
An FPGA architecture for solving the Table Maker’s Dilemma

F. de Dinechin, J.-M. Muller, B. Pasca, and A. Plesco
CNRS, ENS Lyon, INRIA, UCBL

Laboratoire LIP, ENS Lyon, 46 allée d’Italie
69364 Lyon Cedex 07, FRANCE

FirstName.LastName@ens-lyon.fr

Abstract—Solving the Table Maker’s Dilemma, for a given
function and a given target floating-point format, requires
testing the value of the function, with high precision, at a very
large number of consecutive values. We give an algorithm that
allows for performing such computations on a very regular
architecture, and present an FPGA implementation of that
algorithm.

Keywords-table maker’s dilemma; floating-point arithmetic;
correct rounding; elementary functions; FPGA;

I. THE TABLE MAKER’S DILEMMA

The IEEE 754-2008 standard for Floating-Point arith-
metic [1] recommends (yet does not dictate) that some
elementary functions should be correctly rounded. That is,
given a rounding function ◦, (e.g., round to nearest even, or
round to ±∞), when evaluating function f at the floating-
point number x, the system should always return ◦(f(x)).

Building a fast correctly rounded library for some target
floating-point (FP) format requires preliminarily solving a
problem called the table maker’s dilemma. This requires
very large computations which may use environments and
formats totally different from the target environment and
format. In this paper, we suggest performing these compu-
tations on an FPGA.

For the sake of simplicity, in this paper, we assume
that the target rounding function is the IEEE 754 standard
double-precision round to nearest even. On the target envi-
ronment, to compute f(x) in a given format, where x is a
FP number, we must first compute an approximation to f(x)
with a given accuracy [2], which we round to the nearest FP
number in the considered target format. The problem is the
following: find what the accuracy of the approximation must
be to make sure that the obtained result be always equal to
the “exact” f(x) rounded to the nearest FP number. To solve
that problem we have to locate, for each considered target
floating-point format and for each considered function f ,
the hardest to round (HR) points. Defining a midpoint as
the exact middle of two consecutive floating-point numbers,
an HR point is an input floating-point numbers x such that
f(x) is very close to a midpoint, without being exactly a
midpoint.

This work is partly supported by the TaMaDi project of the french Agence
Nationale de la Recherche (ANR). The donation of a DK-DEV-4GX530N
board by the Altera University Program is also gratefully acknowledged.

Assuming (after some re-normalization) that x and f(x)
are between 1 and 2, that the target floating-point format is
a binary format of precision p, we need to find the largest
possible value of m such that there exist a FP number x that
satisfies:

• f(x) is not exactly equal to a midpoint;
• the binary representation of f(x) has the form

m bits� �� �
1.xxxxx · · ·xxx� �� �

p bits
1000000 · · · 000000 xxx · · ·

or

m bits� �� �
1.xxxxx · · ·xxx� �� �

p bits
0111111 · · · 111111 xxx · · · ;

Two different algorithms have been suggested for dealing
with this problem. The first one, first presented in Lefèvre
PhD dissertation [3], [4], allowed Lefèvre and Muller to
publish the first tables of HR points for the most common
functions in double-precision/binary64 FP arithmetic [5].
We will call it the L-algorithm. The second one, the SLZ
algorithm, was introduced by Stehlé, Lefèvre and Zimmer-
mann [6], [7]. It was used to find the HR points for the
exponential function in decimal64 arithmetic [8]. SLZ has a
better asymptotic complexity than the L-algorithm, however,
when the target format is the double precision/binary64
format of the IEEE 754 standard, they require similar
computational times: weeks of computation for all input
exponents (hours of computation for one input exponent),
using massive parallelism.

The problem with these algorithms does not only lie
in this huge computation time. In both cases we have a
very complex algorithm, implemented in a very complex
program, that runs for weeks and just outputs one result:
what confidence can we have in that result? The HR points
are the main weak point of a library such as CRLibm [9]:
each function of that library comes with a theorem of the
form “if the HR points have been rightly computed then the
function always outputs a correctly rounded result”. Hence,
our major goal here is to design a very simple, very regular

algorithm (therefore suited for FPGA implementation): if it
outputs the same results as the L-algorithm, then this will
give much confidence in these results.

The method we are going to suggest here has an
even worse asymptotic complexity than the L- and SLZ-
algorithms. And yet, due to its simplicity, the hidden con-
stant in the complexity term is so small that, still with double
precision/binary64 as a target, our method will require
similar times on a single FPGA.

