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Abstract—Embedded applications integrate more and more
sophisticated computations. These computations are generally
a composition of elementary functions and can easily be ap-
proximated by polynomials. Indeed, polynomial approximation
methods allow to find a trade-off between accuracy and computa-
tion time. Software implementation of polynomial approximation
in fixed-point processors is considered. To obtain a moderate
approximation error, segmentation of the interval I on which
the function is computed, is necessary. This paper presents
a method to compute the values of a function on I using
non-uniform segmentation, and polynomial approximation. Non-
uniform segmentation allows to minimize the number of segments
created and is modeled by a tree-structure. The specifications
of the segmentation set the balance between memory space
requirement and computation time. The method is illustrated with
the function

√
( − log(x)) on the interval [2−5; 20] and showed

a speed-up mean of 97.7 compared to the use of the library libm
on the Digital Signal Processor C55x.

I. INTRODUCTION

Technological progresses in microelectronics require the in-
tegration, in embedded applications, of numerous sophisticated
processing composed of the computation of mathematical
functions . To get the value of an intricate function, the exact
value or an approximation can be computed. The challenge is
to implement these functions with enough accuracy without
sacrificing the performances of the application, namely mem-
ory usage, execution time and energy consumption. Several so-
lutions can then be used. On the one hand, specific algorithms
can be adapted to a particular function [5]. On the other hand,
Look-Up Tables (LUT) or bi-/multi-partite tables methods can
be used when low-precision is required. Nevertheless, the need
to store the characteristics of the approximation in tables result
in some impossibilities to include these methods in embedded
systems because of the memory footprint. Finally, the majority
of the proposed methods have been developed for a hardware
implementation.

For the time being, two solutions exist for the software
computation of these functions: the use of libraries such as
libm that targets scientific computation and is very accurate but
also quite slow, or the implementation of the CORDIC (CO-
ordinate Rotation DIgital Computer) algorithm that computes
the approximation of trigonometric, hyperbolic and logarithmic
functions.

In this work, the software implementation in embedded
systems of mathematical functions is targeted as well as low
cost and low power processors. To achieve cost and power
constraints, no floating-point unit is considered available and

processing is carried-out with fixed-point arithmetic. Then,
the polynomial approximation of the function can give a
very accurate result in a few cycles if the initial interval
is segmented precisely enough. The proposed method is a
new method of non-uniform subdivision. That new type of
subdivision calls the Remez Algorithm of the Sollya tool [1]
to approximate the function by polynomials on the segments
obtained. The polynomial order is a trade-off between the
computation error and the interval size. To obtain a given max-
imum approximation error, the polynomial order decreases,
impliying the reduction of the segment size. This increases
the number of polynomials to store in memory. For a given
data-path word-length, the increase in polynomial order raises
the fixed-point computation errors that annihilates the benefit
of lower approximation error obtained by higher polynomial
order. Thus, for fixed-point arithmetic, the polynomial order is
relatively low. Consequently, to obtain a low maximal approx-
imation error, the interval size is reduced. Accordingly, non-
uniform interval subdivision is required to limit the number of
polynomials to store in memory. The proposed method then
originates two different types of error: the error of approx-
imation εapp = ||f − P ||∞ of the Remez algorithm (where
f is the function to approximate and P is the approximating
polynomial on a segment), and the error caused by the fixed-
point computation εfxp.

The challenge of the proposed method is to find the
accurate segmentation of the initial interval I . Different non-
uniform segmentations [4] have been proposed. Nevertheless,
they have only been implemented for hardware function eval-
uation and do not provide flexibility in terms of depth of
segmentation.

