
Color Space Conversion for MPEG decoding on
FPGA-augmented TriMedia Processor

Mihai Simayz Stamatis Vassiliadisy Sorin Cotofanay Jos T.J. van Eijndhovenz

yDelft University of Technology, Delft, The Netherlands
zPhilips Research Laboratories, Eindhoven, The Netherlands

M.Sima@et.tudelft.nl http://ce.et.tudelft.nl/˜mihai

Abstract

A case study on Color Space Conversion (CSC) for MPEG decoding, carried out on FPGA-
augmented TriMedia processor is presented. That is, a transform from Y0CbCr color space to
R0G0B0 color space is addressed. First, we outline the extension of TriMedia architecture consist-
ing of FPGA-based Reconfigurable Functional Units (RFU) and associated instructions. Then we
analyse a CSC (RFU–specific) instruction which can process four pixels per call, and propose a
scheme to implement the CSC operation on RFU(s). When mapped on an ACEX EP1K100 FPGA,
the proposed CSC exhibits a latency of 10 and a recovery of 2 TriMedia@200 MHz cycles, and oc-
cupies 57% of the device. By configuring the CSC facility on the RFU(s) at application load-time,
color space conversion can be computed on FPGA-augmented TriMedia with 40% speed-up over
the standard TriMedia.

1. Introduction

Enhancing a general purpose processor with a reconfigurable core is a common issue addressed
by computer architects [8, 15, 2]. The basic idea of this approach is to exploit both the processor
flexibility to achieve medium performance for a large class of applications, and FPGA capability
to implement application-specific computations. An instance of such enhanced processor is TriMe-
dia+FPGA hybrid [11], on which the user is given the freedom to define and use any computing
facility subject to FPGA size and TriMedia organization. Several applications implemented on this
hybrid, e.g., Inverse Discrete Cosine Transform [10] and Entropy Decoding [12], proved promis-
ing results. In this paper, we address color space conversion which is carried out at the end of the
MPEG decoding process.

The last stage of the MPEG decoding consists of a color space conversion, which is a linear trans-
form from Y 0CbCr color space to R0G0B0 color space. Since this transform exhibits large data and
instruction-level parallelisms, it can be implemented on TriMedia with very high efficiency. Ob-
taining improvements for a task having a computational pattern which TriMedia has been optimised
for, is indeed challenging.

In this paper we demonstrate that significant speed-up for Y0CbCr-to-R0G0B0 color space con-
version can be achieved on FPGA-enhanced TriMedia over standard TriMedia. The main idea is to
configure a pipelined Color Space Converter (CSC) on FPGA and to unroll the software loop issu-
ing an CSC operation such that the penalty associated to firing-up and flushing the CSC pipeline is
reduced. In particular, we provide configurable-hardware support for a CSC operation which can

COS
IEEE 14th Intl. Conf. on Application-specific Systems, Architectures, and Processors (ASAP 2003),
The Hague, The Netherlands, June 24-26, 2003.

process four pixels per call. When mapped on an ACEX EP1K100 FPGA from Altera, the comput-
ing unit performing the CSC operation has a latency of 10 and recovery of 2 TriMedia@200 MHz
cycles, and occupies 57% of the device. The simulations carried out on a TriMedia cycle accurate
simulator indicate that by configuring the CSC unit on FPGA at application load-time, Y0CbCr-
to-R0G0B0 color space conversion can be computed on extended TriMedia 40% faster over the
standard TriMedia. Given the fact that the experimental TriMedia is a 5 issue-slot 64-bit VLIW
processor with a very rich multimedia instruction set [14], such an improvement within the target
media processing domain indicates that the TriMedia + FPGA hybrid is a promising approach with
respect to color space conversion.

Summarizing, the paper contributions are:

� The syntax and the semantics of the CSC user-defined operation.
� The CSC computing facility implementation on an ACEX EP1K100 FPGA from Altera.
� A high performance implementation of color space conversion on FPGA-augmented TriMe-

dia.

