in the algorithm requires averaging of pixel values, which can be 
performed in parallel using the paverage instruction.  

Subword parallelism, subword permutation (mix) instructions and the paverage instruction 
are the main factors that contribute to the speedup for pixel padding. Unlike the case for AAN 



DCT, 128-bit PLX offers no further speedup (Table 4) over 64-bit PLX since pixel padding 
works on irregularly spaced non-consecutive 8x8 blocks. Each of these blocks fit well into eight 
64-bit registers, and the extra space offered by 128-bit registers remains unutilized. 
 
3.3.  Clip test in 3D graphics processing 
 

In this example, we explore the use of predication and compare instructions. In 3D graphics 
processing, primitive objects (mostly triangles) need to be clipped before they are rendered [22]. 
A triangle consists of three vertices (v1, v2 and v3), each of which is represented by its spatial 
coordinates (x,y,z,w). The bounding volume for each vertex (x,y,z,w) is defined by        
-w�x�w, -w�y�w, -w�z�w.  Clip test is performed for each triangle to determine its 
relationship with its bounding volume. If the triangle is completely inside the bounding volume, it 
is accepted and sent to the next processing stage. If it is completely outside, it is discarded. If only 
a part of the triangle is inside the bounding volume and part of it is outside, it must be clipped. 

By definition, a triangle is completely inside its bounding volume if all its vertices are inside 
their bounding volumes. It is completely outside if all its vertices are outside the same plane of 
their bounding volumes. Otherwise the triangle intersects its bounding volume and needs to be 
clipped. This test can be written as follows: 

 
Clip test (for a single triangle – This test is repeated for all triangles in consideration.) 
 
if (!((v1.x < -v1.w && v2.x < -v2.w && v3.x < -v3.w) || 
      (v1.x >  v1.w && v2.x >  v2.w && v3.x >  v3.w) || 
      (v1.y < -v1.w && v2.y < -v2.w && v3.y < -v3.w) || 
      (v1.y >  v1.w && v2.y >  v2.w && v3.y >  v3.w) || 
      (v1.z < -v1.w && v2.z < -v2.w && v3.z < -v3.w) || 

      (v1.z >  v1.w && v2.z >  v2.w && v3.z >  
v3.w))) { 
 

  if (!(v1.x < -v1.w || v2.x < -v2.w || v3.x < -v3.w || 
        v1.x >  v1.w || v2.x >  v2.w || v3.x >  v3.w || 
        v1.y < -v1.w || v2.y < -v2.w || v3.y < -v3.w || 
        v1.y >  v1.w || v2.y >  v2.w || v3.y >  v3.w || 
        v1.z < -v1.w || v2.z < -v2.w || v3.z < -v3.w || 
        v1.z >  v1.w || v2.z >  v2.w || v3.z >  v3.w)); 
 
  else clip(); 
  next_stage(); 

} 
 
The first set of conditions in this pseudocode evaluates whether a triangle is completely 

outside its bounding volume. If it is not, we evaluate the second set of conditions, which tests 
whether the triangle is completely inside. These nested if-then statements can be accelerated 
greatly by using predication and the compare parallel write instructions described in 
Section 2.5. If sufficient hardware resources are present, each of the triplets in the first if 
statement can be computed simultaneously in a single cycle by using cmp.rel.pw1 
instructions. This is possible because multiple cmp.rel.pw1 instructions can target the same 
destination predicate register simultaneously. Therefore, the speedups shown in Table 4 will be 
even more pronounced for superscalar PLX implementations than for the single-issue 
implementation upon which our results are based.  

The most important factor that contributes to the speedup for clip test is the use of predication 
for the resolution of complicated if-then statements shown above. Dependence of this 



algorithm on predication is verified by the fact that only 64% of the fetched instructions are 
actually executed; the rest were predicated false and therefore did not execute. 
3.4.  Median filter 
 

Median filter is an example of an algorithm that initially seems to require conditional 
execution, and hence is likely to benefit from predication. However, as for other multimedia 
processing examples, it can be optimized to eliminate any need for conditional execution (and 
predication).  

A median filter is used for noise reduction in image processing. A 3x3 box is moved across 
the image and the center pixel value is replaced with the median value of the nine pixels enclosed 
by the 3x3 box. If the value of the center pixel is abnormally above or below the value of its 
neighbors (because of distortion by noise), it would be eliminated in this process. Our simulations 
are for a median filter that works on 8-bit pixels. The algorithm is as follows: 
 

1. Place the 3x3 box at the beginning of the image. 
2. Find the median of the nine pixels in the box. 
3. Replace the center pixel with the median value from step 2. 
4. If the end of image is reached stop. Otherwise move the box to the next position and go to step 2. 
 
