
LOOP TRANSFORMATIONS FOR INTERFACE-BASED HIERARCHIES IN SDF GRAPHS

Jonathan Piat1, Shuvra S. Bhattacharyya2, and Mickael Raulet1

(1) IETR/INSA, UMR CNRS 6164
Image and Remote Sensing laboratory, F-35043 Rennes, France

email: {jonathan.piat@insa-rennes.fr, mickael.raulet@insa-rennes.fr}
(2)Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD, 20742, USA

email: {ssb@umd.edu}

ABSTRACT

Data-flow has proven to be an attractive computation model

for programming digital signal processing (DSP) applica-

tions. A restricted version of data-flow, termed synchronous

data-flow (SDF), offers strong compile-time predictability

properties, but has limited expressive power. A new type of

hierarchy (Interface-based SDF) has been proposed allowing

more expressivity while maintaining its predictability. One

of the main problems with this hierarchical SDF model is the

lack of trade-off between parallelism and network clustering.

This paper presents a systematic method for applying an im-

portant class of loop transformation techniques in the con-

text of interface-based SDF semantics.The resulting approach

provides novel capabilities for integrating parallelism extrac-

tion properties of the targeted loop transformations with the

useful modeling, analysis, and code reuse properties provided

by SDF.

Index Terms— Data-Flow programming, SDF graph,

Scheduling, Code Generation, Loop parallelization.

1. INTRODUCTION

Since applications such as video coding/decoding or digital

communications with advanced features are becoming more

complex, the need for computational power is rapidly increas-

ing. In order to satisfy software requirements, the use of par-

allel architecture is a common answer. To reduce the software

development effort for such architectures, it is necessary to

provide the programmer with efficient tools capable of au-

tomatically solving communications and software partition-

ing/scheduling concerns. Most tools such as PeaCE [1], Syn-

DEx [2] or PREESM [3] use as an entry point a model of the

application associated to a model of the architecture. Data-

flow model is indeed a natural representation for data-oriented

applications since it represents data dependencies between the

operations allowing to extract parallelism. In this model, the

application is described as a graph in which nodes represent

computations and edges carry the stream of data-tokens be-

tween operations. The Synchronous Data-Flow (SDF) model

allows to specify the number of tokens produced/consumed

on each outgoing/incoming edge for one firing of a node.

Edges can also carry initialization tokens, called delay. That

information allows to perform analysis on the graph to deter-

mine whether or not the graph is schedule-able, and if so to

determine an execution order of the nodes and application’s

memory requirements.

In basic SDF representation, hierarchy is used either as a

way to represent cluster of nodes in the SDF graph or as pa-

rameterized sub-system [4]. In order to extend the expressiv-

ity of the SDF model, we propose a new hierarchy type more

detailed in [5] based on interfaces. This new representation

allows the designer to describe sub-graphs in a top down ap-

proach, thus adding relevant information for later optimiza-

tions. In this paper, we introduce optimization techniques for

this particular model based on regular loop transformations.

This transformation allows to extract a given level of paral-

lelism from the hierarchy while maintaining an average level

of clustering.

2. INTERFACE-BASED SDF HIERARCHY

While designing an application, user might want to use hier-

archy in a way to design independent graphs that can be in-

stantiated in any design. From a programmer view it behaves

as closures since it defines limits for a portion of an applica-

tion. This kind of hierarchy must ensure that while a graph is

instantiated, its behavior might not be modified by its parent

graph, and that its behavior might not introduce deadlock in

its parent graph. In order to allow the user to hierarchically

design a graph, this hierarchy semantic must ensure that the

composed graph will have no deadlock if every level of hi-

erarchy is independently deadlock free. To ensure this rule

we must integrate special nodes in the model that restrict the

hierarchy semantic. In [5] we have introduced a new model

of hierarchy for SDF graphs. This model is based on spe-

In Proceedings of the International Conference on Application

Specific Systems, Architectures, and Processors, pages

341-344, Rennes, France, July 2010. DOI: 10.1109/ASAP.2010.5540954.



cial interface behavior that ensure every hierarchy level to be

independent from the scheduling point of view.

