Parallelizing HMMER for Hardware Acceleration on FPGAs

Steven Derrien

IRISA, Université de Rennes 1

Campus de Beaulieu
35000 Rennes
sderrien@irisa.fr

Abstract

Profile based Hidden Markov Model is a widely used
tool in bioinformatics. While being very valuable to
biologists, it is extremely compute intensive and suf-
fers from prohibitive execution time. We propose an
original parallelization scheme of the hmmsearch tool
for FPGA technology. We show how to derive a flexi-
ble and generic hardware architecture which accelerates
the hmmsearch main kernel by two orders of magnitude
without modifying its original algorithm.

1 Introduction

Over the last few years, reconfigurable computing
has proved to be a very attractive solution for imple-
menting compute intensive bio-computing algorithms.
FPGA implementations of Smith and Waterman [15] or
BLAST [1] algorithms have exhibited impressive speed-
up factors, making them a very viable alternative to
more expensive supercomputing infrastructures such as
vector computers or PC clusters.

Profile based Hidden Markov Models (HMM) have
been recently used by biologists to predict the structure
and function of a protein directly from its representa-
tion as an amino-acid sequence [8]. Among existing
software implementations of this model, the HMMER
software package is one of the most widely used.

We propose to speed-up in hardware the most time
consuming routine of the hmmsearch tool [4] of HM-
MER, namely the P7Viterbi procedure which com-
putes the score between a HMM and an observed se-
quence. We do so by using powerful linear space-time
mappings based on the so-called polyedral model. This
leads to a flexible parallel architecture template which
handles the feedback loop present in the Plan7 HMM
model used by HMMER.

Patrice Quinton
IRISA, ENS Cachan
Campus de Ker Lann

35000 Bruz
quinton@irisa.fr

Figure 1. Structure of a Plan7 HMM

This paper is organized as follows. Section 2 briefly
introduces the principles of the profiling based HMM
algorithm and surveys related work on accelerating this
algorithm both in hardware and software. Section 3
presents the principles of our parallelization schemes,
and Section 4 details the space-time mapping refine-
ments which lead to the final hardware architecture.
Section 5 gives experimental results in terms of re-
source usage and performance improvement. Section 6
concludes and presents future work directions.

2 Background

2.1 Principles

Fig. 1 depicts the Plan7 HMM used in HMMER. It
is a probabilistic model of a family of sequences (see [8]
for more details) which contains three types of states:
match states (square nodes), insertion states (diamond
nodes) and deletion states (circle nodes). Running the
hmmsearch tool consists in matching a single profile
HMM against a large number of input sequences, and
in finding the sequences having high similarity with this
HMM.

The most time consuming routine in this program
is the P7Viterbi kernel. This routine computes a sim-
ilarity score between the target HMM model and the
sequence at hand using dynamic programming. A sim-
plified version of P7Viterbi is given in Fig. 2, where

seq[] holds the query sequence, x[][] holds the dy-
namic programming matrix, TAB[] is a cost funcion
realized as a look-up table and £1() and £2() are ex-
pressions involving add, sub and max operations.

Matching a single HMM against a protein database
is a very time consuming process which is repeated
many times during intensive comparisons. Profiling
shows that the P7Viterbi kernel accounts for more
than 97 % of the execution time. It is therefore a per-
fect candidate for hardware acceleration.

2.2 Related Work

There have been several attempts to accelerate HM-
MER using SIMD features of modern CPUs[9], paral-
lel machines [16], GPUs [7] and even Network Proces-
sors [17].

Some authors have proposed to speed-up HMMER
by using reconfigurable hardware. Maddimsetty et
al. [10] have studied different hardware-software parti-
tioning schemes, but they do not present actual hard-
ware implementations. Oliver et al. [12] propose an
FPGA implementation of an HMM profile application
and claim speed-up factors up to two orders of mag-
nitude. But both [10, 12] consider a simplified version
of the HMM model without feedback loop, in order to
simplify the parallelization of the algorithm. We be-
lieve that such an approach is very unlikely to match
biologists needs, since this simplified HMM might miss
some potentially insteresting match. Besides, experi-
ence has shown that whenever an algorithm emerges
as a standard (as it is now the case for HMMER), it
is very difficult to convince its users community to ac-
cept algorithmic variations even though they run much
faster.

