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Abstract

With the advent of new video standards such as MPEG-4 part-10 and H.264/H.26L, 
demands for advanced video coding (AVC), particularly in area of variable block searching 
motion estimation (VBSME), are increasing.  This has led to research into suitable flexible 
hardware architectures to perform the various types of VBSME.  In this paper, we propose a 
new 1-D VLSI architecture for full search variable block size motion estimation (FSVBSME).  
The variable block size, sum of absolute differences (SAD) computation is performed by re-
using the results of smaller sub-block computations. These are permuted and combined by 
incorporating a shuffling mechanism within each processing element (PE).  Whereas a 
conventional 1-D architecture can process only one motion vector, this architecture can 
process up to 41 motion vector (MV) sub-blocks (within a macroblock) in a comparable 
number of clock cycles. 

1. Introduction 

There has been a growing interest in the use of advanced video coding (AVC) for 
temporal prediction (a) in order to obtain higher compression ratios and (b) to improve 
video quality in low-bit rate video systems.  In particular, a video frame is segmented 
into smaller and variable block sizes to accommodate different changes in object 
movement within a video frame.  One way to achieve this is by splitting the video 
frame using conventional fixed size macroblocks.  Each macroblock is then further 
segmented into variable block sizes.  A typical macroblock has a dimension of 16x16 
pixels, with the smallest segmented block size (base block) being 4x4.  In this case, a 
macroblock contains 16 base blocks corresponding to 16 motion vectors.  Other 
variable blocks sizes correspond to derivatives of the base block.  Newer video 
applications such as the MPEG-4 AVC part-10 [1] and H.264/H.26L include such 
schemes in their standard specifications.   

The purpose of this paper is to present a new one-dimensional VLSI architecture for 
implementing full search variable block size video motion estimation (VBSME).  An 
important aspect of this architecture is that it is able to perform a full motion search on 
integral numbers of 4x4 blocks sizes.  As will be discussed, this requires a comparable 
number of clock cycles to previous 1-D architectures [2][3].  However this is capable of 
performing searches of up to 41 sub-motion displacements within a macroblock, as 
compared to one in previous 1-D systems.  This new architecture requires an additional 
set of multiplexers and latches in the PE data path when compared with the PE’s 
described in [2] and [3].  
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The structure of the paper is as follows. Section 2 provides a brief overview of 
background work on Motion Estimation architectures and builds on this to develop a 
new architecture for a full search VBSME.  The proposed architecture is then presented 
in more detail in section 3.  The results of silicon design studies based on this are then 
given in section 4, with the main conclusions presented in section 5. 

2. Background 

Motion estimation algorithms exploit the temporal redundancy of a segmented video 
sequence, as described by Jain [4].  Among all the estimation algorithms, the full-search 
block-matching algorithm has been shown to produce the best results in terms of 
finding displacement vectors (motion vectors, MV), as depicted in Figure 1.  Such 
algorithms are implemented in two stages, namely the calculation of the sum of 
absolute differences (SAD) for each displacement vector, followed by methods for 
finding the smallest SAD values.  This is summarized by equations 1 and 2. 
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Here, C(k,l) and R(i+k,j+l) represent the current picture frame and search region’s 
macro-block displacements respectively. 

Figure 1.   Block Matching 

The computational requirements for block matching are high and a real-time video 
application usually requires a direct mapped hardware architecture.  Direct mapped 
architectures also have important advantages in terms of reduced power dissipation.  
Full search algorithms, typically, can be implemented using regular 1-D or 2-D systolic 
or systolic-like architectures as described by Pirsch [5].  1-D systems offer a number of 
attractive features over their full 2-D counterparts, in particular much less complex data 
scheduling and simpler structures.  These architectures are also attractive for portable 
devices because of their lower silicon area and thus size.  Kuhn’s architecture [3] has 
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also demonstrated that flexible 1-D architectures are suitable for fast matching 
algorithms, such as three-step search (TSS) and pel sub-sampling.  

To date, conventional VLSI architectures for computing VBSME have been based on 
2-D processor systems.  For example, the architecture by Vos [6] uses a 2-D array with 
appropriate through masking of processing elements.  However, this results in low 
processor utilization.  Shen’s architecture [7] uses a smaller 2-D array with partial sum 
SAD calculations performed sequentially using the smallest block size, 8x8. 

