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Abstract

Graphics Processing Units (GPUs) are now powerful

and flexible systems adapted and used for other purposes

than graphics calculations (General Purpose computation

on GPU — GPGPU). We present here a prototype to be

integrated into simulation codes that estimate temperature,

velocity and pressure to design next generations of solar

receptors. Such codes will delegate to our contribution

on GPUs the computation of heat transfers due to radia-

tions. We use Monte-Carlo line-by-line ray-tracing through

finite volumes. This means data-parallel arithmetic trans-

formations on large data structures. Our prototype is in-

spired on the source code of GPUBench. Our performances

on two recent graphics cards (Nvidia 7800GTX and ATI

RX1800XL) show some speed-up higher than 400 compared

to CPU implementations leaving most of CPU computing

resources available. As there were some questions pending

about the accuracy of the operators implemented in GPUs,

we start this report with a survey and some contributed tests

on the various floating point units available on GPUs.

1. Introduction

Graphics Processing Units (GPU) offer computing re-

sources higher than the ones available on processors [8].

With the delivery of the latest generations of GPUs, they can

be used for general processing (GPGPU, www.gpgpu.

org) [7] and become application specific co-processors for

regular and heavily data-parallel processing.

We strongly believe that the development of GPGPU will

necessary pass through the identification of key applications

that will benefit from the various hardwired functionalities

∗This work has been partially funded by the EVA-Flo project of the

ANR and a STICS-UM2 multidisciplinary grant awarded to LIRMM, ELI-

AUS and PROMES laboratories. This work has been possible thanks to

the kind help of G. Flamant, P. Neveu, X. Py and R. Olives from PROMES

laboratory (CNRS) and F. André from CETHIL (CNRS-INSA Lyon).

available on GPU. We describe the architecture of GPUs

and properties of the implemented floating point arithmetic

discovered with our tests in Section 2. Section 3 presents

the accurate estimation of radiative heat transfers due to the

filtering of incidental lines and the generation of heat in-

duced lines. We elaborate on the performances of our pro-

totype and we present perspectives in Section 4. We do

not account for diffusion in this preliminary study as our

medium does not contain particles.

To the best of our knowledge, there is no prior art in the

implementation of the tasks reported here on GPUs. Monte-

Carlo ray-tracing and line-by-line analysis are routinely per-

formed on CPUs for simulations of radiative heat transfers

though these tasks usually saturate CPUs leaving no oppor-

tunity to the coupling of convective and radiative phenom-

ena on real applications. Other applications heavily rely on

elaborate physical models [5, 6]. Most simulations are cur-

rently performed for simple reference cases (isothermal gas

column at equilibrium). The description of gas spectrum is

generally simplified in calculation with engineering inter-

ests leading to errors in the range of 5-15% or more.

2. Graphics Processing Units (GPU)

GPUs handle mostly geometrical objects and pixels. Im-

ages are created by applying geometrical transformations to

vertices and by splitting objects into pixels. Calculations

are carried out by various stages composing the graphics

pipeline presented in Figure 1. Actual pipelines of existing

GPUs differ slightly. Manufacturers move, share, duplicate

or add resources depending on boards and processors. The

figure shows the various stages on the example of a trian-

gle. In this example, vertex shaders treat 3 vertices whereas

pixel shaders treat 17 pixels. For most geometrical objects,

the number of pixels is larger than the number of vertices.

Modern architectures contain more pixel shaders than ver-

tex shaders. The current ratio is commonly 24 against 8.

The host sends vertices to position primitive geometrical
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Figure 1. Model of the graphics pipeline.
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Figure 2. Vertex shader of the Nvidia

7800GTX.

objects (points, lines, polygons). Objects are transformed

(rotation, translation, illumination. . . ) and assembled to

create more elaborate objects. These operations are carried

out by vertex shaders.