In a recent work, Oliver at al. [13] propose an ar-
chitecture which handles the P7Viterbi feedback loop.
Their approach is quite similar to the wavefront sched-
ule we detail in Section 4.2. However, instead of dupli-
cating the look-up table memory as we do, they use a
crossbar network architecture to distribute the look-up
memory among the PEs. This approach is not scalable
with the number of processors and is therefore limited
to a small number of PEs.

In addition to adhere strictly to the original algo-
rithm, the hardware realization that we target should
also be scalable so as to be easily retargetable to differ-
ent FPGA hardware platforms with varying amount of
resources such as logic cells and memory blocks. Such
constraints can hardly be handled by a fixed manual
design, and this is why we propose instead to use an
architecture template which can be seamlessly special-
ized to suit the user’s needs. To derive this template

int P7Virterbi(char seq[]) {
int i,k;
for (i=0; i<=L; i++) x[i][0] = -INFTY;
for (k=1; k<=M; k++) x[0][k] = -INFTY;
for (i=1; i<=L; i++) {
for (k=1; k<=M; k++) {
x[i][k] = f1(
TAB[seq[i]] [k], hmm[k], y[i-1],
x[i-11[k-1]1, x[i-11[k], x[i]l[k-11);
if (k==M)
y[i] = £2(x[i] [M] ,hmm([k]);
}
}
return x[L][M];
}

Figure 2. Simplified P7vViterbi code kernel

we rely on well-known parallelization techniques based
on the so-called polyedral model which we introduce in
the following section.

3 Parallelizing the hmmsearch Software

The P7Viterbi kernel (Fig. 2) consists of a double
nested loop that implements the Viterbi dynamic pro-
gramming algorithm. The loop carried dependencies in
the inner loop prevents from parallelizing the execution
using classical loop unrolling techniques, as noticed in
[10]. Dependencies in the outer loop prevent loop in-
terchange, which in turn forbids the parallel execution
of the outer loop. Although it is still possible to take
advantage of the instruction level parallelism available
within the loop body, this would expose to few paral-
lelism: in practice, FPGAs must be able to run several
hundreds of operations per cycle to outperform CPUs.

For the sake of conciseness, we will use in Section
3 and 4 our compacted version of the P7Viterbi loop
nest which contains exactly the same features — data-
dependencies, indirect addressing, and existence of a
feedback loop — as the original algorithm: the follow-
ing results can therefore be applied to the original al-
gorithm without loss of generality. The remaining of
this Section shows how, by expressing the loop nest as
a System of Affine Recurrent Equations (SARE), it is
possible to derive an efficient parallel realization of the
algorithm.

3.1 Expressing P7Viterbi as a SARE
The first step toward parallelization is to express the

loop nest as a System of Affine Recurrent Equations,
an intermediate representation that exposes data de-

pendences at the loop level. Let L denote the protein
sequence length and M the HMM profile length. The
SARE corresponding to our compacted P7Viterbi al-
gorithm is given below:

zix = f1(yi—1,m, hmmg,
Ti—1,k, TAB(seq;, k),
xi,kflaxifl,kfl) (1)
yimr = fa(hmmar, i pr)

This SARE is defined over the domain D given by
D={(i,k)|1<i<L,1<k< M} (2)

and we let z; , = —o0 and y; = —oo for ¢ = 0 and/or
j = 0. From (1), we can retrieve data dependencies
between indexed variables. Denote pl § p2 if point p2
depends on point pl. These dependencies are summa-
rized below:

(i—1,k—-1) & (i,k)
(i —1,k) 5 (i,k)
(i,k—1) 5 (ik)
(i_]-vM) 4 (Zak)

3.2 Managing Arbitrary Sized Problems

We observe that several calls to P7Viterbi using
the same HMM profile are done by the hmmsearch tool
and we thus propose to merge all the sequences into
a single macro sequence. Each sequence is delimited
by a special character, the role of which is to reset
the matching scores to their initial —oo value and to
indicate that a new Viterbi algorithm instance is to
take place.

On the other hand, even though the length of the
HMM profile M remains constant for a given execution
of hmmsearch, it can be different for each hmmsearch
execution instance (hmmsearch motif length vary be-
tween 50 and 650, with an average size of 200). We
must therefore design an architecture capable of han-
dling arbitrary sized HMM motifs. This can be done
by simply inserting idle states in the HMM motif. The
role of these idle states is to propagate the scores of the
last non-idle state until it reaches the feedback loop.
In the rest of the paper, we will therefore consider that
constant M denotes the maximum allowed model size
of our architecture.

