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Abstract

In the simulation of quantum circuits the matrices and vectors
used to represent unitary operations and qubit states grow ex-
ponentially as the number of qubits increase. For instance, the
evolution of an n-qubit quantum system in an initial superpo-
sition state is described by a2n x 2n unitary matrix. However,
the evolution of an n-qubit quantum system can be described
as well as a composition of single-qubit and controlled-not
unitary operations which are equivalent to the2n x 2n uni-
tary matrix. A strategy is suggested for the mapping of one-
quibit and two-qubit gates onto a three PE systolic array, and
then we show how the interconnection of those systolic arrays
can be used to implement or describe quantum circuits. As
a case study we present the description of the teleportation
algorithm.

1. Introduction

Since the discovery of quantum algorithms able to solve
problems considered untractable on classic computers [5], the
field of quantum computation and quantum information has
become an integrated part of computer science due to the pro-
found changes that quantum mechanics is bringing into the
theory of computation[1]. If well the construction of a prac-
tical quantum computer has not been achieved, the search for
new quantum algorithms and a new pedagogy to teach the fun-
damentals of quantum mechanics to computer scientists are
indeed hot research areas nowadays; hence, the simulation of
quantum algorithms has become a growing field of research.

The state-vector model representing the unitary transfor-
mations of the quantum state as it pass through the gates and
circuits has been considered the best candidate for emulation
of quantum circuits on a classical computer [6], [10]. Differ-
ent approaches have been taken to simulate quantum gates and
circuits ranging from Programming Languages [11], Hard-
ware Description Language [7], Field Programmable Gate
Array[8], and Decision Diagrams [9] among others simulation
techniques. This paper presents the mapping of unitary matri-
ces onto a linear systolic array[2]. We show how to apply two
Hadamard operations in parallel, using a single linear systolic
array. Furthermore, the same systolic array is used to imple-
ment the reversible CNOT gate. We are limiting our study of

quantum registers to just two qubits because the evolution of
an n-qubit quantum system can be described as well as a com-
position of single-qubit and controlled-not unitary operations
which are equivalent to the2n x 2n quantum system.

The remainder of this paper is organized as follows: Sec-
tion 2 provides the necessary background on quantum systems
and tensor operations. Then in Section 3, we show how sys-
tolic arrays can be used to describe quantum gates operations.
In Section 4, we describe a teleportation circuit using systolic
arrays. Final remarks and ongoing work is presented in Sec-
tion 5.

2. Quantum Circuit Model

A qubit is a two level quantum system which can be consid-
ered as an abstract entity or mathematical object that resides
in a two-dimensional Hilbert space. This abstract object, the
qubit, can be imagined as a unit vector that moves among the
quantum states of a quantum system. Hence, we could say
that a qubit describes a state in a two-dimensional quantum
system. We can simulate a classical bit in a quantum system
using a pair of mutually orthonormal state vectors as follows:

|0〉 =
[

1
0

]
and|1〉 =

[
0
1

]

where the symbols|0〉 and |1〉, known as ket zero and ket
one according to Dirac’s notation, are labels attached to each
quantum state. The states|0〉 and |1〉 form a computational
basis and any other state the qubit can be in is known as a su-
perposition and can be expressed as a linear combination of
the basis states:

|ψ〉 = α|0〉+ β|1〉,
whereα, β ∈ C are weighting factors also known as probabil-
ity amplitudes and|α|2 + |β|2 = 1.

To move a qubit from one state to another we must use
unitary transformations which are represented by2× 2 matri-
ces and we will refer to them as unitary operations or gates.
For instance, Pauli matrices (X, Z) along with Identity (I), are
gates that can be used to act on one-qubit to describe the evo-
lution of a quantum system. In their matrix form they are
represented as:

X =
[

0 1
1 0

]
Z =

[
1 0
0 −1

]
I =

[
1 0
0 1

]



The unitary operation Pauli-X flips|0〉 into |1〉 and vise versa:

X|0〉 =
[

0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉

X|1〉 =
[

0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉

The Hadamard (H) gate turns|0〉 and |1〉 into a equally
weighted superposition states. When we applyH to |0〉 and
|1〉we obtain the following superpositions:

H|0〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
= 1√

2

[
1
1

]

H|1〉 = 1√
2

[
1 1
1 −1

] [
0
1

]
= 1√

2

[
1

−1

]

The superposition principle allows us to carry out a compu-
tation on a qubit, in a superposition state, which indirectly
affects all basis states that contribute to the superposition.