The paper is organized as follows. We present several issues related to color space conversion
in Section 2. Section 3 outlines the TriMedia architectural extension that incorporates the recon-
figurable array. The FPGA-based implementation of a color space converter and its associated
instructions are discussed in Section 4. The experimental framework and the results are presented
in Section 5. Section 6 concludes the paper.

2. Background

MPEG is a digital compression standard for multimedia [6, 1]. As depicted in Figure 1, the
last stage of the MPEG decoding process is an Y 0CbCr-to-R0G0B0 color space conversion. That is,
gamma-corrected red, green, blue (R0, G0, and B0) are computed from a luminance-related quantity,
Y 0, and two color-related quantities, Cb and Cr.

���
���
���
���

���
���
���
���

Color
Space

Conversion

R’G’B’

video datavideo data

Y’CbCr
Decoding
MPEG

Coded
Data

Display

Figure 1. The video decoding process

To make the presentation self-consistent, we will address some issues related to color space
conversion, which is carried out at the end of the MPEG-2 [5] decoding process.

2.1. Color space conversion

According to the Trichromatic Theory, it is possible to match all of the colors in the visible
spectrum by appropriate mixing of three primary colors. Which primary colors are used is not
important as long as mixing two of them does not produce the third. For display systems that emit
light, the Red-Green-Blue (RGB) primary system is used.

A color space is a mathematical representation of a set of colors. In the sequel, we will present
two color spaces: R0G0B0 and Y 0CbCr.

2.1.1. R0
G

0
B

0 color space

Film, video, and computer-generated imagery all start with red, green, and blue intensity com-
ponents. In video and computer graphics, the nonlinearity of the CRT monitor is compensated by
applying a nonlinear transfer function to RGB intensities to form Gamma–Corrected Red, Green,
and Blue (R0G0B0). The gamma-corrected red, green, blue are defined on a relative scale from 0 to
1.0, chosen such that shades of gray are produced when E0

R
= E0

G
= E0

B
, where E0

�
denotes the

analog gamma–pre-corrected signal associated with the primary X color.
In digital video, the analog signal is uniformly-quantized on 8 bits, so that 256 equally spaced

quantization levels are specified. Coding range in computing has a de facto standard excursion, 0
to 255. Studio video provides footroom below the black code, and headroom above the white code;
its range is standardized from 16 to 235. However, values less than 16 and greater than 235 are
allowed in order to accomodate the transients that result from filtering.

2.1.2. Y 0
CbCr color space

The data capacity accorded to color information in a video signal can be reduced as follows. First,
R0G0B0 is transformed into luminance-related quantity called luma (Y0), and two color difference
components called chroma (Cb, Cr) [7]. Since the human visual system has poor color acuity, the
color detail can then be reduced by subsampling (lowpass filtering) without the viewer noticing.

The Y 0CbCr color space was developed as part of ITU-R Recommendation BT.601 [4]. All
components are represented as 8-bit unsigned integers. Y0 is defined to have a nominal range of
16 to 235; Cb and Cr are defined to have a range of 16 to 240, with 128 equal to zero. It is Y0,
Cb, Cr values that are coded inside an MPEG string. It is worth mentioning that Y0, Cb, Cr are
represented on 16-bit signed integers after motion compensation.

2.1.3. Y 0
CbCr-to-R0

G
0
B

0 conversion

If the gamma-corrected RGB data has a range of 0 to 255, as is commonly found in computer
systems, the following equations describe the R0G0B0-to-Y 0CbCr conversion:

8>>><
>>>:

R0 = 1:164(Y 0
� 16) + 1:596(Cr � 128)

G0 = 1:164(Y 0
� 16)� 0:813(Cr � 128)

� 0:391(Cb � 128)

B0 = 1:164(Y 0
� 16) + 2:018(Cb � 128)

(1)

Even though Y 0 is defined to have a range of 16 to 235, while Cb and Cr have a range of 16
to 240, sample values outside the above mentioned ranges may occasionally occur at the output of
the MPEG-2 decoding process according to ITU-T Recommendation H.262 [5]. As a consequence,
R0G0B0 values must be saturated at the 0 and 255 levels after conversion to prevent any overflow
and underflow errors.