In advanced video coding, a macroblock is further segmented with the smallest block 
size being 4x4, as shown in Figure 2.  This has two modes, the Macroblock mode and 
the 8x8 mode, as illustrated in Figures 3(a) and 3(b) respectively.  Variable block sizes 
must be accommodated namely 4x4, 4x8, 8x4, 8x8, 16x8, 8x16 and 16x16.  Referring to 
Figure 3b, it will be noted that there are four quarter-blocks in a macroblock, each of 
which contains 9 block patterns i.e. a total of 36 block patterns.  However as will be 
observed in Figure 3a, each macroblock contains another 9 block patterns, with four of 
the 8x8 blocks common with the equivalent 8x8 blocks in Figure 3b.  Therefore, the 
total number of block patterns, to be processed is 36+9-4 = 41 i.e. a total of 41 motion 
vectors. 

Figure 2.   Segmented Macroblock 

Figure 3a.   MB-mode 

Figure 3b.   8x8-mode 
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3. Proposed Architecture 

The architecture presented in this paper is based on 1-D array processor.  A key 
aspect of the approach proposed is that it incorporates within the basic processing 
element (PE) the means to accumulate the partial SAD through shuffling.  The 
scheduling of the current macroblock data (CMD) and search region data (SRD) is 
similar to a conventional 1-D architecture [2].  However, the CMD is arranged in a 
raster scan sequence, as shown in Figure 4 with the SRD arranged in a dual raster scan 
sequence.  Applying this approach to the macroblock shown in Figure 2 results in 16 
SADs being computed, each with block size 4x4.  The stored SADs are then re-used to 
compute SADs for other block sizes. This is done by permuting the sub-block SAD 
values and combining these in appropriate permutations to derive those for the various 
blocks sizes required. This approach allows the overall computational requirements to 
be significantly reduced by avoiding the need to derive sub-block computation values 
that already have been established. A total of 41 variable block size SAD values can 
then be processed in a single processor.  

Figure 4.   CMD – raster scan 

Details of the proposed architecture are presented in Figure 5.  The circuit operates 
by scheduling the CMD through a delay line and broadcasting two sets of SRD data on 
each clock cycle.  The processing elements accumulate the absolute difference (AD) 
between the CMD and SRD on every clock cycle.  Without taking processor latency 
into account, the first set of base block SADs {b0, b1, b2, b3}, shown in Figure 2, are 
completed on clock cycles {51, 55, 59, 63} respectively.  Subsequent sets of SAD 
results are available on clock cycles {115, 119, 123, 127}, {179, 183, 187, 191}, and 
{243, 247, 251, 255}; these correspond to blocks {b4, b5, b6, b7}, {b8, b9, b10, b11} 
and {b12, b13, b14, b15} respectively.  Other SADs are obtained through the 
summations of these base blocks.  16 SAD buses are therefore needed for the 
simultaneous and adjacent comparison of SAD values.  The best vectors from each bus 
can be used in post-processing in various modes of operation. 
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Figure 5.   1-D array VBSME architecture 

With 16 PEs working concurrently, the circuit allows a total of 256 candidate MVs 
(16x16 search region) per sub-block to be processed in parallel.  Each PE requires 256 
clock cycles with up to 25 extra clock cycles for a region search (i.e. a maximum of 281 
clock cycles).  This is therefore comparable with existing architectures, which require a 
total of 256 clock cycles.  Repeating this a further 16 times means that up to 4496 clock 
cycles are required to complete a full search.  The data flow of within the array is 
summarized in Table 1 with the CMD being denoted by C(x,y), and the SRD data being 
denoted by R(u,v). 