Let us now present our method. Defining u = 21−p,
we will compute the values of f(1) mod 21−p, f(1 +
u) mod 21−p, f(1 + 2u) mod 21−p, f(1 + 3u) mod 21−p,
. . . , f(2) mod 21−p, with a given, predetermined, accu-
racy 2−µ (with µ larger than p and—for probabilistic
reasons [2]—less than 2p). Each time we find a value
f(1 + ku) mod 21−p extremely close to 2−p (i.e., whose
leading bits are of the form 011111111 · · · or 10000000 · · ·),
we output the value of k for further testing using multiple-
precision software. The major difficulty here is that there
are 2p−1 values f(1+ku) mod 21−p and p is fairly large (a
typical value is 53 for the double precision/binary64 format).
Therefore, the computation of these values must be done
very quickly.

To do this, we will approximate f by some polynomial
P (with an accuracy of approximation significantly bet-
ter than 2−µ), and compute the successive values P (1 +
ku) mod 21−p using a modulo 21−p adaptation of the well-
known tabulated differences method [10].

II. THE TABULATED DIFFERENCES METHOD

Let P be a polynomial of degree n and x0 a real. We
define xk = x0 + ku for k > 0, and we wish to compute
the successive values P (x0), P (x1), P (x2), P (x3),

The tabulated differences method is based on the fact that
if we define the following “discrete derivatives”:

• P (1)(x) = P (x + u)− P (x);
• P (2)(x) = P (1)(x + u)− P (1)(x);
• . . .
• P (n)(x) = P (n−1)(x + u)− P (n−1)(x);

then P (n) is a constant C. This leads to the following
algorithm.

Initialization: compute P (x0), P (x1), P (x2), . . . ,
P (xn), and deduce from these values all the possible partial
discrete derivatives, of which we keep the initial vector at
point x0: P (n)(x0) = C, P (n−1)(x1), P (n−2)(x2), . . . ,
P (2)(xn−2), P (1)(xn−1), P (xn).

Iteration: The following recurrence computes the value
of this vector at point xk+1 = xk + u out of the vector at

point xk.





P (n−1)(xk+2) = P (n−1)(xk+1) + C
P (n−2)(xk+3) = P (n−2)(xk+2) + P (n−1)(xk+2)
...

...
...

P (2)(xk+n−1) = P (2)(xk+n−2) + P (3)(xk+n−2)
P (1)(xk+n) = P (1)(xk+n−1) + P (2)(xk+n−1)
P (xk+n+1) = P (xk+n) + P (1)(xk+n)

(1)

P (x2) P (xn−1) P (xn)P (x1)

P (1)(x0) P (1)(xn−1)P (1)(x1)

P (x0)

P (2)(x1)

P (n−1)(x0)

P (n)(x0) = C C C

P (1)(xn)

P (xn+1)

P (n−1)(x3)

Iteration

P (n−1)(x1) P (n−1)(x2)

Initialization

Figure 1. The tabulated difference method

The computations in (1) are done modulo 21−p: they
are simple fixed-point additions, with the bits of weight ≥
21−p being ignored. Notice that the n additions in (1) are
straightforwardly pipelined, hence, once the initialization is
done computing a new value P (xk) takes the time of one
addition.

It should also be noted that the problem is embarrassingly
parallel: Although the iteration itself is intrinsically sequen-
tial, the full domain of an elementary function in double-
precision may be split into arbitrarily many sub-domains,
and we may perform initialization/iteration processes in
parallel for each sub-domain. We indeed aim at processing
hundreds of sub-intervals in parallel within a single FPGA.

Besides, the initial values P (x0), P (x0 +u), P (x0 +2u),
. . . , P (x0 + nu) cannot be computed exactly in practice.
They are correct within some rounding error, and we will
see in the following that when performing (1), these errors
accumulate quite quickly. After some value of k, say kmax

this accumulated error becomes unacceptable, and we have
to invoke the initialization process again, with x0 replaced
by x0 + kmaxu. In other words, the size of a sub-interval
is dictated by an error analysis that will be the subject of
Section III.

The initialization process requires n+1 polynomial eval-
uations, and n(n+1)/2 subtractions. There are two possible
ways of performing it:

1) on the FPGA itself, or
2) in software on the host computer.