3. NESTED LOOPS PARTITIONING BY ITERATION
DOMAIN PROJECTION

Definition A nested loop of depth n is a structure composed

of n nested loop for which each loop, excluded the nth one,

contains only a loop.

f o r i1 := l1 to u1 do
f o r i2 := l2(i1) to u2(i1) do

. . .

f o r in := ln(i1, i2, ..., in−1) to un(i1, i2, ..., in−1) do
{Instruction1}
. . .

{Instructionk}
end

end
end

Fig. 1. Nested loop example.

The iteration domain of the outer loop remains constant

while the iteration domain of inner loops consists in maxima

and minima of several affine functions.

This nested loop partitioning technique was developed as a

method for systolic array synthesis in [6]. A systolic array is

massively parallel computing network. This network is com-

posed of a set of cells locally connected to their spatial neigh-

bors. All the cells are synchronous to a unique clock. For

each clock cycle, a cell takes data from its incoming edges,

perform a computation and output data to its outgoing cells.

This partitioning technique aims at finding a projection vec-

tor by analyzing the distance vector of a nested loop of depth

N . When this projection vector has been determined, the it-

eration domain is projected along this vector resulting in an

N − 1 dimension systolic array.

4. APPLYING LOOP OPTIMIZATION TECHNIQUES
TO INTERFACE-BASED HIERARCHY

Loop partitioning technique described in previous section re-

veals the parallelism nested into the loops by using basic lin-

ear algebra and gives a set of results. As seen previously,

interface-based hierarchy suffers from a lack of parallelism.

All the embedded parallelism remains unavailable for the

scheduler, making an application hard to optimize on a paral-

lel architecture. Interface-based hierarchy being close to code

nesting, it seems appropriate to tap into nested loops parti-

tioning techniques to extract parallelism. The nested loops

code structure could be defined as follow in the Interface-

based Synchronous Data-Flow model :

Definition A nested loop of depth n is a structure composed

of n nested hierarchical actor with a repetition factor greater

than one, for which each actor, excluded the nth one, contains

only one actor.

In order to exploit this optimization technique we must be

able to extract the distance vector from the hierarchical de-

scription, thus allowing to have a relevant representation for

the partitioning. Then having the different projection vector

and their respective resulting execution domain, we must be

able to map back this representation into a SDF graph.

4.1. Distance vector extraction from interface-based SDF

The Synchronous Data-flow paradigm brings some limitation

to the representation.

• In the data-flow paradigm, actors produce tokens that can

then be consumed. A data-flow representation cannot

contain other dependencies than the flow dependency.

• In the SDF paradigm all the data are represented by

edges. Thus all the data of a network are considered

disjoint.

• In the SDF model, data are uni-dimensional and

atomic (token). It means that you cannot have multi-

dimensional access to a data.

The third limitation shows that, the basic SDF representa-

tion does not allow to extract distance vector. The hierarchi-

cal SDF allows factorized representation and therefore allows

to represent edges as multi-dimensional data over the itera-

tion domain. As data are being disjoint, only recursive edge

(source(e) = sink(e)) can carry an inter iteration depen-

dency. It means that the analyze only have to be carried out

on this specific kind of edge. For our purpose, we will con-

sider a recursive edge as an array of size q(source(e))+d(e).
Given a vertex a with q(a) > 1 and a recursive edge e0

with source(e0) = target(e0) = a and d(e0) > c(e0). The

index vector for the read accesses to the data carried by e0 is

�r = [i0 − d(e0)], and the index vector for the write accesses

to the data carried by e0 is �w = [i0]. Thus the distance vector

between the iteration of a is �τ = �w − �r = [d(e0)].
Let us now consider that a is a hierarchical actor that con-

tains one actor b with q(b) > 1 and a recursive edge e1

with source(e1) = target(e1) = b and d(e1) > c(e1).
Given that edge has a local scope in a hierarchical represen-

tation, the data carried by e1 can be represented as an array

of size (q(source(e1))) + d(e1) itself contained in an array

of size q(a). Thus the index vector for the read accesses to

the data carried by e1 is �r = [i0, i1 − d(e1)], and the in-

dex vector for the write accesses to the data carried by e1 is

�w = [i0, i1]. Thus the distance vector between iteration of b
is �τ = �w − �r = [0, d(e1)].