The proposed method presents a segmentation of the inter-
val I in a non-uniform way, using a tree-structure. The param-
eters of that method are the polynomial order Nd, the memory
available for the application, the maximal computation time
required and the precision needed on the approximation ε. The
segmentation of I controls the error of approximation. The
method provides the user Pareto curves giving the evolution
of the memory size required depending on the computation
time for a fixed precision, several degrees and several depths
of segmentation. The user can then choose the most adapted
degree and depth of segmentation given the constraints of
the application. Besides, compared to table-based methods
or the Cordic algorithm, our approach reduces respectively
significantly the memory size required and the computation
time.

The rest of the paper is organized as follows. First, the



related work is detailed in Section II. The method for ob-
taining the polynomial corresponding to an input value x is
presented in Section III. The tool for approximating functions
by polynomials using non-uniform segmentation is introduced
in Section IV. The Binary Tree Determination is deepened in
Section V. The Reduced Tree Determination is presented in
Section VI. The experiments are shown in Section VII.

II. RELATED WORK

Several methods can be used to compute an approximate
value of a function. Iterative methods as the CORDIC al-
gorithm [6] are generally easy to implement. The CORDIC
algorithm computes approximations of trigonometric, logarith-
mic or hyperbolic functions. That method offers the ability
to compute the value using only shifts and additions and is
particularly adapted to a processor with no floating-point unit.
Nevertheless, that algorithm requires to store tables to compute
the approximate value, and may require a lot of memory space
as well as a long computation time. These latest depend on the
precision required that sets the number of iterations as well as
the size of the table to store. It is possible to compute the
approximation of a function thanks to other methods whose
algorithms are described in [5]. For instance, the Chebyshev
orthogonal basis allows to approximate a function using only
polynomials, if the approximation has to be done on [−1; 1].

Hardware methods have been developed to compute ap-
proximate values of a function. The LUT method would
consume the most memory space but would be the most
efficient in computation time. That method consists in using
0-degree polynomials to approximate the value of the function.
The initial segment is subdivided until the error between the
polynomial and the real value is inferior to the maximal error
on each segment obtained. However that segmentation has to
be uniform, i.e. if the error criterion is not fulfilled on a single
part of the initial segment, all the parts of the segments have to
be segmented again. Improvements of the table-based method
are the bi-/multi-partite methods detailed in [2]. The multi-
partite method propose to segment the interval on which the
function f has to be approximated to be able to approximate
f by a sequence of linear functions. The initial values of each
segment as well as the values of the offsets to add to these
initial values to get whichever value in a segment have to be
saved. The size of these tables has been reduced compared
to bi-partite method exploiting symetry in each segment. That
method offers quick computations and reduced tables to store
but is limited to a low-precision required and to a hardware
implementation.

Finally, another method has been developed for hardware
function evaluation in [4]. The interval I is segmented to
control the precision. On each segment, the function is ap-
proximated by the Remez algorithm. 4 different segmentation
schemes are used: uniform segmentation or P2S (left, right
or both) with segments increasing or decreasing by powers of
two. Once a segmentation has been applied, if the error does
not suit the criterion, the segment can be segmented again
using one of these segmentation schemes. Afterwards, AND
and OR gates are used to find the segment corresponding to
an input value x. LUT are used to store the coefficients of
the polynomials. Nevertheless, that method does not allow to
control the depth of segmentation of I which is offered in

the presented method and has been implemented for hardware
function evaluation.

III. COMPUTATION OF THE APPROXIMATING VALUE

A. Method for Indexing the Polynomials

The initial interval I is beforehand segmented using a non-
uniform segmentation that is stored in a tree structure T . The
algorithm of segmentation is recursive: the Remez algorithm is
called on a segment and the error of approximation ||f−P ||∞
is compared to the maximum error of approximation εapp. If
||f−P ||∞ > εapp, the segment is segmented and the algorithm
is applied on each segment until the criterion is fulfilled on
each segment. Each time the segmentation algorithm is called,
a node is added in T to store the bounds of the created segment.
The segmentation tree T is illustrated in figure 1.