In both cases we must choose kmax so that the initialization
time is totally overlapped by the iterations (1).

The initialization process first involves evaluating the
polynomial in n + 1 points using a classical multiplication-
based scheme (typically Horner’s). Modern FPGAs contain
up to several thousand small multipliers that could be used
for this purpose, but designing an architecture for this
initialization would add a lot to the FPGA design effort.
In the sequel of the paper, we therefore choose the simpler
second approach. It also has the advantage of exploiting the
computing power of the host processor. However, there is a
price to pay: due to limited bandwidth between the host and
the FPGA, iteration (1) must run for a much longer kmax.
We will see in next section that this entails a significantly
wider data-path, hence more resource consumption for the
iteration hardware, possibly cancelling the benefits of saving
the initialization hardware. This question remains to study
quantitatively.

Let us now formalize the dependency between kmax and
the datapath width.

III. ERROR ANALYSIS

Let us bound the difference between the value computed
F (xk) and the true value of the function f(xk). We may
first decompose this error as follows:

F (xk)− f(xk) = (F (xk)− P (xk)) + (P (xk)− f(xk))

The second term is the approximation error, and the Remez
approximation algorithm will allow us to keep it as small as
needed. Let us focus on the first term, the rounding error.

Let δ(i)(x0 + ku) be the overall rounding error in the
initial evaluation of P (i)(x0 +ku). Notice that the additions
in (1) are performed in fixed-point, ignoring the outgoing
carries: they do not induce any error, yet they propagate the
initial rounding errors on the P (i)(x0). Let � be a bound on
the errors on P (n)(x0) = C, P (n−1)(x0 + u), P (n−2)(x0 +
2u), . . . , P (1)(x0 + (n− 1)u). We easily find

δ(n−1)(x0 + ku) ≤ δ(n−1)(x0 + (k − 1)u) + �,

so that
δ(n−1)(x0 + ku) ≤ (k + 1)�.

From that, we deduce

δ(n−2)(x0 + ku) ≤ δ(n−2)(x0 + (k − 1)u)
+δ(n−1)(x0 + (k − 1)u)

≤ δ(n−2)(x0 + (k − 1)u) + k�,

so that

δ(n−2)(x0 + ku) ≤ (1 + 2 + 3 + · · · + k)� =
k(k + 1)

2
�.

Similarly,

δ(n−3)(x0 + ku)
≤

�
1 + 2(2+1)

2 + 3(3+1)
2 + · · · + (k−1)k

2

�
�

= (k−1)(k)(k+1)
6 �.

An elementary induction shows that the bound on the error
of the computed value of P (x0 + ku) satisfies

δ(0)(x0 + ku) ≤ (k − n + 2) · · · (k − 1)(k)(k + 1)
n!

�. (2)

IV. A CASE STUDY: THE EXPONENTIAL FUNCTION

All parameters in the method are function-dependent, so
we cannot give a general performance result (although it
should not vary much with the function). Hence, we give
here some figures related to the exponential function on the
input interval [1, 2). We take f(x) = 1

2ex to normalise the
output to [1, 2).

We first split the input interval into 2m sub-intervals,
each of size 2−m, and we will compute one approximation
polynomial on each sub interval, using the Remez algorithm.
The trade-off here is between the degree of the obtained
polynomials (the smaller, the better for the subsequent eval-
uation) and the number of Remez polynomial to compute.
A good choice here is m = 15: on each of the 215 = 32768
sub-intervals, a polynomial of degree 4 approximates f(x)
with an accuracy better than 2−90, and the Sollya tool is
able to compute all these polynomial and formally validate
their accuracy [11] in about 3 hours.

Now we must choose kmax, the length of an evaluation
run between reinitializations. Having decided that reinitial-
izations are performed on the host processor, we now have
to take into account the limits on 1/ computing power of the
host processor and 2/ data bandwidth between processor and
FPGA. A larger kmax means fewer initializations, but larger
data-path, hence slower operation and less parallelism. Note
also that if we have P parallel iteration cores, the host must
serve them all.

Our current trade-off is to take kmax = 220. Equation (2)
with degree n = 4 tells us that the error is smaller than
276�. For our target accuracy of 2−85 modulo 252, we
need to have 85 − 52 = 33 valid bits at the end of
the computation. A datapath width of 33 + 76 = 109
bits ensures this accuracy. Assuming M = 28 parallel
iterations on the FPGA, the host must be able to compute
one initialization every 220/28 = 4096 FPGA cycles. FPGA
cycles are typically 10 times slower than processor cycles,
so the host has roughly 40,000 cycles to compute each
initialization. Efficient multiple-precision libraries such as
GMP and MPFR make this possible. Host-FPGA bandwidth,
in this scenario, is not a problem.