With connection to the subsequent experiment, we would like to mention that the mapping de-
fined by Equation set 1 will benefit from configurable hardware support.

2.2. Y 0CbCr sampling format conversion

As mentioned, since the eye is less sensitive to color information than brightness, the chroma
channels can have a lower sampling rate that the luma channel without a dramatic degradation of
the perceptual quality. In MPEG, 2:1 horizontal downsampling with 2:1 vertical downsampling is

employed. That is, the Cb and Cr pixels lie between the Y 0 pixels on every other pixel on both
the horizontal and vertical lines. Thus, a two-dimensional 2-fold upsampling has to be carried out
before the proper color space conversion.

The simplest upsampling method employs a zero-order

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��
���
���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
����

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

����
����
����
����

����
����
����
����

Figure 2. Two-dimensional 2–fold
upsampling by replication

hold. That is, each and every pixel is replicated to East,
South-East, and South, as depicted in Figure 2. Conse-
quently, no additional processing is needed for upsam-
pling at the expense of a poor frequency response char-
acteristic. Indeed, since the zero-order hold does not pos-
sess a sharp cutoff frequency response characteristic, be-
ing a poor anti-image filter, it passes undesirable image
components [13].

The filtering process is beyond the paper scope. Thus,
we will consider that a zero-order hold is used, although

this solution does not provide satisfactory image quality. Synthesizing, the following stages has to
be performed in the process of color space conversion carried out at the end of MPEG decoding:

1. Chroma upsampling;

2. Y 0CbCr-to-R0G0B0 linear transform.

Before we will present the FPGA–based implementation of the CSC computing facility and its
associated user-defined instruction, we will outline the architectural extension of the experimental
TriMedia processor.

3. Architectural extension for TriMedia

From the TriMedia family, TriMedia/CPU64 will be used as an experimental platform in all
the subsequent tests. TriMedia/CPU64 is a processor model whose architecture features a rich
instruction set optimized for media processing. Specifically, it is a 5 issue-slot 64-bit VLIW core,
launching a long instruction every clock cycle [14]. It has a uniform 64-bit wordsize through all
functional units, the register file, load/store units, on-chip highway and external memory. Each
of the five operations in a single VLIW instruction can in principle read two register arguments
and write one register result. The processor also supports 2-slot operations, or super-operations.
Such a super-operation occupies two adjacent slots in the VLIW instruction, and maps to a double-
width functional unit. This way, operations with more than 2 arguments and one result are possible.
The architecture supports subword parallelism: for example, operations on 8-bit unsigned integer
vectors, or on 16-bit signed integer vectors are possible.

Following the methodology described in [10, 12], TriMedia processor can be augmented with
one or more FPGA-based Reconfigurable Functional Units (RFU). An RFU is embedded into the
TriMedia as any other hardwired functional unit, i.e., it receives instructions from the instruction
decoder, reads its input arguments from and writes the computed values back to the register file.
Even though only 2-slot operations are supported by the current TriMedia simulator, we propose to
extend the concept of super-operations and provide RFUs on which up to 5-slot operations can be
executed. This extension will be very useful when vectorial operations are mapped on the config-
urable hardware.

In order to use an RFU, new instructions are provided: SET, and EXECUTE. Loading a new
configuration into an RFU is performed under the command of a SET instruction, while EXECUTE

(generic) instructions launch the operations performed by the computing resources configured on
the FPGA. With such extension, the user is given the freedom to define and use any computing
facility subject to the FPGA size and TriMedia organization. For more details regarding this issue
we refer the reader to bibliography [11].

Several considerations about the latency of an RFU-configured computing resource are worth to
be provided. Due to layout constraints, the RFU is likely to be located far away from the Register
File (RF) in the floorplan of the TriMedia. The immediate effect is that there will be large delays in
transferring data between the RFU and RF, and the RFU will not benefit from bypassing capabilities
of the RF [14]. Consequently, read and write back cycles have explicitely to be provided. In such
circumstances, the latency of an RFU-based computing resource is composed of 1 cycle for read,
the number of cycles corresponding to the FPGA delay, and 1 cycle for write back.