3.3 Linear Space-Time Mappings

Given a system of recurrent equations similar to the
one presented in Equ. (1), we want to derive a space-
time mapping that is a linear transformation which
gives, for any indexed variable in the SARE:

e A logical execution time instant, in the form of a
linear function of the index (which we call sched-
ule), written as s(ig,...,%m) = Soto + - .. + Smim.

e A physical location, i.e. coordinates in a proces-
sor space. This location is also expressed in the
form of a linear function of the index (that we
call allocation function). In our case we are only
interested in linear arrays. We therefore write
p(io, . ,Zm) = (Jéoio —|— . —|— am,im,-

Of course, this space-time mapping must satisfy sev-

eral conditions.

e First, the chosen schedule must enforce all data
dependencies present in the SARE. For u,v € D
with u § v, the schedule function must guarantee
that s(v) > s(u).

e Then, the space-time mapping must be conflict-
free: there must be no v and v in D s.t. v # u,
s(u) = s(v) and p(u) = p(v).

Proving that a schedule is conflict-free when each
PE executes computations in a one dimensional do-
main is relatively straightforward (see [14]), but this
is more involved for higher dimensional domains. To
solve this problem, we use Darte et al. [2] results on
juggling schedules, which can be summarized as fol-
lows. Given a rectangular domain P in Z™*! defined
as :

P = {io, ..

a schedule is said to be juggling if it has the following
properties:

.,im|0§i0<N0,...,0§im<Nm} R

e It is conflict-free, i.e. there are no two distinct
iterations (i, ...,%4m) and (iy,...,i,) in P which
are scheduled at the same time instant.

e It is dense, i.e. the number of schedule steps sep-
arating the execution of iterations (ig,%1,...,im)
and (ig + 1,41, ... ,im) is HZI:I Ng.

Darte and al. have shown that juggling schedules

are of the form below (up to a permutation of index
i) with pged(Ag, Ni) = 1

s(i0; -+, im) = (H Nk) io + A1 (H Nk> it A
k=1 k=2
3)
Notice that we may have used well established results
on multi-dimensional schedules [5, 6] to find conflict-
free schedules, but this would lead to more complex
proofs in our case where the domains are hyperparal-
lelepipeds.
In the next Section, we evaluate and refine several
space-time mappings in order to obtain the best possi-
ble implementation.

4 Design Space Exploration
4.1 Adding a Dimension to the SARE

Although loop level parallel schedules cannot be
found in the P7Viterbi routine, we observe that run-
ning the hmmsearch tool consists in completely inde-
pendent matchings of a single HMM against a large
number of input sequences: these matchings are com-
pletely independent and can therefore be run in paral-
lel.

We model this additional parallelism by adding to
the SARE a new index which identifies instances of the
kernel running in parallel. Call j this additional index.
The new iteration domain D’ is then:

D' ={i,jk|0<i<L,0<j<N 0<k<M} (4)

where N stands for the number of sequences that are
matched in parallel during each realization of the mod-
ified SARE, which is shown below:

Tigr = f1(Yio15m, hmmg,
xi—1,j,k, TAB(seq; ;, k),
Ti k15 Ti-1,j,k—1) (5)
Yijm = fa(hmmp, xi o))
Denote
S(i7j7k):50i+51k+52j (6)

the scheduling function of this new SARE. The intrin-
sic data-dependencies remain unchanged by the trans-
formation (all P7Viterbi instance are independent),
therefore we can write the constraints on the schedul-
ing function as:

(i—1,k—1)0(i,k) = so+s>1
(i—1,k) 6(ik) = so>1
(i,k—1) 6(ik) = s >1
(i—1,M) 6&(i,1) = so>M

This lead to many possible schedules, among which
only two really deserve attention: a wavefront and an
interlaced schedule.

4.2 Wavefront Space-Time Mapping

In this approach we use the space-time mapping
given by
s(ijk) = Mi+k
o ‘ (7)
pli,g.k) = J
which obviously enforces data dependencies and is
conflict-free. It is illustrated (for M =4, N = 4 and

Figure 3. Wave-front space-time mapping.