V. OUR DESIGN

Field-programmable gate arrays (FPGAs) are a natural
technology for implementing this type of algorithm:

• for a given set of input parameters we need to perform
a big, one-off computation. Once completed we can
reconfigure the FPGA for a different set of input
parameters.

• the implemented method is based on binary additions
for which FPGAs are very efficient.

Nevertheless, implementing such a complex, multi-
parametrized design using a hardware description language
(HDL) is a tedious and error-prone task. To overcome this,
we used the FloPoCo framework [12]. We implemented
in FloPoCo an architecture generator that inputs the many
parameters and generates an FPGA-specific implementation
of the circuit in the form of a portable, human-readable
VHDL file.

A. Functional model

1) TaMaDi Core: The core component of our design is
the polynomial evaluator based on the tabulated differences
method. The architecture of this component is depicted in
Figure 2. Its main entities are the n − 1 adders chained
together which are used to evaluate the vector of discrete
derivatives.

Each computation starts with the component receiving a
’1’ value on the Initialize line together with a unique
interval identifier on the Interval bus. During the next
N + 1 clock cycles, the values of the initialization vector
C = P (n)(x0), ..., P (x0 + nu) are received in sequence on
the DataIn bus, and fill the pipeline. A counter is used to
keep track of k in evaluating P (x0 +ku). The output of the
nth adder feeds a pattern detector unit, implemented as wide
ANDs. A value of ’1’ at the output of the pattern detector
signals that the value present on the output Counter bus,
together with the interval identifier, points to one HR case.
The component raises the Ready line to ’1’ when it has
finished the allowed number of iterations and needs a new
reinitialization.

The architecture of the TaMaDi Core (Core) is perfectly
suited to FPGA hardware. Adders benefit from the fast carry-
chains which allow the simple ripple carry adder (RCA)
scheme to be implemented efficiently. The wide AND of
the pattern detector may also take advantage of these fast
carry-chains.

Table I presents area and timing post place-and-route
results of the TaMaDi Core on modern FPGAs from Xilinx
[13], [14] and Altera [15], [16] for the exponential function
example presented in Section IV. The area of one Core
occupies a very small fraction of these FPGA. The largest
StratixV from Altera(5SGXAB) having 1052K LUTs and
1588K REGs can, in theory accommodate over 1500 Cores
while the largest Virtex6 from Xilinx(XC6VLX760) having
758K LUTs and 1516K REGs can accommodate roughly
1000 Cores, if one also considers the interfaces overhead.

... ...

{

Control
FSM

Counter

Ready
Interval

CE

QD
ce

QD
ce

QD
ce

ce
Counter

rst
count

Pattern
Detector

adder 1

adder 0

adder n− 1

n

C

D
ce

we

QD
ce

+

+

+

...

TaMaDi Core

Interval

DataIn

Valid

Initialize

Figure 2. Polynomial Evaluator based on the tabulated differences method

Table I
POST PLACE-AND-ROUTE RESULTS OF THE TAMADI CORE PE

Datapath Degree FPGA Frequency Area
width N LUTs REGs

120 4

StratixIV 237 MHz 584 750
StratixV 359 MHz 585 750
Virtex5 262 MHz 640 646
Virtex6 332 MHz 640 646

2) TaMaDi Cluster: Multiple TaMaDi Cores may be
assembled in a larger component named the TaMaDi Cluster,
whose architecture is depicted in Figure 3.

The presented system has several parameters:
• M the number of TaMaDi Cores in the system. The

maximum value of this parameter depends on the size
of one Core and the size of the FPGA. The practical
value for this parameter also depends on the bandwidth
between FPGA and the host system, processing element
datapath width and degree and the reinitialization inter-
val.

• size of the input and output FIFOs, also depends on
bandwidth, M and processing element characteristics.

• size of processing element output FIFO. Their dimen-
sion can be as small as one element. However, for
good performance their size depends on the probability
of finding HR cases in that interval and the output
bandwidth.