For the subsequent experiment, two instances of the TriMedia+FPGA hybrid are considered:

1. TriMedia @ 200MHz augmented with a single RFU, which can run at maximum one half of
TriMedia clock frequency, that is, 100 MHz.

2. TriMedia @ 200MHz augmented with two RFUs, each running at maximum one quarter of
TriMedia clock frequency, that is, 50 MHz.

In the sequel, the FPGA–based implementation of a CSC computing unit, and its associated
instruction are presented.

4. CSC custom instruction and computing unit

Since three values (red, green, and blue) are to be computed for each pixel, we propose to provide
configurable-hardware support for a 3-slot CSC operation which reads the Y0CbCr triplet and
returns the R0G0B0 triplet:

CSC Y 0; Cb; Cr �! R0; G0; B0

where Y 0; Cb; Cr;R0; G0; B0 are all 64-bit registers. Subject of the FPGA logic capacity and the
number of FPGA I/O pins, a different number of pixels can be processed in parallel. Given the
fact that the luma and chroma are represented as 16-bit signed integers, and gamma-corrected red,
green, and blue are represented as 8-bit unsigned integers, at most four pixels can be processed
in parallel. Indeed, the CSC is a 4-way SIMD operation which transforms three 16-bit signed
integer vectors (Y 0; Cb; Cr) into three 8-bit unsigned integer vectors (R0; G0; B0). This translates
to a number of 3 � 4 � 16 + 3 � 4 � 8 = 288 I/O pins, which is acceptable for most FPGAs in
general, and ACEX EP1K100 device in particular.

Since the current TriMedia simulator does not support super-operations on more than 2 slots, our
3-slot CSC operation has to be emulated by sequences of 1- and/or 2-slot operations. Therefore, we
define two 2-slot CSC instructions: CSC R, which performs the proper color space conversion and
returns only the red information, and CSC GB, which returns the green and blue information:

CSC R Y 0; Cb; Cr �! R0

CSC GB �! G0; B0

unsigned

10

I II

Clipping
Rounding

Quantization
&

Rounding

Quantization
&

Rounding

Quantization
&

Rounding

Quantization
&

Rounding

Quantization
&

unsigned

20
unsigned

12
812h (= 2.018)

unsigned

10

unsigned

10

10
unsigned

unsigned

10 unsigned
10

−
−

+

unsigned

10

10
unsigned

++

unsigned

11

unsigned
11

0dfh

−+
signed

12

(= 223)

unsigned
12

088h

+
signed

12+
signed

12

(= 136)

11

unsigned

11

115h

signed

12

unsigned

+ −

(= 277)

R’8

G’8

unsigned

unsigned

B’8

unsigned

III IV

Clipping

Clipping

Clipping

unsigned

19

unsigned

816

signed

Y’
unsigned

11
4a8h (= 1.164)

Clipping
16

signed

Cr

unsigned

19

unsigned

8
unsigned

11
662h (= 1.596)

unsigned

18

unsigned

8
unsigned

10
341h (= 0.813)

Clipping
16

signed

b

unsigned

17

unsigned

8
unsigned

9
190h (= 0.391)

8

unsigned

Figure 3. The CSC implementation on FPGA (the Roman numerals indicate the pipeline
stages)

We have to emphasize that this approach is carried out only for experimental purpose. Fortu-
nately, our choice does not generate overhead, since it is easier to schedule a single 3-slot instruction
than multiple 1- and/or 2-slot instructions.

The FPGA–based CSC implementing the Equation set 1, is presented in Figure 3. By writ-
ing RTL-level VHDL code, we succeeded to identify a four-stage pipelined implementation which
can run at 100 MHz on ACEX EP1K100 device. Adding the penalty of the extra read and write
back cycles for an RFU–based operation, the CSC has a latency of 10 and recovery of 2 TriMe-
dia@200MHz cycles if an RFU@100MHz is considered. For an RFU@50MHz, two pipelines
stages can be merged into one, which translates into a CSC having the latency of 10 and recovery
of 4.

