
A VLSI Architecture for Advanced Video Coding Motion Estimation

Swee Yeow Yap, John V. McCanny
DSiP Laboratories, School of Electrical & Electronic Engineering, Queen’s

University of Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, Northern
Ireland, UK.

E-mail: s.y.yap, j.mccanny@ee.qub.ac.uk

Abstract

With the advent of new video standards such as MPEG-4 part-10 and H.264/H.26L,
demands for advanced video coding (AVC), particularly in area of variable block searching
motion estimation (VBSME), are increasing. This has led to research into suitable flexible
hardware architectures to perform the various types of VBSME. In this paper, we propose a
new 1-D VLSI architecture for full search variable block size motion estimation (FSVBSME).
The variable block size, sum of absolute differences (SAD) computation is performed by re-
using the results of smaller sub-block computations. These are permuted and combined by
incorporating a shuffling mechanism within each processing element (PE). Whereas a
conventional 1-D architecture can process only one motion vector, this architecture can
process up to 41 motion vector (MV) sub-blocks (within a macroblock) in a comparable
number of clock cycles.

1. Introduction

There has been a growing interest in the use of advanced video coding (AVC) for
temporal prediction (a) in order to obtain higher compression ratios and (b) to improve
video quality in low-bit rate video systems. In particular, a video frame is segmented
into smaller and variable block sizes to accommodate different changes in object
movement within a video frame. One way to achieve this is by splitting the video
frame using conventional fixed size macroblocks. Each macroblock is then further
segmented into variable block sizes. A typical macroblock has a dimension of 16x16
pixels, with the smallest segmented block size (base block) being 4x4. In this case, a
macroblock contains 16 base blocks corresponding to 16 motion vectors. Other
variable blocks sizes correspond to derivatives of the base block. Newer video
applications such as the MPEG-4 AVC part-10 [1] and H.264/H.26L include such
schemes in their standard specifications.

The purpose of this paper is to present a new one-dimensional VLSI architecture for
implementing full search variable block size video motion estimation (VBSME). An
important aspect of this architecture is that it is able to perform a full motion search on
integral numbers of 4x4 blocks sizes. As will be discussed, this requires a comparable
number of clock cycles to previous 1-D architectures [2][3]. However this is capable of
performing searches of up to 41 sub-motion displacements within a macroblock, as
compared to one in previous 1-D systems. This new architecture requires an additional
set of multiplexers and latches in the PE data path when compared with the PE’s
described in [2] and [3].

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

MV

Macro-block in
previous frame

Macro-block in current
frame (CMD)

Search region in
previous frame
(SRD)

current frame
previous frame

C(k,l)

R(i+k,j+l)

The structure of the paper is as follows. Section 2 provides a brief overview of
background work on Motion Estimation architectures and builds on this to develop a
new architecture for a full search VBSME. The proposed architecture is then presented
in more detail in section 3. The results of silicon design studies based on this are then
given in section 4, with the main conclusions presented in section 5.

2. Background

Motion estimation algorithms exploit the temporal redundancy of a segmented video
sequence, as described by Jain [4]. Among all the estimation algorithms, the full-search
block-matching algorithm has been shown to produce the best results in terms of
finding displacement vectors (motion vectors, MV), as depicted in Figure 1. Such
algorithms are implemented in two stages, namely the calculation of the sum of
absolute differences (SAD) for each displacement vector, followed by methods for
finding the smallest SAD values. This is summarized by equations 1 and 2.

∑∑
−

=

−

=

++−=
1N

0k

1N

0l

l)jk,R(il)C(k,SAD(i,j) (1)

()()jiSADSADMIN ,min= (2)

Here, C(k,l) and R(i+k,j+l) represent the current picture frame and search region’s
macro-block displacements respectively.

Figure 1. Block Matching

The computational requirements for block matching are high and a real-time video
application usually requires a direct mapped hardware architecture. Direct mapped
architectures also have important advantages in terms of reduced power dissipation.
Full search algorithms, typically, can be implemented using regular 1-D or 2-D systolic
or systolic-like architectures as described by Pirsch [5]. 1-D systems offer a number of
attractive features over their full 2-D counterparts, in particular much less complex data
scheduling and simpler structures. These architectures are also attractive for portable
devices because of their lower silicon area and thus size. Kuhn’s architecture [3] has

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

0
0

1

0 1
0 1

2 3

16 x 16 16 x 8 8 x 16 8 x 8

0
0

1

0 1
0 1

2 3

8 x 8 8 x 4 4 x 8 4 x 4

also demonstrated that flexible 1-D architectures are suitable for fast matching
algorithms, such as three-step search (TSS) and pel sub-sampling.