Step 2 above is the most computationally intense of the four. The subroutine used for this step 

uses a p-sort operation that conditionally swaps two pixels, P1 and P2, as follows:  
 

# define p-sort(P1,P2) {if (P1>P2) P1 ↔ P2;} 
 
In a 64-bit PLX, eight instances of this p-sort operation can be done using just two 

instructions. For instance if the pixels P1 and P2 are initially in the lowest order bytes of registers 
R1 and R2 respectively, the following two instructions will perform the swap (if needed) and 
write the results to R3 and R4. After these instructions, the lowest order byte of R3 will contain 
the smaller of P1 and P2, and the lowest order byte of R4 will contain the larger.  
 

pmin.1 R3,R1,R2;    pmax.1 R4,R1,R2; 
 

The ‘1’ modifier in these instructions indicates that the operations are performed on 1-byte 
subwords, each of which corresponds to one 8-bit pixel. Since the 64-bit registers R1-R4 each 
contain eight pixels, eight pixel pairs are sorted in parallel with only two instructions. For a 128-
bit PLX, 16 pixel pairs can be similarly sorted. Since this algorithm can fully utilize subword 
parallelism, the speedup figures in Table 4 are proportional to the number of subwords in one 
register (i.e. 8x for 64-bit PLX, and 16x for 128-bit PLX). Below, we show how 19 p-sort 
operations can be optimally used to complete the step 2 above. After the last p-sort, P4 will be 
the median for the nine pixels P0-P8. 

 
01. p-sort(P1,P2); 02. p-sort(P4,P5); 03. p-sort(P7,P8); 
04. p-sort(P0,P1); 05. p-sort(P3,P4); 06. p-sort(P6,P7); 
07. p-sort(P1,P2); 08. p-sort(P4,P5); 09. p-sort(P7,P8); 
10. p-sort(P0,P3); 11. p-sort(P5,P8); 12. p-sort(P4,P7); 
13. p-sort(P3,P6); 14. p-sort(P1,P4); 15. p-sort(P2,P5); 
16. p-sort(P4,P7); 17. p-sort(P4,P2); 18. p-sort(P6,P4); 
19. p-sort(P4,P2);  

 
In PLX, eight medians can be computed simultaneously with the pmix and pmax 

instructions. The pathlength savings this achieves and the amenability of this algorithm for 



subword parallel implementation are the main factors for speedup. Note that since IA-32 
instructions overwrite one source register, an additional move operation is needed to save this 
register when its initial value must be preserved, as in the p-sort operation. 

 
Table 4. Speedups over the basic 64-bit ISA 

 Basic 64-bit RISC IA-32 with 64-bit 
MMX and SSE 64-bit PLX 128-bit PLX 

AAN DCT 1 1.1 4.6 9.1 
Pixel padding 1 4.9 7.9 7.9 
Clip test 1 0.5 1.9 1.9 
Median filter 1 5.3 8.0 16.0 

 
For all algorithms, Table 4 shows an increasing speedup as we move from the basic 64-bit 

RISC to IA-32 with 64-bit MMX and SSE, to 64-bit PLX. The only exception is that IA-32 is 
slower than a basic 64-bit RISC for the clip test because of a paucity of registers and additional 
memory accesses. 64-bit PLX is consistently faster than IA-32/MMX/SSE. For algorithms like 
clip test, if we compare superscalar implementations rather than single-issue implementations, 
PLX will have even greater speedup compared to IA-32/MMX/SSE since PLX allows different 
comparisons targeting the same predicate register to execute in the same cycle. For algorithms 
like the AAN DCT and median filter where the data parallelism of adjacent pixels can be further 
exploited with a wider subword-parallel functional unit, the datapath scalability feature of 128-bit 
PLX provides an additional 2x speedup over the 64-bit PLX.  
 
4.  Conclusions 
 

An ISA targeted for use in constrained environments such as handheld wireless multimedia 
appliances must have high performance for multimedia processing, low cost and low power. 
Existing ISAs fall short of meeting all three criteria simultaneously. Based on our study of first 
and second-generation multimedia ISAs [2,12,23], we have selected the most useful multimedia 
instructions whose implementations are expected to be low in cost and power. To this set, we 
added new architectural features for even higher performance. The result is PLX, intended to be a 
minimalist ISA for high-performance multimedia processing. PLX is also used as a test bed for 
hands-on teaching and research in ISA and microarchitecture design and analysis at Princeton 
University. This paper presents PLX 1.1.  