The TaMaDi Cluster is connected to the host system (or
the next hierarchical level) my means of two FIFOs. Data
is fed by the host system to ClusterInFIFO while this FIFO
is not full. Each element on this FIFO has the structure
depicted below:

The ClusterInFIFO element contains the necessary infor-

......

DataIn DataOut
ReadEN
WriteEN Full

DataIn DataOut
ReadEN
WriteEN Full

IntervalInterval
DataIn

Initialize
CE

Counter

IntervalInterval
DataIn

Initialize
CE

Counter
wiid

on−1

il−1

i0
o0

wiid

Ready
ValidOut

Ready
ValidOut

Empty

Empty o0

i0

in−1
ol−1

Ready

d× wdp

wk + wiid

(n + 1)wdp + wiid

wk

in−1

i0
o0

ol−1

DataIn

WriteEN
ReadEN

Full
Empty

DataOut

Data
LoadEN

DataOut

on−1

o0

il−1

i0

DataIn

WriteEN
ReadEN

Full
Empty

DataOut

CoreFIFO

CoreFIFO

Priority
Encoder

Decoder

TaMaDi Core

TaMaDi Core
Priority
Encoder

...

...

...
...

...

Decoder

ClusterInFIFO

Shift Register

ClusterOutFIFO

Figure 3. Overview of the TaMaDi Cluster architecture

...IntervalID C

wiid wdp wdp wdp wdp

P (n−1)(x0 + u)P (n−2)(x0 + 2u)P (X0 + nu)

Figure 4. Structure of one element in the ClusterInFIFO

mation to bootstrap one processing element. Once a TaMaDi
Core is ready to process new information (signaled ’1’ on
the corresponding output Ready port) the input FIFO is
popped one element. The uppermost wiid bits of informa-
tion containing the interval ID are fed to the processing
element together with a value on ’1’ on the corresponding
Initialize input pin. The lowermost (N +1)pw bits are
loaded into a N +1-level shift-register in order be serialized
in chunks of pw bits. During the next N +1 clock cycles, the
shift-register feeds the TaMaDi Core as the pipeline starts.

When the TaMaDi Cores signals the detection of a HR
case, the information concerning this case (counter value and
interval identifier, totaling wk + wiid bits) is pushed into the
corresponding Core output FIFO.

The data from the CoreFIFOs is then placed in the
ClusterOutFIFO whenever this FIFO is not full. Simple
priority encoders on both inputs and outputs manage the
access to the Cluster input and output FIFOs.

3) TaMaDi System: The TaMaDi Cluster has low re-
source count and fast clock speeds for modest number
of Cores (up to 32). Unfortunately, this multiplexed data
dispatch architecture scales badly due to several issues:
(1) size of the multiplexers and priority encoder-decoder
circuitry (2) the long lines between the dispatcher (shift-
register in our implementation) and the computing cores
(TaMaDi Cores).

readx

...

empty

...

empty

down

up

...

...

...

down

up up up up

...

empty

...

> 0> 0> 0> 0

DataOut Read
Empty

ReadDataIn

RE0WE0

Credit
Counter

Credit
Counter

OF credit

Credit
Counter

Credit
Counter

Deserializer Serializer

SystemOutFIFO

Priority Encoder

SystemInFIFO

to Clusters interface senders

DMA FIFOs

to Clusters interface receivers

Decoder

Priority Encoder

Decoder

Figure 5. Global system dispatcher interface

By grouping multiple TaMaDi Cores into a small number
of Clusters (where the size of the Cluster remains reasonably
small say 16), we could potentially use the same dispatching
architecture at a macro-level.

However, when filling up a large FPGA chip, a new
problem arises: connections between the dispatcher and
the Clusters become very long, introducing large delays.
To overcome this, we have used a different, credit-based,
dispatcher, depicted in Figure 5. It allows us to pipeline
the communication lines to Clusters, thus breaking the long
delays into several shorter ones. To keep track of data in
flight on these long lines, a sender has a credits counter,
initialized to the size of the receiver FIFO. The sender sends

registers on long wires

’1’

Credit counter Credit counter

Dispatcher

TaMaDi Cluster

DataOutDataIn

Write Read Write
DataIn

Read
DataOut

> 0

> 0up
down
up > 0 down

we0 data > 0 re0 data > 0

Interface receiverInterface sender

Interface receiver
registers on long wires

down
up

Credit counter

TaMaDi Cores

Interface sender

ClusterInFIFO ClusterOutFIFO

Figure 6. Credit based pipelined communication interface for one Cluster

only when its credit counter is positive, decrements it on
each send, and blocks when is is zero. The receiver sends a
credit back to the sender at each read from its FIFO.