To date, conventional VLSI architectures for computing VBSME have been based on
2-D processor systems. For example, the architecture by Vos [6] uses a 2-D array with
appropriate through masking of processing elements. However, this results in low
processor utilization. Shen’s architecture [7] uses a smaller 2-D array with partial sum
SAD calculations performed sequentially using the smallest block size, 8x8.

In advanced video coding, a macroblock is further segmented with the smallest block
size being 4x4, as shown in Figure 2. This has two modes, the Macroblock mode and
the 8x8 mode, as illustrated in Figures 3(a) and 3(b) respectively. Variable block sizes
must be accommodated namely 4x4, 4x8, 8x4, 8x8, 16x8, 8x16 and 16x16. Referring to
Figure 3b, it will be noted that there are four quarter-blocks in a macroblock, each of
which contains 9 block patterns i.e. a total of 36 block patterns. However as will be
observed in Figure 3a, each macroblock contains another 9 block patterns, with four of
the 8x8 blocks common with the equivalent 8x8 blocks in Figure 3b. Therefore, the
total number of block patterns, to be processed is 36+9-4 = 41 i.e. a total of 41 motion
vectors.

Figure 2. Segmented Macroblock

Figure 3a. MB-mode

Figure 3b. 8x8-mode

b0 b1 b2 b3

b4 b5 b6 b7

b8 b9 b10 b11

b12 b13 b14 b15

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Macroblock

3. Proposed Architecture

The architecture presented in this paper is based on 1-D array processor. A key
aspect of the approach proposed is that it incorporates within the basic processing
element (PE) the means to accumulate the partial SAD through shuffling. The
scheduling of the current macroblock data (CMD) and search region data (SRD) is
similar to a conventional 1-D architecture [2]. However, the CMD is arranged in a
raster scan sequence, as shown in Figure 4 with the SRD arranged in a dual raster scan
sequence. Applying this approach to the macroblock shown in Figure 2 results in 16
SADs being computed, each with block size 4x4. The stored SADs are then re-used to
compute SADs for other block sizes. This is done by permuting the sub-block SAD
values and combining these in appropriate permutations to derive those for the various
blocks sizes required. This approach allows the overall computational requirements to
be significantly reduced by avoiding the need to derive sub-block computation values
that already have been established. A total of 41 variable block size SAD values can
then be processed in a single processor.

Figure 4. CMD – raster scan

Details of the proposed architecture are presented in Figure 5. The circuit operates
by scheduling the CMD through a delay line and broadcasting two sets of SRD data on
each clock cycle. The processing elements accumulate the absolute difference (AD)
between the CMD and SRD on every clock cycle. Without taking processor latency
into account, the first set of base block SADs {b0, b1, b2, b3}, shown in Figure 2, are
completed on clock cycles {51, 55, 59, 63} respectively. Subsequent sets of SAD
results are available on clock cycles {115, 119, 123, 127}, {179, 183, 187, 191}, and
{243, 247, 251, 255}; these correspond to blocks {b4, b5, b6, b7}, {b8, b9, b10, b11}
and {b12, b13, b14, b15} respectively. Other SADs are obtained through the
summations of these base blocks. 16 SAD buses are therefore needed for the
simultaneous and adjacent comparison of SAD values. The best vectors from each bus
can be used in post-processing in various modes of operation.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

D

PE
0

mux

D

PE
1

mux

D

PE
N-1

mux

C(k,l)

R0(i+k,j+l)
R1(i+k,j+l)

SAD Bus0

Control

SAD Bus1

SAD Bus15

Min MV

Min MV

Min MV

Figure 5. 1-D array VBSME architecture

With 16 PEs working concurrently, the circuit allows a total of 256 candidate MVs
(16x16 search region) per sub-block to be processed in parallel. Each PE requires 256
clock cycles with up to 25 extra clock cycles for a region search (i.e. a maximum of 281
clock cycles). This is therefore comparable with existing architectures, which require a
total of 256 clock cycles. Repeating this a further 16 times means that up to 4496 clock
cycles are required to complete a full search. The data flow of within the array is
summarized in Table 1 with the CMD being denoted by C(x,y), and the SRD data being
denoted by R(u,v).