When it is necessary to work with two or more qubits, the
concept of quantum register emerges. For two qubits, the state
of the quantum system is defined by the tensor product of the
single qubits as shown below:

|00〉 =
[

1
0

]
⊗

[
1
0

]
=




1×
[

1
0

]

0×
[

1
0

]




=




1
0
0
0




What means that a 2-qubit system or quantum register resides
in a four dimensional Hilbert space whose basis are:

|00〉 =




1
0
0
0


 |01〉 =




0
1
0
0




|10〉 =




0
0
1
0


 |11〉 =




0
0
0
1




Within this four dimensional space an arbitrary separable su-
perposition state|ψ〉 can be written as:

|ψ〉 = 1√
2
(|00〉+ |10〉)

A two qubit quantum system, in a superposition state, is
said to be separable [3] if it can be decomposed and expressed
as a tensor product of the individual basis state vectors. For
example:

|ψ〉 = 1√
2
(|00〉+ |10〉) = 1√

2
(|0〉+ |1〉)⊗ |0〉

However, a superposition state|ψ〉 of a two qubit quantum
system can be in a non-separable or entangled state and when
this occurs, we are unable to decompose the state and express
it as a tensor product of the individual basis state vectors. For
instance, the following state represents an entanglement.

|ψ〉 = 1√
2
(|01〉+ |10〉)

The CNOT gate is of central interest to quantum comput-
ing because it produces entanglement. As it is illustrated in
Figure 1, the CNOT gate has two input qubits, the one on top
is denoted as the control qubit and the other one is known as
the target qubit. When the control qubit is in state|0〉, both
qubits just move across the CNOT unaltered but if the control
qubit is in state|1〉 the control qubit moves across CNOT as
is and the target qubit is flipped.

|1

|0

|1

|1     0 

Figure 1. The CNOT gate .

In its matrix form the CNOT can be represented as a4 × 4
matrix with a bandwidth of 3.

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




The evolution of a n-qubit quantum system in an initial su-
perposition state can be described by a2n × 2n unitary ma-
trix. However, this evolution can be described as well as a
composition of single-qubit and controlled-not unitary opera-
tions which are equivalent to the2n × 2n unitary matrix. For
instance,

H⊗2 = (H ⊗H) = 1
2




1 1 1 1
1 −1 1 −1
1 −1 −1 −1
1 1 −1 1




can be decomposed into

(H ⊗H) = 1√
2

[
1 1
1 −1

]
⊗ 1√

2

[
1 1
1 −1

]

The term quantum computation refers to the evolution of
an isolated system of n qubits by means of unitary operations
which can be described by a quantum circuit[6]. A quantum
circuit is a composition of quantum gates that implement
an algorithm or is used to describe part of it. As shown
in Figure 2, we could generalize that using one-qubit and
two-qubit gates, a quantum circuit is arranged in a series
of computational stages where each stage consists of the
application of either one unitary operations acting on a
single qubit, or two unitary operations acting in parallel on
independent single qubits, or a two-qubit gate operating on a
pair of qubits. Each stage represents a discrete time instant
where unitary operations are applied and the progress of the
algorithm can be seen as moving sequentially from one stage
to another.



|0

|1

H

H

H

Stage 1 Stage 2 Stage 3

Figure 2. Schematic diagram of a quantum cir-
cuit.

3. Systolic Quantum Circuits

An alternative to solve the matrix vector product in parallel
are systolic arrays. Kung and Leiserson[2] proposed a sys-
tolic array able to compute the banded matrix-vector product
in T (n) = w + 2n− 1 steps, wherew represents the number
of Processing Elements (PE). Surprisingly, the same systolic
array computes two matrix vector products simultaneously in
T (n) = w + 2n steps using perfect shuffling as a spatial data
scheduling technique. Therefore, based in the mixed tensor
product rule,(H ⊗H)(|0〉 ⊗ |1〉) = H|0〉 ⊗H|1〉, it is pos-
sible create a separable superposition of two qubits in a single
run. For instance,H|0〉 ⊗H|1〉 will be carried out in 8 steps
using the arrangement depicted in Figure 3. In this arrange-
ment the components of|0〉 and|1〉 are merged, using perfect
shuffling, into a single array that we will refer to as the car-
rier vector. The carrier vector contains the components of|0〉
stored in the odd locations and the components of|1〉 in the
even ones. As illustrated in Figure 3, the circled components
of |1〉 in the carrier vector are multiplied by the Hadamard
matrix whose components are circled. The other Hadamard
matrix is multiplied by|0〉.