A detailed view of this sender/receiver interface is pre-
sented in Figure 6. The receiver part of the interface is tightly
coupled to the TaMaDi Cluster.

A global dispatcher circuit manages the communication
with the host. It has two functionalities (1) dispatching
reinitialization data to the TaMaDi Cluster (Figure 5 left)
and (2) retrieval of HR cases from these modules (Figure 5
right).

4) Full Prototype: For prototyping purposes we use the
Stratix IV GX development board featuring a Stratix IV GX
EP4SGX530KH40C2 FPGA. The board communicates with
a host PC by means of a PCI Express 2.0 8x interface that
can provide up to 3.4 GB/s full-duplex.

The Altera PCI Express hard IP together with the PLDA
EZDMA2 IP [17] offered in the PLDA reference design
ensure a simple FIFO interface for our pipelined credit-
based Dispatcher Interface (Figure 7). The PLDA host driver
offers a high-level API interface for feeding and retrieval of
information from the DMA FIFOs by means of multiple
DMA channels (2 in our case).

B. Bandwidth requirement
In this section we will compute the bandwidth require-

ment of the entire TaMaDi System. First, we need to com-
pute the bandwidth of TaMaDi Cluster depicted in Figure
3.

We use the following notations:
f circuit frequency
K the number of TaMaDi Clusters
M number of TaMaDi Cores within a Cluster
N approximation polynomial degree

wdp the datapath width on the TaMaDi Core

128 Avalon ST Interface

Re
fe

re
nc

e
D

es
ig

n

registers

...

......

FPGA

TaMaDi
Interface

TaMaDi
Interface

Altera Hard IP

EZDMA IP

DMA FIFOs

Pipelined Credit Based
Dispatcher Interface

HOST PC PCIExpress

Cluster Cluster

Figure 7. Global system architecture

kmax the number of iterations between re-initializations
wk = �log2(kmax)�, width in bits of the iteration counters.

η the maximum number of intervals to be processed by
the system

wiid = �log2(η)�, width in bits of interval identifiers
ξ the probability of finding one HR case
The input bandwidth for one TaMaDi Core:

Bin
Core = ((N + 1)wdp + wiid)

f

kmax + N + 1
(3)

and the output bandwidth of one Core is:

Bout
Core = ξ(�log2(kmax)�+ wiid)

f

kmax + N + 1
(4)

The Core bandwidth is BCore = Bin
Core+Bout

Core. Considering
that a TaMaDi Cluster has M such Cores, the total band-
width requirement for a Cluster is BCluster = M · BCore. A
TaMaDi System is composed out of K Clusters, therefore
requiring a bandwidth equal to: BSystem = K · BCluster =
K · M · BCore.

Table II presents the dependency between the parameters
of a Core, its area and the required bandwidth for keeping
it busy at 100MHz. A larger bandwidth requirement leads
to more pressure on the I/Os but a smaller Core size, which
allows fitting more in one single FPGA.

For a system comprising of 100 TaMaDi Cores, each
requiring a bandwidth of 5.42 MBit/s the bandwidth require-
ment is approximatively 0.5 Gb/s which seems to be reason-
ably within our available bandwidth potential. Nevertheless,
this configuration would require us generating more than 57
TBytes of reinitialization data (some of which can indeed
be generated on-the-fly) compared to a more manageable 1.9
TBytes required for a wdp = 120.

For a 200-Core system BSystem = 3.4Mbits/s, which
can easily be provided by FPGA platforms connected

Table II
DEPENDENCY BETWEEN TAMADI CORE PARAMETERS, ITS AREA AND

THE NECESSARY BANDWIDTH/CORE FOR A STRATIXIV. SIMILAR
RESULTS HOLD FOR OTHER FPGAS

Parameters Area Bandwidth
N wdp kmax wiid LUTs REGs (Mbit/s)
4 120 220 32 584 750 0.017
4 81 8,192 39 400 531 5.42

through to the host system through the PCIE bus, Ethernet
interface and even USB2.0.