By extension the distance vector for a recursive edge at the

N th loop of a nested loops structure is a vector of size N with

the (N − 1)th element being d(eN−1).

4.2. SDF network synthesis using analysis results

The network of computing element resulting from the projec-

tion is itself an SDF graph. Using information given by the

allocation vector we can determine the points of the execution

domains computed by each cell and consequently distribute

the input data among the cells using explode and broadcast

vertices. The output data can also be sorted out using implode

vertices and circular buffers.

The SDF graph then needs to be timed using delay to en-

sure a proper execution of strongly connected components. In

a systolic array all the cell are active synchronously. Thus in

order to synchronize the computation on the cell network, the

communication channel must consist in a register whose size

allows to synchronize the computation. In the SDF paradigm,

computations are synchronized by data, and actors are not

triggered synchronously but sequentially if they share data.

Thus if the resulting network contains strongly connected

components, delays have to be added in order to time the

graph. A proper execution guarantees that the last data avail-

able on a communication link is the valid one for the execu-

tion of the sub-graph.

5. THE MATRIX VECTOR PRODUCT EXAMPLE

In this section we will use the matrix vector product as a test

case for the method described above.

Given a vector V and matrix M , the product V ×M = R
can be described using a set of recurrent equations.⎧⎨

⎩
Ri,k = 0 if k = 0
Ri,k = Ri,k−1 + vimi,k if 1 ≤ k ≤ N
ri = Ri,N 0

The SDF representation extracted from those recurrent

equations exposes two level of hierarchy . The first hierar-

chy level contains a vector× scalar product, and the second

hierarchy level represents a scalar × scalar product.

Vi
N N

Dinit

1

Acci
N N

mac
1

1

1

1
C

N N
Mi

N ∗N

Vi
N

Vo
N

Fig. 2. Matrix vector product

5.1. Network description

The matrix vector product networks, takes a N × N matrix

and a N vector as input, and outputs the result as a N vector.

The Mi port is the matrix input and the Vi is the vector input.

The Vo port is the vector output. The vectscal vertex takes two

input, Vi being a line of the matrix, and Dinit being an ele-

ment of the vector. The element in Dinit initialize the delay

token on the recursive edge around the mac operation. The

Acci port takes the vector in which the result is accumulated.

The mac operation takes two scalar, one from the the matrix

line one from the delay (being an element of the input vector),

multiply them and adds the result with the input accumulating

vector. The valid schedule for the graph is then:

N × {N ×mac}
The schedule take advantage of the special behavior of the

port Vo, which behaves as a ring buffer of size N . Thus the

data contained in Vo at the end of the schedule, is the result

of the last N th iteration of the mac operation, that is the valid

result.

5.2. Distance vector extraction

The index vector for the read operation on the top recursive

edge is �ro = [i0 − 1, i1], and the index vector for the write

operation on the top recursive edge is �wo = [i0, i1]. Thus

the distance vector is �τ0 = �wo − �ro = [1, 0]. The index

vector for the read operation on the inner recursive edge is

�r1 = [i0, i1 − 1], and the index vector for the write operation

on the inner recursive edge is �w1 = [i0, i1]. Thus the distance

vector is �τ1 = �w1 − �r1 = [0, 1].
Using Lamport’s method [7] we can determine that the time

vector minimizing parallel execution time for this application

is τ = [1, 1]. Based on this time vector, a set of projection

vector can be determined :

s1 =
(

1
0

)
s2 =

(
0
1

)
s3 =

(
1
1

)

The following analysis will be carried out using the projec-

tion vector s3. The uni-modular matrix S3 is

S3 =
(

1 0
1 1

)

S−1
3 =

(
1 0

−1 1

)

The allocation function is then A3 = [−1, 1]. Using this

allocation function we can now determine how the points of

the computation domain are allocated onto the execution do-

main. The extremes of the allocation function in the iteration

domain are −N and N meaning that the execution domain is

of size (2×N)−1. The end of the analysis will be performed

with N = 3.