Table 1. Data flow schedule

Clk PE0 PE1 PE14 PE15

(t-0) (t-1) (t-14) (t-15)

0

1

…

14

15

C(0,0)-R(0,0)

C(1,0)-R(1,0)

…

C(14,0)-R(14,0)

C(15,0)-R(15,0)

C(0,0)-R(1,0)

C(1,0)-R(2,0)

…

C(14,0)-R(15,0)

C(15,0)-R(16,0)

…

C(0,0)-R(14,0)

C(1,0)-R(15,0)

…

C(14,0)-R(28,0)

C(15,0)-R(29,0)

C(0,0)-R(15,0)

C(1,0)-R(16,0)

…

C(14,0)-R(29,0)

C(15,0)-R(30,0)

…

240

241

…

254

255

C(0,15)-R(0,15)

C(1,15)-R(1,15)

…

C(14,15)-R(14,15)

C(15,15)-R(15,15)

C(0,15)-R(1,15)

C(1,15)-R(2,15)

…

C(14,15)-R(15,15)

C(15,15)-R(16,15)

…

C(0,15)-R(14,15)

C(1,15)-R(15,15)

…

C(14,15)-R(28,15)

C(15,15)-R(29,15)

C(0,15)-R(15,15)

C(1,15)-R(16,15)

…

C(14,15)-R(29,15)

C(15,15)-R(30,15)

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Current
block
data

Search
area
Data

−

Abs

reg

+

Latch0 Latch15 Latch16 Latch17

Mux A

SAD Buses

Mux B

Mux C

3.1. PE Architecture

The PE cell proposed is shown in Figure 6. The major difference from this and other
PE architectures is the accumulator latches. The proposed PE cell has 18 accumulator
latches, with these being connected to three 18 to 1 muxes, namely muxes A, B and C.
Muxes A and B are used as a feedback path to the adder and mux C is used to select
which latches are output. The output is then de-muxed to the corresponding SAD bus.

The PE cell operates by shuffling the latches used during the AD accumulation
operations. The first latch operates for 4 cycles, then the second for 4 cycles and so on.
The four latches are used and reshuffled in this way until each has operated for 16
cycles (the time to compute a four base block SAD values). The next four latches then
take over the shuffling and so on until all 16 latches are utilized. This corresponds to
the processing of base block sequences {b0, b1, … , b15}.

Figure 6. Processing element

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

When this has been completed, the next SAD sequences are processed on an 8x8
block basis (i.e. there are four 8x8 quarter blocks in each macroblock). In order to
optimize latch utilization, the sub-blocks of each 8x8 quarter block are computed in the
sequence of two 4x8, two 8x4, and one 8x8 blocks. The results for the first quarter
block are then summed in the order {b1, b5} � latch16, {b0, b4} � latch16, {b0, b1}
� latch16, {b4, b5} � latch17, {{b0, b1}, {b4, b5}} � latch0. The other three quarter
blocks are processed in a similar fashion with the final results stored as {{b2, b3}, {b6,
b7}} � latch1, {{b8, b9}, {b12, b13}} � latch2, and {{b10, b11}, {b14, b15}} �
latch3. By this time, a full 8x8 mode motion estimation has been completed. A further
5 clocks are required to complete the full MB-mode estimation, in this case, in the
sequence of two 8x16, two 16x8, and one 16x16 blocks. The corresponding
summations are then summations {latch0, latch2} � latch4, {latch1, latch3} � latch5,
{latch0, latch1} � latch6, {latch2, latch3} � latch7, and finally {latch12, latch13} �
latch8. The whole sequence is summarized in Table 2.

Table 2. Bus lines allocation

 Bus line Blocks (b) Block size Latch Bus line Blocks (b) Block size Latch

1 0 0 4x4 0 22 5 3,7 4x8 16

2 1 1 4x4 1 23 6 2,6 4x8 16

3 2 2 4x4 2 24 7 2,3 8x4 16

4 3 3 4x4 3 25 8 6,7 8x4 17

5 4 4 4x4 4 26 9 2,3,6,7 8x8 1

6 5 5 4x4 5 27 10 9,13 4x8 16

7 6 6 4x4 6 28 11 8,12 4x8 16

8 7 7 4x4 7 29 12 8,9 8x4 16

9 8 8 4x4 8 30 13 12,13 8x4 17

10 9 9 4x4 9 31 14 8,9,12,13 8x8 2

11 10 10 4x4 10 32 15 11,15 4x8 16

12 11 11 4x4 11 33 0 10,14 4x8 16

13 12 12 4x4 12 34 1 10,11 8x4 16

14 13 13 4x4 13 35 2 14,15 8x4 17

15 14 14 4x4 14 36 3 10,11,14,15 8x8 3

16 15 15 4x4 15 37 4 0,1,4,5,8,9,12,13 8x16 4

17 0 1,5 4x8 16 38 5 2,3,6,7,10,11,14,15 8x16 5

18 1 0,4 4x8 16 39 6 0,1,4,5,2,3,6,7 16x8 6

19 2 0,1 8x4 16 40 7 8,9,12,13,10,11,14,15 16x8 7

20 3 4,5 8x4 17 41 8 full macroblock 16x16 8

21 4 0,1,4,5 8x8 0

4. Implementation

The architecture described has been captured using VERILOG and used to synthesize
an ASIC demonstrator design. This is based on a 130nm CMOS technology (1.2V) and
has been implemented using TSMC’s standard cell library. The circuit design is based
on a 16 PE 1-D array, has a search range of 16x16 ({-8,7}) and can handle the variable
block sizes listed in table 3. If a wider search range of 32x32 ({-16,15}) is required
then a 4 times search readily can be performed. The input word-lengths used were 8

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

bits. This is consistent with common video standards. The memory scheme used is
similar to that described in [2] and [3]. The design created contains 108K gates and can
operate at frequencies of up to 100 MHz, i.e. up to 13 frames per second (fps) in 4CIF
video resolution.