5. Experimental results

For the first extended TriMedia instance, a CSC computing unit having the latency of 10 and
recovery of 2 cycles is configured on the RFU@100MHz, while a CSC computing unit with the
latency of 10 and recovery of 4 cycles is configured on each of the two RFUs@50MHz in the
second extended TriMedia instance. That is, a lower pipeline frequency at the expenses of a double
size FPGA is the trade-off of the second instance.

To perform color space conversion for an image, calls to CSC are issued within a software loop.
The scheduled code when the RFU@100MHz is considered is presented in Figure 4. First, LOAD
operations are issued to fetch the pixels in Y 0CbCr format from memory. Then, pairs of CSC R +
CSC GB operations are launched to perform color space conversion, four pixels per call. After eight
pixels have been converted, PACK operations reorganize the R0G0B0 information in 8-bit unsigned
integer vectors. Finally, STORE operations send the results to a display FIFO.

According to Figure 4, 16 pixels can be processed with the latency 25 cycles. In order to keep
the pipeline full, back-to-back CSC R operation is needed. That is, a new CSC R instruction has
to be issued every two cycles (or, every four cycles in the RFU@50MHz–based instance). In

this way, color space conversion can be performed with a throughput of 16/8 = 2 pixels/cycle.
Unfortunately, this figure corresponds to the ideal case of infinite loop unrolling, which can never
be achieved in practice. For a finite loop unrolling, the overhead associated to firing-up and flushing
the CSC pipeline has to be taken into consideration. As a rule of thumb, the throughput drops to
N=(latency=16 + (N � 1)=ideal throughput), where N is the number of times which the loop is
unrolled. For example, the ideal throughput drops to 1.3 pixels/cycle for 4� loop unrolling, and to
0.64 pixels/cycle for a loop which is fully rolled. The same judgement can be carried out for the
second RFU@50MHz–based instance. Since the results are pretty much the same, we will not go
into details.

The testing database for both pure-

Load Cr

Load Cr

Load Cr

Load Cb

Load Y’1

Load Y’2

Load Y’3

Load Y’4

Load Cb

Load Y’1

Load Y’2

Load Cb

Load Y’1

Load Y’2

Load Y’3

Load Y’4

1 3 4 5 6 7 8 92

LATENCY
25 cycles for 16 pixels

16 / 8 = 2 pixel/cycle
THROUGHPUT

CSC_R Y’1,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’2,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

CSC_R Y’3,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’4,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

CSC_R Y’1,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’2,Cb,Cr −> R’ls

CSC_R Y’1,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’2,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

CSC_R Y’3,Cb,Cr −> R’ms
CSC_GB −> G’ms,B’ms

CSC_R Y’4,Cb,Cr −> R’ls
CSC_GB −> G’ls,B’ls
PACK R’ms,R’ls −> R’

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

PACK G’ms,G’ls −> G’
PACK B’ms,B’ls −> B’

STORE R’

STORE B’
STORE G’

. .
 .

Figure 4. The scheduling result for a CSC unit having
the latency of 10 and recovery of 2

software and FPGA-based color space
converters consists of a stream of two
256 � 256 pixel images, for which the
Y 0, Cb, Cr components are stored in
separate tables in the main memory. The
data is organized as 16-bit signed inte-
ger vectors as resulted from motion com-
pensation. The Y 0CbCr-to-R0G0B0 con-
version is done in an SIMD fashion, by
sequentially processing four triplets of
Y 0, Cb, Cr values at a time. As men-
tioned, chroma 2-fold upsampling is per-
formed by means of a zero-order hold;
this way, no additional processing is
needed. Then, the linear mapping de-
fined by Equation set 1 is carried out,
and the result is sent to a display FIFO.