L = 5) in Fig.3, in which blue dashed arrows repre-
sent the iteration execution order on a single PE, while
red lines show which iterations are actually executed
in parallel.

The wavefront space-time mapping is a very natu-
ral parallelization scheme in which each PE executes
a distinct P7Viterbi kernel instance, and the chosen
value for parameter N directly controls the number of
PEs in the architecture. Although these P7Viterbi
instances share the same HMM parameters values, we
must account for the fact that variable TAB in (5) is
used as a lookup table with seq; ; and k as indices. At
a given time instant ¢, all PEs share the same value
of i,k, therefore they must access the same subset
TAB[*] [k]. Moreover, each PE accesses the whole ta-
ble across time. As a consequence, all PEs must either
hold a copy of the TAB variable, or they must access
a shared copy of it. In the full P7Viterbi kernel the
size of TAB is quite large: for an average HMM model
size of 250, each processor requires a 10000 x 32 lookup
table: this would severely limit the number of PEs that
can be implemented.

One solution to this problem is to use a crossbar-
like interconnect structure to distribute the table con-
tent (see subsection 2.2). Instead, we propose another
space-time mapping which allows the TAB variable to
be distributed among the PEs, thereby reducing the
architecture memory footprint to its minimum, while
avoiding the need for a complex crossbar interconnect
structure (as opposed to Oliver et al. [13])

4.3 Interlaced Space-Time Mapping

This improved space-time mapping is given in
Equ. (8), and is illustrated in Fig. 4:
s(i, 5, k) = Mi+j+k

p(i,j.k) = k ¥

k /T‘\‘\\\‘ (L,N,M)
- T
/ /|
(0,9, M) kg 7
_ | %
t=4& |
‘ N 2 (Ls0,M
\\ | |
t=3 |
‘m,lj,o l |
t=2 -
t=1 !
(0,0,0) i

(L,0,0)

Figure 4. Interlaced space-time mapping.

The reader can check that this mapping enforces
data-dependencies and is conflict free if and only if
M = N. This results in a mapping in which N = M
PEs are running in parallel. Since PE, only executes
iterations for which k& = p, the hardware cost of the
lookup table implementation is much lower: PE, only
accesses the subset TAB[*] [p]. It is thus possible to
distribute the content of the lookup table among the
PEs, each PE holding 1/M?'" of it. The memory cost
of a single PE is reduced by a factor of M compared
to the approach of subsection 4.2.

On the other hand, we have no control over the re-
source usage of our architecture, since the number of
PEs must be equal to the HMM model size M. This is
again a severe limitation, since it is very unlikely that
such architecture can be implemented on a FPGA even
for moderate size model (M = 50).

4.4 Managing Resource Constraints

To overcome this new problem, we propose to use
LSPG (Locally Parallel Globally Sequential) partition-
ing [11]. (LPGS — Local Parallel Globally Sequential,
— partitioning [2] is of no interest here because of the
feed-back loop: it would not allow partitioning along
dimension k in order to reduce the number of proces-
sors in the architecture.) The LSGP partitioning trans-
formation consists of two steps. We first consider the
processors of the initial space-time mapping as being
virtual, and we tile the virtual processor space. Each
tile of the virtual processor space is then mapped to a
single physical processor which executes in turn the cal-
culations associated with all virtual processors of the
tile.

As far as the SARE is concerned, tiling the virtual
processor domain amounts to replacing the processor
space index k by two new indexes (v, p) defined by the
equality k = op + v. Parameter o is called the tile
width, and we have 0 < v < o and 0 < p < M’, with
M' =[] and 0 < op+v < M. The resulting domain

becomes:

D= {i,j,v,p|1<i<L,1<j<N, 1<v<o, 1<p<M’}
(9)
To cope with this transformation, the SARE is rewrit-
ten by using indices (4, j, v, p) instead of (7, j, k) and by
modifying the data-dependencies accordingly.