Then, to each segment of the final segmentation corre-
sponds an approximating polynomial. All the polynomials are
stored in the table P whose lines correspond to the polynomials
associated to the different segments. Consequently, the aim
of this step is to determine for an input value x the index
associated to the segment in which x is located. The problem
is to find the path associated to the interval in a minimum time.
The approach is based on the analysis and interpretation of
specific bits of x formatted in fixed-point coding. The segment
bounds are sums of powers of two, so these bits can be selected
with a mask and interpreted as a binary number after having
shifted them to align them on the LSB.

The tree storing the segmentation is not well balanced. For
any tree level, the number of bits to analyze is not constant and
depends on the considered node since all the nodes associated
to a given level do not necessarily have the same number of
children. Thus, the mask and the shift operations are specific
for each node. Consequently, at each intermediate node nlj
(where l is the level and j the node) a mask and an offset
between the index of the first child of a node and its index
are associated. The mask is used to select the adequate bits of
x to move from node nlj to the next node nl+1j′ located at
level l + 1.

The indexing method uses a bi-dimensional table T which
stores for each node, the mask, the shift and the offset to pass
from a level to the following. For the presented example in
figure 1, the tree possesses 3 levels. Consequently, three tables
are computed and presented in figure 2.

Each table contains as many lines as the total number
of nodes in the level. This number is obtained by summing
the number of nodes in the level to the number of leaves of
the previous levels. Consequently, the number of information
to store depends on the depth of the tree, the number of
polynomials, and the degree of the approximating polynomials.

To find the shifts and masks values in the tables, for each
level, the tree is observed. The value of the mask corresponding
to a node is the binary conversion of the number of children
of that node. The value of the shift corresponding is obtained
substracting the number of children to the shift of the previous
level.
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Fig. 1: Illustrating the segmentation method on a tree of depth
3
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Fig. 2: Indexing tables associated to the tree T in figure 1

B. Fixed-point computation

To improve the speed performances, the coefficients of the
polynomials are formatted in fixed-point and stored in the bidi-
mensional table P[i][d]. The term i is the index of the interval
and the coefficient is the one of the d-degree monomial. Each
coefficient has its own fixed-point format to reduce the fixed-
point computation errors. The computation of Pi(x), where Pi
is the approximating polynomial on the segment i, can be de-
composed owing to the Horner rule, reducing the computation
errors. According to the algorithm of Ruffini-Horner [7], each
polynomial Pi(x) = anx

n + an−1x
n−1 + ... + a1x + a0 can

be factored as:

Pi(x) = ((((anx+ an−1)x+ an−2)x+ ...)x+ a1)x+ a0

Using that factorization, the calculation scheme can be
decomposed in a basic loop kernel as in figure 3.

x <<
+Input

x ai-1

Fig. 3: The basic cell n − i of the n-degree polynomial
computation using the Horner rule

According to figure 3, shifts are necessary to compute the
value of Pi(x) in fixed-point coding. Indeed, the output of the
multiplier can be on a greater format than necessary. By using
interval arithmetic on each segment, the real number of bits
necessary for the integer part can be adjusted with left shift
operation.

Then, a right shift operation can be necessary to put
the two adder operands on the same format. In our case,
a quantification from double precision to single precision is
done and creates a source of error. When the two shift values
have been computed, they can be both added so as to do a
single shift on the output of the multiplier that is stored in
the bidimensional table D[i][d] where d corresponds to the
iteration of the loop and i is the index of the segment.

IV. TOOL FOR POLYNOMIAL APPROXIMATION

Numerous approximating methods have been developed
with hardware function evaluation, and cannot consequently
be integrated to a software function evaluation because of
the memory space required. Consequently, a new method of
software function evaluation is proposed in that paper. That
method is composed of six different stages sharing data of
the algorithm. To begin, the algorithm needs several input
parameters:

1) The function to approximate f
2) The interval I on which f is approximated (f has to be

continuous on I)
3) The maximum error of approximation ε, i.e. εapp+εfp < ε
4) The degree of the approximating polynomials Nd

These parameters are progressing through the diagram
presented in figure 4 and the output of that diagram is the
final tree giving the optimal segmentation of I . That final tree
is determined after two stages: the binary tree Tbin has, in a
first stage, to be determined, and then the user can specify a
number of levels in the final tree. Then, another tree, Treduced,
with a reduced number of levels, is determined. In other words,
the final tree is the one of the required depth. To get the final
tree, several steps are then needed.