Since all the input data is stored into
memory, the very first access to it
(which is actually the single access in
our application) will generate so called
compulsory read cache misses. The sum
of the data cache stalls and the instruc-
tion cycles needed to perform the proper
color space conversion translates to a
worst case scenario, which provides the
lower bound of the performance improve-
ments. We will also present the results
according to the best case scenario, in
which all cache misses are counted as
part of the motion compensation process.
That is, improvements in terms of in-
struction cycles required to perform

strictly color space conversion will be reported.
The reference for evaluating the performance of the color space conversion carried out on FPGA-

augmented TriMedia is a pure-software implementation on standard TriMedia [9]. The reference
color space converter is implemented as a loop, where each iteration processes 16 pixels. Since

Table 1. Performance figures for Y 0
CbCr-to-R0

G
0
B

0 conversion
Experiment 1 RFU@100MHz 2 RFUs@50MHz

pure SW FPGA-CSC4 FPGA-CSC4 FPGA-CSC4 FPGA-CSC4
rolled rolled unrolled 4� rolled unrolled 4�

Instruction cycles 190,771 190,240 107,821 192,972 109,358
Instruction cycles / pixel 1.46 1.45 0.82 1.47 0.83
Pixels / instruction cycle 0.66 0.69 1.22 0.68 1.20

Instruction-cache stalls 937 697 1,342 702 1,368
Read data-cache stalls 90,112 90,112 90,112 90,112 90,112
Issues / cycle 4.81 3.47 3.84 3.35 3.95

I cycles + read D$ stalls 280,883 280,352 197,933 283,084 199,470
Instruction cycles / pixel 2.14 2.14 1.51 2.16 1.52
Pixels / instruction cycle 0.47 0.47 0.66 0.46 0.66

this pure-software implementation is beyond the paper scope, we will not go into further details.
However, we still mention that by running our pure-software color space converter on a TriMedia
cycle accurate simulator, we determined that an iteration which processes 16 pixels can be sched-
uled into 24 cycles, which translates into 0:66 pixels/cycle. It is also worth mentioning that 4:8 of
5 issue slots are filled in with operations in the pure-software implementation. This result is indeed
a challenging reference for the TriMedia+FPGA hybrid.

Therefore, our experiment includes two approaches: pure software and FPGA-based. As men-
tioned, 0.66 pixels/cycle are decoded in the pure software approach, while 2 pixels/cycle can be
decoded in the FPGA-based approach if the loop is unrolled an infinite number of times. The
configuration of the RFU is carried out at application load time.

The Y 0CbCr-to-R0G0B0 performance evaluation has been carried out considering two FPGA-
augmented TriMedia instances: TriMedia + 1 RFU@100 MHz and TriMedia + 2 RFUs@50 MHz.
A program has been written in C, and further compiled and scheduled with TriMedia development
tools. To overcome the penalty associated to firing-up and flushing the pipeline, two techniques can
be employed: (1) loop unrolling, and (2) software pipelining. Since the TriMedia scheduler uses
the decision tree as a scheduling unit [3], all operations return their results in the same decision
tree that they are issued, even though the TriMedia architecture does not forbid the contrary. This
is the major limiting factor in generating deep software pipelined loops containing long-latency
operations. Hence, only loop unrolling technique is considered in the sequel.

The loop calling the CSC instruction has been manually unrolled different numbers of times.
The best results which corresponds to 4� unrolling are presented in Table 1. We would like to
mention that a 2� unrolling does not suffice, since the firing-up and flushing overhead is still
large. At the same time, an 8� unrolling generates long decision trees, which in turn translates into
reduced performance due to register spilling. As it can be easily observed, about the same figures
are obtained for both FPGA-augmented TriMedia instances. The speed-up is 0:66�0:47

0:47
� 100 �

40% according to the worst-case scenario, and 1:22�0:66

0:66
� 100 � 85% according to the best-case

scenario.
Finally, we would like to mention that a more realistic average-case scenario will assume a

memory access pattern for reducing the number of read cache misses. However, this is subject
to optimization at a complete MPEG decoder level, and therefore, beyond the paper scope. Thus,
we do not have statistically relevand data for the time being. Since we are not able to make a
reliable estimation according to the average-case scenario, we proceed to a conservative evaluation

by taking into account the entire number of read cache misses (worst-case scenario), and claim
that the FPGA-augmented TriMedia/CPU64 can perform color space conversion 40% faster than
the standard TriMedia/CPU64. Given the fact that the experimental TriMedia is a 5 issue-slot
VLIW processor with 64-bit datapaths and a very rich multimedia instruction set [14], such an
improvement within the target media processing domain indicates that the TriMedia + FPGA hybrid
is a promising approach with respect to color space conversion.