For example, data dependency between (i — 1, j, k)
and (i, 7, k) now holds between points (: —1, j, v, p) and
(4,7,v,p) and is thus still uniform. When a dependency
spans the k index, it leads to more complex situation.
For example, consider the dependency between (i, j, k—
1) and (¢, 4, k). Depending on whether the values of k
and k — 1 belongs to the same tile (i.e lead to the same
value of p), the original dependency is then transformed
into two distinct data dependencies:

(10)

('L’,j,’l}-l,p) 5 (i,j,U,p) when v>1
(iaja Uap_l) 4 (L.j? lap) when v=1

The partitioned SARE thus becomes:

Li,ju—1,p
Li,j,0,p—1

I B e
K3 v -
e Ti1j,0.p-1

when v >1
when v=1

when v >1
when v=1

Zi,3,0,p

Tijwp = S1(Yi15mhmmepiy,
Zijw,py Li—1,5,0,ps
Wi jv,p, TAB(s€gi,j,v + op))
Yijomr = fa(hmmar, i j.o,m0)

(11)
We now can use the following space-time mapping:

s(i,j,v.p) = oM'i+aj+uv+op

12
p(i,j,v,p) = p (12)

We can show that this mapping juggles for the domain
D" if we choose N = M'. It is illustrated in Fig. 5
where the black dots correspond to the iteration sub-
space allocated to the first PE. Here 0 = 2, and there-
fore (%] = 2 iterations are executed at a given time

step.
4.5 Pipelining the PE Datapath

Although the architecture of Section 4.4 allows for
a resource constrained implementation, it still requires
that a whole loop iteration be executed within a sin-
gle clock cycle. Given that the complete P7Viterbi
loop body contains more than 20 arithmetic operations
among which 7 lie in the critical path, the final maxi-
mum clock frequency of our design is likely to be dis-
appointing.

Figure 5. Partitioned space-time mapping.

One solution is to modify the scheduling so that the
pipelining of the loop body execution becomes possible
(see our previous work [3]). This is achieved by apply-
ing another tiling transformation along axis j. Let us
write 7 = Ajj + [, with jj and [being the two new
index. The new SARE is given in Equ. (14), and its
variables are defined over the domain:

D" = {i,jj,L,v,p| 1<i<L, 1<Ajj+I<N,

(13)
1<i<\1<v<o, 1<p< M’}
. _ Tijjlu—1,p When v>1
PR wigjep-1 when v=1
wi _ Ti—1,jjlo—1,p wWhen v>1
b Ti-1jjlop1 when v=1
Li,jj,0,v,p = fl (yi—l,ja hmmap+'u;
Wi, jj,lv,ps LTi—1,j4,l,0,ps
Zijjtvp, TAB(s€Gi j5u,v))
Yijjlom = fa(hmmar, @i jj0,0m7)
(14)
Using the following space-time mapping:
s(i, 74, L,v,p) = oAM'i4+o(Ajj+)+ I+ dop
p(i,j,v,p) = k
(15)

we can show that this mapping juggles iff 0 < jj < N’
and 0 <[< A when N’ and X\ satisfy AN’ = M’. This
space-time mapping is illustrated in Fig. 6 (with o = 2
and A = 2).

The execution of two dependent iterations is now
separated by at least A cycles (for dependency
(ivjjvlvavp - 1) 4 (ivjjvlvvvp))ﬂ and by at most
AoM' 4+ 1 cycles (for dependency (i — 1,54,1,0,p —
1) 6 (i,74,1,v,p)). By carefully selecting), it is there-
fore possible to find the best tradeoff between resource
cost (each PE must implement a AM + 1 deep delay-
line) and the operating frequency (the data-path cor-
responding to the loop body can be implemented with
A pipeline stages).

I A

| .

I

| L) stage pipeline
| » V|

= } VIVIVTV
IR
Xik-o |
?»
|
} I_. Xi k-1
Yiaar |

Figure 8. PE internal structure.

4.6 Resulting architecture

Using the mapping of section 4.5, we obtain an ar-
chitecture which consists of a linear array of M’ pro-
cessors as illustrated in Fig. 7. All PEs in the array
have local interconnect except for the last one (PEj;)
which broadcasts part of its results (this broadcast cor-
responds to the HMM feedback loop). PEs of this array
are active every cycle, except for PEjy; in which the
variable y; as is only updated (and broadcasted) every
o cycles.

From the schedule, we can derive the depth of the
delay lines associated to each data dependency in a PE.
This leads to a PE internal architecture shown in Fig.8,
where functions f; and f; are implemented as a A stage
pipeline datapath (for the sake of readability, the data
pipelines for the Amino Acid sequence segq; ; and the
HMM parameters hmmy, pipelines are not represented.