At each cycle, each vertex shader (see Figure 2 adapted

from [8]) is able to initiate a Multiply and Add (MAD) op-

eration on 4 pieces of data in the vector unit and a special

operation in the scalar unit. The implemented special op-

erations are exponential functions (exp, log), trigonomet-

ric functions (sin, cos) and reciprocal functions (1/x and

1/
√

x). Since hardware support of DirectX 9.0, vertex

shaders are able to address texture memory through a dedi-

cated unit.

The first floating point unit of each pixel shader (see Fig-

ure 3 adapted from [8]) carries out 4 MADs or an access to

texture via a dedicated unit. The result is then sent to the

second floating unit which carries out 4 MADs. In the case

of Nvidia 7800 GTX, each pixel shader includes a level 1

texture cache.

Table 1 presents the floating point formats implemented

on GPUs and CPUs. A number is represented by its man-

tissa, its exponent e and its sign bit s. The first bit of the

mantissa (left of the fraction point) can be set to 1 un-

less the number to be represented is very small. The re-

Texture memory

Texture data Pixels data

floating point unit

Branch unit

Fog ALU

MiniALU

Texture

Texture cache
L1

First
FP unit

Second
FP unit

MiniALU

NV4x Pixel shader

Texture cache
L2 (shared)

Figure 3. Pixel shader of the Nvidia 7800GTX.

maining bits form the fraction f . A normal representa-

tion stores (−1)s · 1.f · 2e and a subnormal one stores

(−1)s · 0.f · 2emin where emin is the minimum allowed

exponent. Single precision (32 bit) became available on

GPUs with Shader Model 3.0. Manufacturers of GPUs do

not claim full compatibility with ANSI-IEEE standard on

floating point arithmetic.

Before porting our application to GPUs, we surveyed

two pieces of software testing performances and implemen-

tations of floating point arithmetic on Nvidia 7800GTX and

ATI RX1800XL [1, 4]. Tests have drawn the first following

conclusions:

• Additions and multiplications are truncated.

• Subtractions seem to benefit from a guard bit with

Nvidia but not with ATI.

• Multiplications attain faithful rounding.

• Errors on divisions indicate that divisions are based on

multiplications by approximations of the reciprocal.

We wrote additional test vectors summarized in Table 2

where ⊕, ⊖, ⊗ are the addition, subtraction and multiplica-

tion operators implemented on GPU. U [a, b) are uniformly

distributed random variables on [a, b). Random tests are

performed on 223 inputs, other tests are exhaustive.

We used OpenGL primitives and stored data in textures

using Frame Buffer Object and respectively texRECT and

tex2D for Nvidia and ATI chips. We set up vertex and

pixel shaders for computation with the OpenGL shading

language. We ran these tests on Nvidia 7800 GTX with

driver ForceWare 81.98 and on ATI RX1800XL with driver

Catalyst 6.3.

On some architectures, internal registers store numbers

with a precision higher than the one used in memory or with

a larger dynamics for the exponents. Sometimes MADs

maintain larger accumulators or round results only once, af-

ter the addition. Our tests showed that no such things occur

on GPUs but they revealed a surprising feature. It appears

that the second pixel shader floating point unit on ATI and

both units on Nvidia produce a mantissa with one extra bit.
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Table 1. Representation format of floating point numbers on GPUs and CPUs.
Reference Number of bits Non numerical

Total Sign Exponent Fraction values

Nvidia 16 1 5 10 NaN, Inf

32 1 8 23 (as documented in [2])

ATI 16 1 5 10 Not implemented

24 1 7 16

32 1 8 23 Not documented

ANSI-IEEE 754 [11] 32 1 8 23 NaN, Inf

64 1 11 52

Table 2. Arithmetic experimentations and results.
Operations Shader Observations

(M ⊕ M) ⊖ M All M = 2127(2 − 2−23) −→ ∞
MAD(x, y,−x ⊗ y) All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0