6. Conclusions and future work

We have described an Y 0CbCr � to � R0G0B0 converter on FPGA-augmented TriMedia. For
such a task, the lower bound of the performance improvement over the standard TriMedia is 40%
in terms of speed. The major lesson learned is that deep pipelines implemented on the RFU can
provide significant improvements even for a performant VLIW processor within its target media
domain. In future work, we intend to consider performant anti-image filtering in the process of
chroma upsampling.

Acknowledgements

This project is supported by the doctoral fellowship RWC-061-PS-99047-ps from Philips Re-
search Laboratories in Eindhoven, The Netherlands.

References

[1] B. G. Haskell, A. Puri, and A. N. Netravali. Digital Video: An Introduction to MPEG-2. Kluwer
Academic Publishers, Norwell, Massachusetts, 1996.

[2] J. R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable Coprocessor. In IEEE
Symposium on FPGAs for Custom Computing Machines, pages 12–21, Napa Valley, California, April
1997. IEEE Computer Society Press.

[3] J. Hoogerbrugge and L. Augusteijn. Instruction Scheduling for TriMedia. Journal of Instruction-Level
Parallelism, 1(1), February 1999.

[4] International Telecommunication Unit. Studio Encoding Parameters of Digital Television for Standard
4:3 and Wide-Screen 16:9 Aspect Ratios. ITU-R Recommendation BT.601-5, October 1995.

[5] International Telecommunication Unit. Information technology – Generic coding of moving pictures
and associated audio information: Video. ITU-T Recommendation H.262, February 2000.

[6] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall. MPEG Video Compression Standard.
Chapman & Hall, New York, New York, 1996.

[7] C. Poynton. A Technical Introduction to Digital Video. John Wiley & Sons, January 1996.
[8] R. Razdan and M. D. Smith. A High Performance Microarchitecture with Hardware-Programmable

Functional Units. 27th Annual International Symposium on Microarchitecture – MICRO-27, pages
172–180, San Jose, California, November 1994.

[9] M. Sima. Color Space Conversion on VLIW platforms. Private Communication, August 2002.
[10] M. Sima, S. Cotofana, J. T. van Eijndhoven, S. Vassiliadis, and K. Vissers. 8�8 IDCT Implementation

on an FPGA-augmented TriMedia. In K. L. Pocek and J. M. Arnold, editors, IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM 2001), Rohnert Park, California, April
2001. IEEE Computer Society Press.

[11] M. Sima, S. Cotofana, S. Vassiliadis, J. T. van Eijndhoven, and K. Vissers. MPEG Macroblock Pars-
ing and Pel Reconstruction on an FPGA-augmented TriMedia Processor. In A. Jacobs, editor, IEEE
International Conference on Computer Design, pages 425–430, Austin, Texas, September 2001. IEEE
Computer Society Press.

[12] M. Sima, S. D. Cotofana, S. Vassiliadis, J. T. van Eijndhoven, and K. A. Vissers. MPEG-compliant
Entropy Decoding on FPGA-augmented TriMedia/CPU64. In J. Arnold and K. L. Pocek, editors,
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2002), pages 261–
270, Napa Valley, California, April 2002. IEEE Computer Society Press.

[13] P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[14] J. T. J. van Eijndhoven, F. W. Sijstermans, K. A. Vissers, E.-J. D. Pol, M. J. A. Tromp, P. Struik, R. H. J.
Bloks, P. van der Wolf, A. D. Pimentel, and H. P. E. Vranken. TriMedia CPU64 Architecture. In
Proceedings of International Conference on Computer Design, pages 586–592, Austin, Texas, October
1999. IEEE Computer Society.

[15] R. D. Wittig and P. Chow. OneChip: An FPGA Processor With Reconfigurable Logic. In K. L. Pocek
and J. M. Arnold, editors, IEEE Symposium on FPGAs for Custom Computing Machines, pages 126–
135, Napa Valley, California, April 1996. IEEE Computer Society Press.