Table. 1 summarizes the characteristics of the vari-
ous space-time mappings for the full P7Viterbi kernel
as a function of the HMM model size (M), the design
parameters (o,\,N) and the number of distinct bases
in the Amino Acid set (here 25).

5 Experimental Results

The hardware resource usage (in terms of logic cells
and memory) of our hardware accelerator is highly de-
pendent on the size M of the HMM model at hand, on

PE 1 PE 2

Xi-1,0

~"3

Xi0

PE M*-1

| — |

Figure 7. The final processor array architecture for the P7Viterbi routine.

M 4PE # sequences processed Memory cost per PE # pipeline
in parallel (in 24 bits words) stages

Wave front (o = 1, A = 1) N N M x (2 x 25 + 4) 1

Interlaced (0 =1,A =1) M M 4x M+2x25 1
25

Partitioned (A =1) [M/o] [M/o] ox(4x[M/o] + 20 X M) 1
25

Pipelined [M/o] [M/o] x A o X (AX X [M/o]| 4 20 % M) A

Table 1. A summary of the characteristics for the proposed Space-Time Mappings

design parameters such as the pipeline level A\, and on
the partitioning factor o. In order to have a more quan-
titative view of this resource cost, we implemented on
a Xilinx Spartan3-4000 FPGA several configurations
of the complete P7Viterbi kernel (including control),
each one with a different set of parameters. To do so we
designed a generic architectural VHDL template which
can be parameterized at compile time (parameters in-
clude o, A\, M).

Although the original P7Viterbi uses 32 bits inte-
ger arithmetic, it is possible to reduce the datapath
bitwidth to 24 bits without effect on the final results.
As a consequence, this benchmark considers scores and
parameters encoded as 24-bit integer values.

For a fair comparison, we implemented the archi-
tecture corresponding to the wave-front schedule. This
architecture was obtained by generating an instance of
our architecture in which we set 0 = M and A = 1. The
results are summarized in Table 2. We can observe that
the resource bottleneck is the limited amount of em-
bedded memory blocks on the FPGA, which strongly
affects the number of PEs which can actually be im-
plemented on the device, and the level of pipelining in
the datapath.

Performance figure for hmmsearch are gener-
ally measured in Million Cells Update per Second
(MCUP/s), where a cell update corresponds to an iter-
ation of the Viterbi algorithm. In our implementation,
each PE performs up to 1 iteration per cycle, whith
clock frequencies ranging from 33 MHz to 66 MHz. This
is to be compared to a reported software performance
of 24 MCUP/s on a Intel P4 CPU (see Oliver et al.[12]).

In short, an architecture consisting of 10 PEs should
outperform a desktop CPU by a factor of almost thirty.
However, this performance gain is balanced by the
following observation: when using a HMM profile of
size My with an architecure which accomodates a max-
imum model size of M, there is only a fraction My/M
of the computations that actually contribute to the
matching score. For example for My = 50 and M =
200, our architecture performs only one useful compu-
tation every four cycles. This strongly encourages the
use of dynamic reconfiguration, in order to adapt at
run-time the architecture to the HMM profile at hand.
In our case, this would consists in using an architec-
ture instance with a value of M suited (i.e close) to
the size My of the query HMM. This is made possible
thanks to our flexible architectural model which can be
seamlessly parameterized to obtain a set of hardware
configurations with different values for M.

6 Conclusion

In this paper, we have presented an original paral-
lelization scheme for the P7Viterbi algorithm, which
represents the most time consuming kernel of the
hmmsearch application. This parallelization scheme is
based on the polyedral model and allowed us to derive a
simple yet flexible parallel architecture for accelerating
the hmmsearch program. Our ongoing work includes an
in depth analysis of the P7Viterbi precision require-
ments, and a system level exploration of the trade-off
between performance and Quality of Results, under the
constraint that no false negative should be tolerated.