1 ≤ i ≤ 23 −→ 1.5 − 2−i

ATI-Pixel i = 24 −→ 1.5 − 2−23

25 ≤ i −→ 1.5
1 ≤ i ≤ 23 −→ 1.5 − 2−i

Nvidia-Pixel 24 ≤ i ≤ 25 −→ 1.5 − 2−23

1.5 ⊖ 2−i 26 ≤ i −→ 1.5
ATI-Vertex 1 ≤ i ≤ 23 −→ 1.5 − 2−i

24 ≤ i −→ 1.5 − 2−23

1 ≤ i ≤ 23 −→ 1.5 − 2−i

Nvidia-Vertex i = 24 −→ 1.5 − 2−23

25 ≤ i −→ 1.5
1 ≤ i ≤ 23 −→ 1.5 − 2−i

(1 ⊕ 0.5) ⊖ 2−i All-Pixel 24 ≤ i ≤ 25 −→ 1.5 − 2−23

26 ≤ i −→ 1.5
1 ≤ i ≤ 23 −→ −2−i

ATI-Pixel i = 24 −→ −2−23

25 ≤ i −→ 0
(1.5 ⊖ 2−i) ⊖ 1.5 1 ≤ i ≤ 23 −→ −2−i

Nvidia-Pixel 24 ≤ i ≤ 25 −→ −2−23

26 ≤ i −→ 0
x ⊗ y + (±x) ⊗ (∓y) All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0
x ⊗ y − (−x) ⊗ (−y) All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0

x ⊗ y − ((2 · x) ⊗ y)/2 All x ∼ U [1, 2) ∧ y ∼ U [1, 2) −→ 0
ATI-Pixel i ≤ (211 − 1) · 212 −→ correct

(1 + 2−23) ⊗ (1 + 2−23i) Nvidia-Pixel i ≤ 23 · 217 −→ correct

ATI-Vertex i ≤ 223 −→ correct

Nvidia-Vertex i ≤ 219 −→ correct

ATI-Pixel x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−1.00031 ulp · · · 0.00215 ulp}
x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−1.00013 ulp · · · 0.00085 ulp}

Nvidia-Pixel x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−0.51099 ulp · · · 0.64063 ulp}
x ⊗ y − x × y x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−0.76504 ulp · · · 0.32031 ulp}

ATI-Vertex x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−1 ulp · · · 0}
x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−1 ulp · · · 0}

Nvidia-Vertex x ∈ [1, 2) ∧ y ∈ [1, 2/x) −→ {−0.82449 ulp · · · 0.93750 ulp}
x ∈ [1, 2) ∧ y ∈ [2/x, 2) −→ {−0.91484 ulp · · · 0.46875 ulp}
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Figure 4. The solar receptor as simulated.

This extra bit forces modifications of some multiple preci-

sion tools [3] and we conjecture that it is implemented for

backward compatibility.

Fast small multipliers usually ignore partial products be-

low a given threshold and add a constant to correct the in-

troduced statistical bias [10]. Results lead us to think that

this constant is 2−35 on ATI and 41 · 2−30 on Nvidia. The

multipliers accumulate partial products on 9 extra rows on

ATI and 6 extra rows on Nvidia. These figures do not in-

clude the extra bit left of the mantissa. Other tests indicate

that multipliers use radix 2 sign-magnitude logic internally.

Additional tests showed that subnormal numbers are re-

placed by 0 during transfers even when no arithmetic op-

eration is performed on GPUs meaning that drivers proba-

bly perform arithmetic operations on textures. Non numer-

ical quantities are not modified except that sNaN (signaling

NaN) is changed to qNaN (quiet NaN) on ATI.

3. Monte-Carlo line-by-line ray tracing

The experimental setting is presented in Figure 4. This

device produces electricity from sunlight concentrated by a

large reflector. Concentrated sunlight is used to heat a metal

pipe that transfers heat through contact and infra-red radi-

ations. The goal is to transfer as much energy as possible

to the turbine. Dynamic and thermal phenomena are intri-

cately interwoven as air temperature raises.

Though our approach is based on finite volumes used

for example by Fluent (www.fluent.com) and Trio-U

(www-trio-u.cea.fr), this work can also be applied

to accurately instantiate source terms in software based on

finite element methods such as ComSol (www.comsol.

fr).