-1

1 -1 1

1 1 1

1

0

0

1

W
2

Y
2

W
1

Y
1

1

Y1   = 0
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Figure 3. Executing two Hadamard gates in par-
allel.

The mapping of the CNOT gate onto the three PE sys-
tolic array is easily realizable. However, we will represent the
CNOT transformation using a data adaptable gate to handle
the two qubits in the carrier vector according to the following
conventions: When the carrier vector inputs the CNOT gate
the first and third elements of the carrier vector represent the
control qubit and the second and third elements represent the
target qubit. If the control qubit is|1〉 the CNOT gate will per-

form X ⊗ I on the carrier vector, which means that anI gate
is applied on the first qubit of the carrier vector and aX trans-
formation on the second qubit. But when the control qubit is
|0〉, CNOT performsI ⊗ I. In the second step of the tele-
portation circuit, in section 4, we will show how the CNOT
transformation is applied to|10〉. We use the first component
of the control qubit as a selector of two data sets to implement
eitherX ⊗ I or I ⊗ I.

4. Teleportation circuit

The idea behind Quantum Teleportation [4] is to move quan-
tum information around without destroying its quantum state.
Imagine that Alice and Bob, share a classical communication
channel and an entangled quantum state. For Alice to teleport
a quantum state to Bob, she measures (and destroys) her share
of the entangled state. This produces classical information
that Alice sends to Bob. Depending upon the information re-
ceived, Bob reconstructs Alice’s quantum state by selectively
applying a unitary operation to his shared entangled state. Fig-
ure 4 shows the basic quantum teleportation circuit.

|0

|0

H

H

X Z

ψ3

M1

M2

ψ1 ψ2 ψ4 ψ5 ψ6

|ψ

|ψ
A1

A2

B

Figure 4. Quantum teleportation circuit.

The circuit performs unitary operations sequentially. They are
primarily matrix-vector multiplication and we propose them
to be carried out using systolic arrays. The input to each sys-
tolic array is a 1-dimensional vector denoted the carrier vec-
tor, hence we represent the qubits as 1-Dimensional vector as
follows,

|ψ〉 = α|0〉+ β|1〉 =




α
D
β
D


 |0〉 =




1
D
0

D


 |1〉 =




0
D
1

D




where ”D” stands for a don’t care value. A 2-qubit state as
a 1-dimensional vector is represented as one of the following
carrier vectors:

|00〉 =




1
1
0
0


 |01〉 =




1
0
0
1






|10〉 =




0
1
1
0


 |11〉 =




0
0
1
1




The first and the third components of the carrier vector cor-
respond to a qubit and the second and fourth components of
the vector correspond to another qubit. The following descrip-
tion contains a step-by-step view of the teleportation circuit
shown in Figure 4. The 2 lines on the top belong to Alice and
we will refer to them asA1 andA2 and the line on the bottom
belongs to Bob and we denote it asB.

1. |ψ1〉: The A1 qubit is the unknown qubit state|ψ〉 =
α|0〉 + β|1〉 to be teleported to Bob. The other 2 qubits,A2

andB, simply have a|0〉 in the beginning. Thus the initial
state is|ψ〉 ⊗ |0〉 ⊗ |0〉
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0
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1

0

0
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1

1

1
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α
β
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β

1
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1

A1 A2 B

A1 A2 B

Figure 5. First step of the systolic teleportation
design.

2. |ψ2〉: After the Hadamard operation is carried out on
A2 using the systolic array shown in Figure 5, the new 3-qubit
system can be represented as(α|0〉+β|1〉)⊗ 1√

2
(|0〉+ |1〉)⊗

|0〉. Note that the Hadamard gate is a 1-qubit gate and there-
fore we applied an identity transformation on the second qubit
which is, in this case, a don’t care qubit denoted as ”D” in
Figure 5. The 3-qubit system in state|ψ2〉 can be rewritten as
(α|0〉+ β|1〉)⊗ 1√

2
(|00〉+ |10〉)

3. |ψ3〉: A CNOT operation is carried out onA2 and
B. This operation creates a shared entangled state between
Alice and Bob. TheA2 qubit acts as a control qubit and
B qubit is the target qubit for the CNOT operation. It is
worthwhile mentioning that theA2 qubit is in a superpo-
sition state. Therefore, we separate the states into|0〉 and
|1〉, as the control bits, to simulate the CNOT operation act-
ing on B qubit whose value is|0〉. The output observed
at the systolic array is as follows,CNOT |00〉 = |00〉 and
CNOT |10〉 => |11〉, which represent the entangle state
shared by Alice and Bob. The new 3-qubit system is now
represented by(α|0〉+ β|1〉)⊗ 1√

2
(|00〉+ |11〉) as shown in

Figure 6. Bob takes is entangled qubit1√
2
(|0〉+ |1〉) and goes

to Paris and Alice stays in New York.
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Figure 6. Second step of the systolic teleporta-
tion design .