The results obtained also show that, for QCIF video resolution at 15 fps, such a
circuit, clocked at 6.68 MHz, has a power consumption of only 9.1 mW, which is very
attractive for low power portable applications. A comparison between this circuit and
previous VBSME circuits is presented in table 4. An exact comparison is complicated
by the fact that these have been implemented with different technologies and exhibit
variations in their specifications and capabilities. Nevertheless, it will be noted that the
design presented exhibits the highest level of flexibility in terms of block sizes catered
for. It offers the highest clock rates and has a gate count of around 40% of the most
flexible alternative - that of Vos [6]. In addition, it should be pointed out that the
flexibility of the architecture presented means that it is easy to re-program the latches to
cater for other block sizes, should these be needed in future video standards.

Table 3. Performance

Table 4. Comparison of some VBSME core

Algorithm Variable block size full search

motion estimation

Number of PE 16 (1-D array)

Searching range 16 x 16

Block size 4x4, 4x8, 8x4, 8x8,

8x16, 16x8, 16x16

Technology TSMC 130nm CMOS std. cell lib.

Gates count 108k

Max frequency 100 MHz

Example circuit 6.68 MHz, 15 fps, 9.1 mW, QCIF

Vos ’95[6] Fujita ’97[8] Shen ’01[7] This work

PE number 16x16 --- 64 16

Search
range

16x16 --- 16x16, 32x32 16x16, 32x32

Block size 2nx2n,
n>=1,
(masking)

16x16, 8x8 8x8, 16x16,
32x32

4x4, 4x8, 8x4, 8x8,
8x16, 16x8, 16x16

Process 0.6um 0.35um 0.6um 0.13um

Voltage --- --- 5V & 2.5V 1.2V

Frequency 72MHz 15MHz 60MHz 100MHz

Gate count 263k 12k 67k 108k

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

5. Conclusion

In this paper, a new 1-D VLSI architecture for full search, variable block-size motion
estimation (FSVBSME) is presented. This architecture can process up to 41 variable
blocks motion vectors in a macroblock in a similar number of clock cycles to other
conventional 1-D architectures. A key aspect is the shuffling, permutation and
combination of partial SAD values within each PE. Design studies show that this is
very suitable for the next generation of advanced video coding, particularly devices
requiring small silicon area, a high temporal compression ratio at low bit rates and low
power dissipation. The concepts presented can be extended to half and quarter pixel
motion estimation for FSVBSME. Research on this is currently underway and will be
discussed in a future paper.

6. References
[1] ISO/IEC 14496-10, “Coding of Moving Pictures and Audio”, 2002.

[2] K. M. Yang & L. Wu, “A Family of VLSI Designs for the Motion Compensation Block-Matching
Algorithm”, IEEE Transactions On Circuits and Systems, vol. 36, no. 10, pp. 1317-1325, October
1989.

[3] P. M. Kuhn, “Fast MPEG-4 Motion Estimation: Processor Based and Flexible VLSI
Implementations”, Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 23, pp 67-92, October 1999.

[4] J. R. Jain & A. K. Jain, “Displacement Measurement and Its Application in Interframe Image Coding”,
IEEE Transactions on Communications, vol. COM-29, no. 12, pp. 1799-1808, December 1981.

[5] P. Pirsch, “VLSI Architectures for Video Compression – A Survey”, Proceedings of the IEEE, vol. 83,
no. 2, pp. 220-246, February 1995.

[6] Luc de Vos & M. Schobinger, “VLSI Architecture for a Flexible Block Matching Processor”, IEEE
Transactions on Circuits and Systems for Video Technology, vol. 5, no. 5, October 1995, pp.417-428.

[7] J.F. Shen et al, “A Novel Low-Power Full-Search Block-Matching Motion-Estimation Design for
H.263+”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 7, July 2001,
pp.890-897.

[8] G. Fujita et al, “A new motion estimation core dedicated to H.263 video coding”, Proceedings of 1997
IEEE International Symposium on Circuits and Systems in the Information Age ISCAS ’97, Part vol.
2, 1997, pp. 1161-4 vol. 2.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