Combined optical depth τ of infrared participating gases

CO2 and H2O (O2 and N2 are ignored) represents millions

of lines that are functions of temperature T , pressure p, and

density of absorbing molecule ug in the following formulas

copied from [9, Annex A.2] with the same notations.

Sηη′(T )

Sηη′(Tref)
=

Q(Tref)

Q(T )

e−
c2Eη

T

e
−

c2Eη

Tref

(

1 − e−
c2ν

ηη′

T

)

(

1 − e
−

c2ν
ηη′

Tref

) (1)

τ(ν) =
∑

g

ug

∑

η→η′

Sηη′(T )f(ν − νηη′) (2)

Iout = Iine
−τ(ν)l + I(ν, T )

(

1 − e−τ(ν)l
)

(3)

I(ν, T ) =
2hν3

c2
· 1
(

e
c2ν

T − 1
) (4)

The first formula provides a ratio Sηη′(T )/Sηη′(Tref) for

the intensity of the line due to transition between lower

and upper states η and η′ of component gas g centered on

wavenumber νηη′ . This ratio is applied to the 16 contribu-

tions of this line in the wavelength space around νηη′ . Once

this transformation is performed for all the lines of all the

gases, the contributions are cumulated to obtain τ(ν) for

all the considered wavenumbers ν. We apply Beer-Lamber

law for absorption (first term of Iout) and Planck law for

heat induced emissions (second term of Iout) for a ray pass-

ing through length l of an isothermal homogeneous finite

volume of Figure 5. GPUs handle all data-parallel compu-

tations and Listing 1 presents how formulas (2), (3) and (4)

are implemented.

After the GPU has computed Iout for all the considered

wavenumbers the power of the total heat transfer is obtained

by summing Iin − Iout of up to 224 ≈ 16 · 106 values stored

in a 2 dimensional square matrix. This task requires to sum

all the data of a texture and we used a parallel reduction

scheme adapted to GPUs [8]. The sum is evaluated with an

iterative algorithm where each iteration sums of 4 pieces of

data from the previous iteration.

Integrations with respect to space in the simulation of

non-isothermal flows is obtained by Monte-Carlo line-by-

line ray-tracing paradigm as presented Figure 5. The main
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Listing 1. Parallel evaluation of (2)-(4)
!!ARBfp1.0

...

# sratio_g{1-2} = Sηη′ (T )/Sηη′ (Tref) are computed

# in the omitted part from (1)
# and stored in a texture
TEX sratio_g1, sig_coords_1, texture[4], RECT;
TEX sratio_g2, sig_coords_2, texture[4], RECT;

# tref_g{1-2} = ugSηη′ (Tref)f(ν − νηη′ ) are constant

# textures computed on CPU and transfered to
# GPU memory on program initialization
TEX tref_g1, vnu_coords_1, texture[5], RECT;
TEX tref_g2, vnu_coords_2, texture[5], RECT;

# Suming up the contributions of the two gases
MUL tau, sratio_g1, tref_g1;
MAD tau, sratio_g2, tref_g2, tau;

MUL tau, tau, ll;

# ll = −l/ ln(2) is a scalar
# set for each iteration
# Factors $1/ln(2)$ are introduced as GPUs
# currently only support base-2 exponentials

# Special functions need 4 invocations
EX2 exp_tau_l.x, tau.x;
EX2 exp_tau_l.y, tau.y;
EX2 exp_tau_l.z, tau.z;
EX2 exp_tau_l.w, tau.w;

MUL exponent, c2T, nu;

# c2T = c2/(T ln(2)) is a scalar
# set for each iteration

EX2 den.x, exponent.x;
EX2 den.y, exponent.y;
EX2 den.z, exponent.z;
EX2 den.w, exponent.w;

SUB den, den, {1, 1, 1, 1};

RCP inv.x, den.x;
RCP inv.y, den.y;
RCP inv.z, den.z;
RCP inv.w, den.w;

MUL nu3, nu, nu;
MUL nu3, nu3, nu;
MUL nu3, nu3, hc2;

# hc2 = 2h/c2 is a constant scalar

MUL factor1, inv, nu3;
SUB factor2, one, exp_tau_l;
MUL term, i_in, exp_tau_l;
# i_in = Iin is the Iout texture of
# the previous iteration

# Return result.color = Iout as the color of
# the pixel to be written
MAD result.color, factor1, factor2, term;

END
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Figure 5. Monte-Carlo ray-tracing.

simulation code on CPU directs this process and averages

the effect of individual rays.