Table 1.   Data flow schedule 

Clk PE0 PE1 PE14 PE15

(t-0) (t-1) (t-14) (t-15) 

0

1

…

14

15

C(0,0)-R(0,0) 

C(1,0)-R(1,0) 

…

C(14,0)-R(14,0) 

C(15,0)-R(15,0) 

C(0,0)-R(1,0) 

C(1,0)-R(2,0) 

…

C(14,0)-R(15,0) 

C(15,0)-R(16,0)

…

C(0,0)-R(14,0) 

C(1,0)-R(15,0) 

…

C(14,0)-R(28,0) 

C(15,0)-R(29,0)

C(0,0)-R(15,0) 

C(1,0)-R(16,0) 

…

C(14,0)-R(29,0) 

C(15,0)-R(30,0) 

…

240

241

…

254

255

C(0,15)-R(0,15) 

C(1,15)-R(1,15) 

…

C(14,15)-R(14,15) 

C(15,15)-R(15,15) 

C(0,15)-R(1,15) 

C(1,15)-R(2,15) 

…

C(14,15)-R(15,15)

C(15,15)-R(16,15)

…

C(0,15)-R(14,15) 

C(1,15)-R(15,15) 

…

C(14,15)-R(28,15)

C(15,15)-R(29,15)

C(0,15)-R(15,15) 

C(1,15)-R(16,15) 

…

C(14,15)-R(29,15)

C(15,15)-R(30,15)
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3.1. PE Architecture 

The PE cell proposed is shown in Figure 6.  The major difference from this and other 
PE architectures is the accumulator latches.  The proposed PE cell has 18 accumulator 
latches, with these being connected to three 18 to 1 muxes, namely muxes A, B and C.  
Muxes A and B are used as a feedback path to the adder and mux C is used to select 
which latches are output.  The output is then de-muxed to the corresponding SAD bus.  

The PE cell operates by shuffling the latches used during the AD accumulation 
operations.  The first latch operates for 4 cycles, then the second for 4 cycles and so on.  
The four latches are used and reshuffled in this way until each has operated for 16 
cycles (the time to compute a four base block SAD values).  The next four latches then 
take over the shuffling and so on until all 16 latches are utilized.  This corresponds to 
the processing of base block sequences {b0, b1, … , b15}.   

Figure 6.   Processing element 
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When this has been completed, the next SAD sequences are processed on an 8x8 
block basis (i.e. there are four 8x8 quarter blocks in each macroblock).  In order to 
optimize latch utilization, the sub-blocks of each 8x8 quarter block are computed in the 
sequence of two 4x8, two 8x4, and one 8x8 blocks.  The results for the first quarter 
block are then summed in the order  {b1, b5} � latch16, {b0, b4} � latch16, {b0, b1} 
� latch16, {b4, b5} � latch17, {{b0, b1}, {b4, b5}} � latch0.  The other three quarter 
blocks are processed in a similar fashion with the final results stored as {{b2, b3}, {b6, 
b7}} � latch1, {{b8, b9}, {b12, b13}} � latch2, and {{b10, b11}, {b14, b15}} �
latch3.  By this time, a full 8x8 mode motion estimation has been completed.  A further 
5 clocks are required to complete the full MB-mode estimation, in this case, in the 
sequence of two 8x16, two 16x8, and one 16x16 blocks.  The corresponding 
summations are then summations {latch0, latch2} � latch4, {latch1, latch3} � latch5, 
{latch0, latch1} � latch6, {latch2, latch3} � latch7, and finally {latch12, latch13} �
latch8.  The whole sequence is summarized in Table 2. 