M 50 100 200 400 50 50 100 100 200 200 300 400 600
o 50 100 200 400 3 3 5 5 10 12 17 27 150
A 1 1 1 1 1 2 1 2 1 2 1 1 1
Npg 1 1 1 1 22 22 22 22 22 18 18 15 4
Slices 1302 | 1419 | 1684 | 2100 | 21200 | 20100 | 21500 | 21000 | 21500 | 16650 | 18100 | 16500 | 4700
BRAM 8 14 26 51 88 88 88 88 88 90 90 90 81
fmaz 33 33 33 33 33 55 33 50 33 50 33 33 33
GCUP/s 33 33 33 33 730 1210 730 1210 730 900 590 495 132
speedup 1.4 1.4 1.4 1.4 31 50 22 50 31 37.5 18 15 4

Table 2. Resource usage and performance on a Xilinx Spartan3-4000

References

(1]

(10]

S.F. Altschul, T.L. Madden, A.A. Schffer, J. Zhang,
Z. Zhang, W. Miller, and D.J. Lipman. Gapped
BLAST and PSI-BLAST: a New Generation of Protein
Database Search Programs. Nucleic Acids Research,
pages 3899-3402, 1997.

A. Darte, R. Schreiber, B. Ramakrishna Rau, and
F. Vivien. Constructing and exploiting linear schedules
with prescribed parallelism. ACM Trans. Des. Autom.
Electron. Syst., 7(1):159-172, 2002.

S. Derrien, S. Rajopadhye, and S. Sur-Kolay. Combin-
ing Instruction and Loop Level Parallelism for Array
Synthesis on FPGAs. In International Symposium on
System Synthesis (1555°01), Montral, 2001.

S. Eddy. Sequence Analysis Using Profile Hidden
Markov Models. Technical report, Washington Uni-
versity at Saint Louis, 2004.

P. Feautrier. Some Efficient Solutions to the
Affine Scheduling Problem. Part II. Multidimensional
Time. International Journal of Parallel Programming,
21(6):389-420, 1992.

A. C. Guillou, P. Quinton, and T. Risset. Hardware
Synthesis for Multi-Dimensional Time. In 14th IEEE
International Conference on Application-Specific Sys-
tems, Architectures and Processors (ASAP’03), 2003.

D. R. Horn, M. Houston, and P. Hanrahan. ClawH-
MMER: A Streaming HMMer-Search Implementation.
In SC’05 : Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing, 2005.

A. Krogh, M. Brown, I. S. Mian, K. Sjdlander, and
D. Haussler. Hidden Markov Models in Computational
Biology: Applications to Protein Modeling. Journal
Molecular Biology, 235:1501-1531, 1994.

Eric Lindahl. HMMer Altivec Implementation.
http://lindahl.sbc.su.se/software/altivec/altivec-
hmmer,-version-2.html, 2005.

R. P. Maddimsetty, J. Buhler, R. D. Chamberlain,
M. A. Franklin, and Brandon Harris. Accelerator De-
sign for Protein Sequence HMM Search. In Proceedings
of the ACM International Conference on Supercomput-
ing, Cairns, Australia, 2006. ACM.

(11]

(12]

Dan I Moldovan and Jose A. B Fortes. Partitioning and
Mapping Algorithms into Fixed Size Systolic Arrays.
IEEE Transactons on Computers, 35(1):1-12, 1986.

T. Oliver, B. Schmidt, Y. Jakop, and D. L. Maskell.
Accelerating the Viterbi Algorithm for Profile Hidden
Markov Models Using Reconfigurable Hardware. In
International Conference on Computational Science,
2006.

T. Oliver, L. Y. Yeow, and B. Schmidt. High Perfor-
mance Database Searching with HMMer on FPGAs. In
HiCOMB 2007, Sizth IEEE International Workshop
on High Performance Computational Biology, march
2007.

P. Quinton. Automatic Synthesis of Systolic arrays
from Recurrent Uniform Equations. In International
Conference on Computer Architecture, 1984.

T.F. Smith and M.S. Waterman. Identification of com-
mon molecular subsequences. J. Mol. Biol, 147:195—
197, 1981.

J. P. Walters, B. Qudah, and V. Chaudhary. Ac-
celerating the HMMER, Sequence Analysis Suite Us-
ing Conventional Processors. In AINA ’06: Proceed-
ings of the 20th International Conference on Advanced
Information Networking and Applications - Volume 1
(AINA’06), 2006.

Ben Wun, Jeremy Buhler, and Patrick Crowley. Ex-
ploiting Coarse-Grained Parallelism to Accelerate Pro-
tein Motif Finding with a Network Processor. In PACT
’05: Proceedings of the 14th International Conference
on Parallel Architectures and Compilation Techniques,
2005.