PLX is designed as a concise RISC-like instruction set, where every instruction takes a single 
cycle to execute. The only exceptions are the multiply by variable instructions, where a pipelined 
multiply functional unit could take multiple cycles to implement. This is an optional functional 
unit, and may be omitted for cost reasons. It has to be included in environments where multiply 
by variables is frequently needed. Otherwise, PLX supports low-cost multiply by constants using 
the ALU, with pshiftadd instructions, achieving very good performance due to subword 
parallelism. In our multimedia kernels (including many not presented in this paper), constant 
multiplication is needed much more frequently than variable multiplication. The fast subword 
permutations, especially mix, have been shown very useful in two of the code kernels. The 
agility of the other permute instructions in PLX will be demonstrated in subsequent papers. 
Other instructions shown to be useful are parallel averaging and the parallel sorting achieved with 
the pmin and pmax instructions. New features in PLX, like efficient predication and datapath 
scalability, have also proved useful. However, although the clip test example benefited from 
predication, we plan to investigate predication further to determine its importance in multimedia 
processing. We do not advocate unlimited datapath scalability, but feel that the scalability from 
64 bits down to 32 bits is desirable for cost and power reasons, and the scalability up to 128 bits 
may be justified from a performance-cost basis.  



Our simulation results indicate that critical multimedia kernels benefit from at least one of the 
key features of PLX: subword parallelism, subword permutations, low-cost multiplication, 
datapath scalability and efficient predication. Overall, our results show that high-performance can 
be achieved with a concise ISA like PLX without incurring the complexity costs of larger ISAs in 
both general-purpose microprocessors and mediaprocessors. 

Future ISA work will include further explorations of predication and subword permutation 
operations, and the design of floating-point instructions for graphics and high-fidelity audio 
processing. We are also creating models of latency, area and power for architectural tradeoff 
studies of different PLX features and new ISA proposals.  
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Appendix:  Instruction frequencies for simulated algorithms 

 
  AAN DCT Pixel padding Clip test Median filter 

Instruction Percent Percent Percent Percent 
padd.2 15.62% 0.00% 0.00% 0.00% 
psubtract.2 13.12% 0.00% 0.00% 0.00% 
psubtract.4 0.00% 0.00% 5.17% 0.00% 
paverage.1 0.00% 6.50% 0.00% 0.00% 
pshiftadd.1.right 3.75% 0.00% 0.00% 0.00% 
pshiftadd.2.right 20.62% 0.00% 0.00% 0.00% 
pshiftadd.3.right 1.25% 0.00% 0.00% 0.00% 
pmax.1 0.00% 0.00% 0.00% 27.78% 
pmin.1 0.00% 0.00% 0.00% 27.78% 
and complement 0.00% 11.38% 0.00% 0.00% 
or 0.00% 26.00% 0.00% 0.00% 
cmp.4.eq.pw1 0.00% 0.00% 12.07% 0.00% 
cmp.4.gt.pw1 0.00% 0.00% 31.03% 0.00% 
cmp.4.lt.pw1 0.00% 0.00% 31.03% 0.00% 
cmp.eq 0.08% 0.00% 0.00% 0.00% 
cmp.gt 1.41% 0.81% 1.72% 0.00% 
changepr.ld 0.00% 0.00% 1.72% 0.00% 
add immediate 0.78% 0.00% 0.00% 0.00% 
subtract immediate 1.48% 0.81% 1.72% 0.00% 
     
srli 0.00% 0.00% 10.34% 0.00% 
srai 0.00% 0.00% 0.00% 1.85% 
shift right pair 0.00% 0.00% 0.00% 12.96% 
pshifti.2.right 1.88% 0.00% 0.00% 0.00% 
mix.2.left 6.25% 13.00% 0.00% 0.00% 
mix.2.right 6.25% 13.00% 0.00% 0.00% 
mix.4.left 6.25% 13.00% 0.00% 0.00% 
mix.4.right 6.25% 13.00% 0.00% 0.00% 
     
load immediate 0.31% 0.00% 0.01% 1.85% 
load.8 5.00% 0.05% 0.00% 16.67% 
store.8 7.50% 0.00% 0.00% 3.70% 
jump 1.52% 0.82% 1.73% 1.85% 
jump.link 0.00% 0.81% 1.72% 1.85% 
jump.reg 0.00% 0.81% 1.72% 1.85% 
Total 100% 100% 100% 100% 
Instruction count 2559 31506 14338 5601 

 