C. Performance estimation
We are currently using the Altera StratixIV development

kit based on an EP4SGX530KH40C2 FPGA to prototype
our system. This gives us an environment for estimating the
performance and scalability of our architecture. However, as
presented in this section the amount of computation needed
for an elementary function, on one exponent value is as the
order of tens of hours. We therefore envision mapping this
architecture on even larger FPGAs, and even multi-FPGA
based systems.

In this section we provide a performance estimation for
the case of the exponential function for double precision
p = 52 (we consider one input exponent). Considering the
220 iterations until having to reinitialize the Core, the total
number of intervals to process is about 4.3 · 109.

Table III shows the dependency between system fre-
quency, number of Cores and task completion.

On our current FPGA prototyping system we conserva-
tively estimate to be able to pack 200 PE which yields an
realistic execution time of approximatively 50H.

D. Reality Check
We have tested the real performance of different con-

figurations of our proposed systems on two FPGAs, our
prototyping StratixIV development-kit and a large StratixV
FPGA. The purpose of these tests was to show the per-
formance of our solutions and to determine the degree of
scalability of the proposed architectures (both the simple-
dispatcher and the credit-based dispatcher solution). The
results are shown in Table IV

First, the results obtained validate that, once the number
of Cores exceeds a certain threshold (32 for StratixIV), the
credit-based dispatch offers a more attractive solution. It is

Table III
PERFORMANCE ESTIMATES FOR DOUBLE-PRECISION EXPONENTIAL

(ONE INPUT EXPONENT)

Frequency
100 150 200

C
or

es

100 125h 83.4h 62.5h
200 62.5h 41.7h 31.3h
400 31.2h 20.9h 15.7h
800 15.7h 10.4h 7.9h

expected that, as the number of Cores scales up, the credit-
based dispatch will continue to function at frequencies over
150 MHz, as the critical path of this system is in the adders
of the TaMaDi Core.

Secondly, the results obtained on the StratixV FPGA
prove that the increased capacity linearly improves the task
completion time.

However, when reading this table one should consider
that, as the size of the FPGA increases linearly, the time
needed to compile the project on the FPGA increases at best
polynomially. In other words, if for the 16 cores StratixIV
design, compilation took some tens of minutes on a fast
server, the StratixV designs took tens of hours to compile.

A solution to improve the compile/execution time ratio is
to use a multi-FPGA based system, comprising of multiple
similar FPGAs, such as the multi-FPGA prototyping board
DN7020K10 from Dini Group [18], comprising 16 Altera
StratixIV FPGAs. The TaMaDi System would be compiled
once, then replicated on these FPGAs. For simplicity one
FPGA will also contain a dispatcher interface and will be
connected to the host system. We estimate that one such
system would complete the execution of one exponent in
less than 2 hours.

All in all, depending on the available FPGA, the order
of magnitude of the time required to process one input
exponent is between a few hours and two days. Although
the double precision/binary64 format has 2046 possible
exponents, we do not need to perform such a calculation
for every exponent: the exponential of a number larger than
710 is an overflow, and if |u| ≤ 2−54, then eu correctly
rounded to that format is equal to 1. The most up-to-date
implementation of the L-algorithm takes 45 hours to process
one input exponent on a fairly recent FP core (AMD Opteron
2.19 GHz). Since these algorithm are very different and
are run on very different machines, we suggest using both
of them, which allows one to get much confidence in the
obtained results.

CONCLUSION

We have suggested an algorithm and an FPGA architec-
ture that make it possible to find hardest-to-round points
for elementary functions in double precision. This requires
huge computations, but they are done once for all, and allow
one to design efficient libraries or hardware for elementary
function evaluation. The achieved performance is slightly
better than the one obtained using Lefèvre’s L-algorithm
but the real gain is not there: it lies in the fact that if, with
a completely different method that runs on a completely
different hardware, we obtain the same results, this gives
much confidence in these results.

REFERENCES

[1] IEEE Computer Society, IEEE Standard for Floating-Point
Arithmetic. IEEE Standard 754-2008, Aug. 2008, available
at http://ieeexplore.ieee.org/servlet/opac?punumber=4610933.