We designed a program in two parts. The first part is

executed by the CPU and represents 3500 lines of C++

code and OpenGL directives. The second part is executed

by the pixel shaders of the GPU and represents 250 lines

of OpenGL shading primitives (ARB fragment program).

Listing 1 is extracted from these 250 lines and corresponds

to the evaluation of formulas (2), (3) and (4). In addition, we

wrote the same program in C to measure the benefit of the

use of a GPU. This code was compiled with Microsoft Vi-

sual C++ 2005, optimizing for speed (/Ox /arch:SSE).

We ran both programs on a Pentium 4 system with 1 GB

of DDR2 memory and with a Nvidia 7800GTX and an ATI

RX1800XL graphic card both with 256 MB of GDDR3.

We measured the number of lines evaluated per second

depending on the number of lines per ray. The results are

plotted in Figure 6 with logarithmic axes and show a speed-

up as high as 420 compared to CPU. Timing is done on 100

rays treated sequentially. GPU performance loss around 106

lines per ray is due to data too large to fit in graphic memory

and should disappear with newer GPU boards.

This impressive speed-up is partially due to the ability of

GPUs to perform many complex operations per cycle. Each

pixel shader can start one exponential per cycle thanks to

dedicated hardware. As there are up to 24 shaders, 24 ex-

ponentials are initiated at 486 Mhz leading to 13.2 109 ex-

ponentials per second. On CPUs, exponential functions are

evaluated in software or in micro-code and require typically

100 cycles to complete. On a 3 Ghz Pentium 4 this means

about 30 106 exponentials per second. The second reason
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for our speed-up lies in the fact that GPUs and drivers ex-

ploit regularity in the code to hide memory latency and ex-

ecute floating point operations in parallel in pixel shaders.

4. Conclusion and perspectives

We started this report with test vectors aimed at the char-

acterization of the floating point operators of GPUs. We

showed that:

• Temporary results are computed to 32 bit format.

• Multipliers use constants to compensate for discarded

partial products.

• Some Nvidia and ATI adders use an extra bit.

We will certainly set up more test vectors as we continue

working on GPUs. Up to date tests are available from the

authors upon request by email.

We accelerated the computation of radiation properties

in order to simulate precisely, i.e. using line-by-line spec-

tra of gases. Common speed-up brought by GPU start at 5

and may climb to 50 as some developments in the industry

are claiming1. Our GPU implementation is 400 times faster

than CPU evaluation. This performance almost preserves

the computing resource available on CPU as we noticed a

runtime increase below 1% when our test program saturates

our CPU and GPU compared to the same program with no

request to GPU.

These figures where obtained using a fixed number (16)

of points of evaluation for each line. Our next version will

dynamically adapt the number of points depending on the

local temperature and the intensity of the line. This tasks

will involve vertex shaders and blending units. Blending

units starting with Nvidia 8800 operate on 32 bit floating

1See http://www.emphotonics.com/fastfdtd.html.

point data. Work on radiosity will be performed only if dis-

crepancies between simulations and experimentations show

that the effect of diffusion cannot be ignored.

The impressive speed-up reported here was due to the

large number of lines for one single ray-tracing leading to

a huge amount of data parallel transformations. Similar

speed-ups may be obtained for other settings. One possi-

ble application of GPGPU with connection to the industry,

is to speed-up simulations of elaborate surfaces of planar

solar receptors. Software will average spectral effects to

two bands of wavelength (infrared and visible) but it will

consider a large number of independent rays to accurately

account for anisotropic reflections and absorptions.

As we are building know-how on porting simulations for

thermal sciences to GPUs we will explore automatic tools

and build libraries of techniques to efficiently reuse parts of

our developments.
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