Table 2.   Bus lines allocation 

  Bus line Blocks (b) Block size Latch   Bus line Blocks (b) Block size Latch

1 0 0 4x4 0 22 5 3,7 4x8 16 

2 1 1 4x4 1 23 6 2,6 4x8 16 

3 2 2 4x4 2 24 7 2,3 8x4 16 

4 3 3 4x4 3 25 8 6,7 8x4 17 

5 4 4 4x4 4 26 9 2,3,6,7 8x8 1 

6 5 5 4x4 5 27 10 9,13 4x8 16 

7 6 6 4x4 6 28 11 8,12 4x8 16 

8 7 7 4x4 7 29 12 8,9 8x4 16 

9 8 8 4x4 8 30 13 12,13 8x4 17 

10 9 9 4x4 9 31 14 8,9,12,13 8x8 2 

11 10 10 4x4 10 32 15 11,15 4x8 16 

12 11 11 4x4 11 33 0 10,14 4x8 16 

13 12 12 4x4 12 34 1 10,11 8x4 16 

14 13 13 4x4 13 35 2 14,15 8x4 17 

15 14 14 4x4 14 36 3 10,11,14,15 8x8 3 

16 15 15 4x4 15 37 4 0,1,4,5,8,9,12,13 8x16 4 

17 0 1,5 4x8 16 38 5 2,3,6,7,10,11,14,15 8x16 5 

18 1 0,4 4x8 16 39 6 0,1,4,5,2,3,6,7 16x8 6 

19 2 0,1 8x4 16 40 7 8,9,12,13,10,11,14,15 16x8 7 

20 3 4,5 8x4 17 41 8 full macroblock 16x16 8 

21 4 0,1,4,5 8x8 0           

4. Implementation 

The architecture described has been captured using VERILOG and used to synthesize 
an ASIC demonstrator design.  This is based on a 130nm CMOS technology (1.2V) and 
has been implemented using TSMC’s standard cell library.  The circuit design is based 
on a 16 PE 1-D array, has a search range of 16x16 ({-8,7}) and can handle the variable 
block sizes listed in table 3.  If a wider search range of 32x32 ({-16,15}) is required 
then a 4 times search readily can be performed.  The input word-lengths used were 8 
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bits.  This is consistent with common video standards.  The memory scheme used is 
similar to that described in [2] and [3].  The design created contains 108K gates and can 
operate at frequencies of up to 100 MHz, i.e. up to 13 frames per second (fps) in 4CIF 
video resolution.   

The results obtained also show that, for QCIF video resolution at 15 fps, such a 
circuit, clocked at 6.68 MHz, has a power consumption of only 9.1 mW, which is very 
attractive for low power portable applications. A comparison between this circuit and 
previous VBSME circuits is presented in table 4. An exact comparison is complicated 
by the fact that these have been implemented with different technologies and exhibit 
variations in their specifications and capabilities. Nevertheless, it will be noted that the 
design presented exhibits the highest level of flexibility in terms of block sizes catered 
for. It offers the highest clock rates and has a gate count of around 40% of the most 
flexible alternative - that of Vos [6]. In addition, it should be pointed out that the 
flexibility of the architecture presented means that it is easy to re-program the latches to 
cater for other block sizes, should these be needed in future video standards. 

Table 3.   Performance 

Table 4.   Comparison of some VBSME core 

Algorithm Variable block size full search  

motion estimation 

Number of PE 16 (1-D array) 

Searching range 16 x 16 

Block size 4x4, 4x8, 8x4, 8x8,  

8x16, 16x8, 16x16 

Technology TSMC 130nm CMOS std. cell lib. 

Gates count 108k 

Max frequency 100 MHz 

Example circuit 6.68 MHz, 15 fps, 9.1 mW, QCIF 

Vos ’95[6] Fujita ’97[8] Shen ’01[7] This work 

PE number 16x16 --- 64 16 

Search 
range 

16x16 --- 16x16, 32x32 16x16, 32x32 

Block size 2nx2n, 
n>=1, 
(masking) 

16x16, 8x8 8x8, 16x16, 
32x32 

4x4, 4x8, 8x4, 8x8, 
8x16, 16x8, 16x16 

Process 0.6um 0.35um 0.6um 0.13um 

Voltage --- --- 5V & 2.5V 1.2V 

Frequency 72MHz 15MHz 60MHz 100MHz 

Gate count 263k 12k 67k 108k 
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5. Conclusion 

In this paper, a new 1-D VLSI architecture for full search, variable block-size motion 
estimation (FSVBSME) is presented.  This architecture can process up to 41 variable 
blocks motion vectors in a macroblock in a similar number of clock cycles to other 
conventional 1-D architectures.  A key aspect is the shuffling, permutation and 
combination of partial SAD values within each PE.  Design studies show that this is 
very suitable for the next generation of advanced video coding, particularly devices 
requiring small silicon area, a high temporal compression ratio at low bit rates and low 
power dissipation.  The concepts presented can be extended to half and quarter pixel 
motion estimation for FSVBSME.  Research on this is currently underway and will be 
discussed in a future paper. 
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