Table IV
POST PLACE-AND-ROUTE RESULTS OF THE TAMADI SYSTEM. THE CORE PARAMETERS ARE: wDP = 120 BITS AND N = 4

FPGA Cores Freq. Area Completion
LUTs REGs M9K Time

StratixIV

16 196 MHz 10,614 (2%) 14,725 (3%) 17 398.9h

(EP4SGX530KH40C2)

32 174 MHz 20,021 (4%) 26,250 (6%) 17 224.7h

simple-dispatch

64 154 MHz 48,416 (11%) 61,234 (14%) 148 126.9h
128 111 MHz 95,428 (22%) 118,944 (28%) 276 88.05h
256 97 MHz 189,298 (45%) 234,432 (55%) 532 50.4h

StratixIV
16 (2x8) 198 MHz 13,159 (3%) 21,586 (5%) 53 394.9h

(EP4SGX530KH40C2)
32 (4x8) 193 MHz 25,014 (6%) 39,402 (9%) 87 202.6h

credit-based dispatch
64 (8x8) 168 MHz 59,213 (14%) 89,051 (21%) 308 116.4h

128 (16x8) 168 MHz 96,534 (22%) 156,370 (36%) 592 58.2h
256 (32x8) 127 MHz 232,649 (54%) 348,335 (82%) 1172 38.5h

[2] J.-M. Muller, Elementary Functions, Algorithms and Imple-
mentation, 2nd ed. Birkhäuser Boston, MA, 2006.

[3] V. Lefèvre, “Moyens arithmétiques pour un calcul fiable,”
Ph.D. dissertation, École Normale Supérieure de Lyon, Lyon,
France, 2000.

[4] ——, “New results on the distance between a segment and
Z2. Application to the exact rounding,” in Proceedings of the
17th IEEE Symposium on Computer Arithmetic (ARITH-17).
IEEE Computer Society Press, Los Alamitos, CA, Jun. 2005,
pp. 68–75.

[5] V. Lefèvre and J.-M. Muller, “Worst cases for correct round-
ing of the elementary functions in double precision,” in
Proceedings of the 15th IEEE Symposium on Computer
Arithmetic (ARITH-16), N. Burgess and L. Ciminiera, Eds.,
Vail, CO, Jun. 2001.

[6] D. Stehlé, V. Lefèvre, and P. Zimmermann, “Worst cases and
lattice reduction,” in Proceedings of the 16th Symposium on
Computer Arithmetic (ARITH’16). IEEE Computer Society
Press, 2003, pp. 142–147.

[7] ——, “Searching worst cases of a one-variable function,”
IEEE Transactions on Computers, vol. 54, no. 3, pp. 340–
346, Mar. 2005.

[8] V. Lefèvre, D. Stehlé, and P. Zimmermann, “Worst cases for
the exponential function in the IEEE 754r decimal64 format,”
in Reliable Implementation of Real Number Algorithms: The-
ory and Practice, ser. Lecture Notes in Computer Sciences,
vol. 5045. Springer, Berlin, 2008, pp. 114–126.

[9] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gal-
let, N. Gast, C. Q. Lauter, and J.-M. Muller, “CR-
LIBM, a library of correctly-rounded elementary func-
tions in double-precision,” LIP Laboratory, Arenaire team,
Available at https://lipforge.ens-lyon.fr/frs/download.php/99/
crlibm-0.18beta1.pdf, Tech. Rep., Dec. 2006.

[10] D. Knuth, The Art of Computer Programming, 3rd ed.
Addison-Wesley, Reading, MA, 1998, vol. 2.

[11] S. Chevillard, J. Harrison, M. Joldes, and C. Lauter, “Efficient
and accurate computation of upper bounds of approximation
errors,” Theoretical Computer Science, vol. 412, no. 16, pp.
1523 – 1543, 2011.

[12] “FloPoCo, Floating-Point Core generator,” http://flopoco.
gforge.inria.fr/.

[13] Virtex-5 FPGA User Guide, Xilinx, 2009, http://www.xilinx.
com/support/documentation/user guides/ug190.pdf.

[14] Virtex-6 FPGA User Guide, Xilinx, 2011, www.xilinx.com/
support/documentation/virtex-6.htm.

[15] Stratix IV Device Handbook, Altera, 2011, http://www.altera.
com/literature/hb/stratix-iv/stratix4 handbook.pdf.

[16] Stratix V Device Handbook, Altera, 2011, http://www.altera.
com/literature/hb/stratix-v/stratix5 handbook.pdf.

[17] “PLDA EZDMA2 DMA for PCI Express Hard IP,” http://
www.plda.com.

[18] “DN7020K10 ’Uncle of Monster’ Altera Stratix IV ASIC
Prototyping Engine,” http://www.dinigroup.com.