4. |ψ4〉: A CNOT operation is carried out onA1 andA2.
This timeA1 is the control qubit and shared entangled qubit
A2 is the target qubit. To simulate the CNOT onA1 andA2

we rewrite the 3-qubit input as:

1√
2
[α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉)]

α

β

Step 3

CNOT Gate

CNOT

Gate

0

1

β

0

α

0

0

1

011

0

0

1

1

0

0

β

1

α

0

0

1

CNOT

α
β

α 101β

0

1 1 1

0 0 0

1

A1

A2   B
A1

11 00+

A2

+

11

A1  A2   B

Figure 7. Third step of the systolic teleportation
design .

whereA1 andA2 are highlighted in bold type.
Then we carry out the CNOT operation on(A1, A2), and thus
the former state is transformed into:

1√
2
[α|000〉+ α|011〉) + β|110〉+ β|101〉]

Figure 7 shows the systolic CNOT operation applied to
α|011〉 andβ|111〉 whose outcome isα|011〉 andβ|101〉. We
show theB qubit in the output in Figure 7 because that qubit
is just passed on to the next stage preserving its state.



5. |ψ5〉: Finally, a Hadamard operation is performed on the
A1 quibit to transform theA1 state into a superposition. The
former state is thus transformed into:

1
2 [α(|0〉+ |1〉)|00〉+α(|0〉+ |1〉)|11〉+β(|0〉− |1〉)|10〉+

β(|0〉 − |1〉)|01〉]

β

1

- β

0

Step 4

Hadamard Gate0

1

β

0

101

β 001 101β-

β

1

0 -1 0

1 1 1

1

A1 A2

Figure 8. Fourth step of the systolic teleporta-
tion design .

Figure 8 shows the Hadamard operation on theA1 qubit in
the stateβ|101〉, whose resulting value isβ|001〉 − β|101〉.
Actually, Alice ends up the with four carrier vectors similar to
the one shown in Figure 8. Then, Alice’s qubitsA1 andA2

can be regrouped by factoring out theB qubit to obtain the
following expression:

|0A10A2〉 (α|0〉+β|1〉)
2 + |0A11A2〉 (α|1〉+β|0〉)

2 +

|1A10A2〉 (α|0〉−β|1〉)
2 + |1A11A2〉 (α|1〉−β|0〉)

2

6. |ψ6〉: Alice’s quantum bits are measured, as indicated
in Figure 4 in the boxesM1 andM2. After the measurement
the values of the two classical bits are sent to Bob using the
shared classical communication channel.

7. |ψ7〉: Bob can receive one out of four different combina-
tion of 2 classical bits and a particular unitary transformation
is applied to Bob’s shared entangled state to recover the same
quantum state,|ψ〉, that was on lineA1 prior to the beginning
of the experiment. For instance, if Bob receives|10〉, then he
appliesZ to his shared entangled state as shown below:

[
1 0
0 −1

] [
α

−β

]
=

[
α
β

]
= |ψ〉

In the other three cases when|00〉 is received,I is applied,
when|01〉 is received,X is applied, and when|11〉 is received,
Bob appliesX and thenZ.

5. Conclusions

We have presented a new technique suitable to describe and
simulate quantum circuits using systolic arrays as the basic
building blocks. We have shown how the mapping of two

simultaneous matrix-vector products onto a three PE systolic
array, allows us a fast realization of the CNOT gate and the su-
perposition of two independent qubits in parallel. Our prelim-
inary results shows that the teleporting of a single qubit takes
32 steps using four systolic arrays. However, a Hadamard-
CNOT gate can be realized to unify the last two stages into
one reducing thus the computation time in 25%. Other im-
provement that can be done is the bypassing of the CNOT op-
erations where the control qubit is zero and this way the whole
teleportation circuit can be executed with only two systolic ar-
rays. We are currently interested in the efficient implementa-
tion of QCA simulators using our approach and the mapping
of other quantum algorithms onto systolic arrays.
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