5.3. Network synthesis

N being three, the resulting network is composed of 5 ver-

tices. Using the allocation function we can determine the

point of the iteration domain that will be computed by each

vertex.

• Vertex 0: computes the point [1, 3]

• Vertex 1: computes the points [1, 2] and [2, 3]

• Vertex 2: computes the points [1, 1], [2, 2] [3, 3]

• Vertex 3: computes the points [2, 1] and [3, 2]

• Vertex 4: computes the point [3, 1]

Computing the topology matrix of the network shows that

the repetition factor for each of the actor is 3, as the computa-

tion load must be balanced in an SDF. Thus vertices 0, 1, 3, 4,

will compute points outside of the iteration domain. This

means that we must consequently time the graph to get sure

that the valid data, will be the last produced data. For the

first strongly connected set {V0, V1}, the hyperplane contain-

ing the point [1, 3] as a shorter distance to the hyplerplane

containing [0, 0], than the hyperplane containing [2, 3]. This

means that V0 must be scheduled before V1. To consequently

time the network we must add a delay on the arc going from

V1 to V0. Timing all the strongly connected sets that way

leads to a translation of the iteration domain for the vertices

0, 1, 3, 4.

i

j

Fig. 3. Iteration domain after graph timing

The resulting timed network needs to be connected to input

and output ports. The original hierarchical representation had

no degree of parallelism, but the resulting representation af-

ter transformation reveals five degree out of nine available for

the flat representation. The other available projection vectors

would give less parallelism, with more regularity in the com-

putation as the activity rate of cells would be homogeneous

over the network.

6. CONCLUSION AND FUTURE WORK

The optimization technique described in this paper helps at

improving the degree of potential parallelism in the applica-

tion while keeping the network size at a low level. For large

iteration domain, and when targeting architecture with a low

level or parallelism, this optimization does not in general al-

low one to keep the network size optimized in relation to the

architecture. Nevertheless the distance vector extraction can

lead to further optimization, using technique such as the one

described in [8]. This paper shows that loop optimization

method inherited from various computing environment can be

used in the Synchronous Data-Flow and give relevant results.

7. REFERENCES

[1] W. Sung, M. Oh, C. Im, and S. Ha, “Demonstration Of

Codesign Workflow In PeaCE,” in in Proc. of Interna-
tional Conference of VLSI Circuit, Seoul, Koera, 1997.

[2] T. Grandpierre and Y. Sorel, “From algorithm and ar-

chitecture specification to automatic generation of dis-

tributed real-time executives: a seamless flow of graphs

transformations,” in Proceedings of First ACM and IEEE
International Conference on Formal Methods and Mod-
els for Codesign, MEMOCODE’03, Mont Saint-Michel,

France, June 2003.

[3] J. Piat, M. Raulet, M. Pelcat, P. Mu, and O. Déforges, “An

extensible framework for fast prototyping of multiproces-

sor dataflow applications,” in IDT08: Proceedings of the
3rd International Design and Test Workshop, Monastir,

Tunisia, december 2008.

[4] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized

dataflow modeling for DSP systems,” IEEE Transactions
on Signal Processing, vol. 49, no. 10, pp. 2408–2421, Oc-

tober 2001.

[5] J. Piat, S. S. Bhattacharyya, and M. Raulet, “Interface-

based hierarchy for Synchronous Data-Flow Graphs,” in
Signal Processing Systems (SiPS), 2009.

[6] D.I. Moldovan and J.A.B. Fortes, “Partitioning and map-

ping algorithms into fixed size systolic arrays,” Comput-
ers, IEEE Transactions on, vol. C-35, no. 1, pp. 1–12,

Jan. 1986.

[7] L. Lamport, “The parallel execution of DO loops,” Com-
munications of the ACM, vol. 17, no. 2, pp. 83–93, Feb.

1974.

[8] P. Boulet, A. Darte, T. Risset, and Y. Robert, “(Pen)-

Ultimate Tiling ?,” The VLSI Journal, vol. 17, pp. 33–51,

1994.