Firstly, the four inputs are needed in the first step of the
approximation method, during the Binary Tree Determination.
That step allows to segment I in a dichotomous way so that
the function can be approximated, using the Remez Algo-
rithm, on each segment obtained by that decomposition, while
satisfying the error criterion. The Remez Algorithm is used
in the approximation method to give the best approximating
polynomials of the function on each segment, in the sense of
the infinite norm and is called thanks to the Sollya tool [1].
The Binary Tree Determination is detailed in Section V. The
obtained segmentation is saved in Tbin and sent to the Reduced
Tree Determination where the degree of the approximating
polynomials Nd is required too. A supplementary parameter
is needed. Indeed, the determination of the binary tree gives
the maximal depth of the segmentation, and the goal of that
step is to reduce it: the number of levels required Nl has to be
an input of that step. Reducing the depth of the segmentation
allows to reduce the computation time as it is explained in
the section VI. The output of that step is the Reduced Tree
Treduced.

Once that final tree is obtained, to compute the approxi-
mation of the value required, the segment in which the value
to compute is has to be known. To determine the index of that
segment the tables presented in Section III are used.

The error of the whole approximation, namely εapp and εfp
can then be computed. Finally the C code of the approximation
is generated.
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Fig. 4: The different stages of the algorithm for approximating
function by polynomials

V. BINARY TREE DETERMINATION

A. The Dichotomous Approach Segmentation

The dichotomous approach segmentation of the initial
interval is presented in the algorithm 1.

Algorithm 1 The Polynomial Approximation

procedure RECURSE(Interval)
Nd; ε ; I = [a; b];
P = Remez(f, I,Nd)
if ||f − P ||∞ ≥ ε then

I1 = [a; b−a2 + a]
I2 = [ b−a2 + a; b]
return RECURSE(I1)
return RECURSE(I2)

else
return P

end if
end procedure

The Sollya tool calls the Remez Algorithm on each seg-
ment while the error of approximation is higher than εapp.
Indeed, the user has specified the maximal error of approxi-
mation ε, so half of that error, εapp is allocated to the Remez
Algorithm and the other half to the error committed during the
computation of the approximation in fixed-point coding εfxp.
The algorithm is recursive: if the error criterion is not fulfilled
on a segment, the segment is cut into two equal parts and the
algorithm is applied on each obtained segment.

B. Computation of the Binary Tree

The segmentation of I is modeled by a tree Tbin. Each time
the recursive algorithm is called, the bounds of the obtained
segment are stored in a node of a tree structure. The interval
bounds are sums of powers of 2 to ease the adressing. The
root of that tree contains the bounds of I and the leaves the
bounds of the segments on which the error criterion is verified,
thus a polynomial is associated to each leaf.

The depth of the binary tree Tbin corresponds to the number
of bits necessary to index the table P . Then, in the binary tree,

a bit is tested in each level of the tree. For instance, the binary
tree obtained subdividing each segment in both equal parts is
the deepest but leads to the minimal number of polynomials.
On the contrary, the tree whose depth is 1 has the greatest
number of polynomials. If the depth of the binary tree is N ,
then the number of polynomials in the tree of depth 1 is 2N .

C. Binary Tree Determination on an example

The dichotomous approach segmentation is detailed in
figure 5. The function

√
( − log(x)) is approximated on

the interval [2−5; 1] with a specified error εapp of 10−3 and
2-degree polynomials. According to the tree obtained, the
function possesses a strong non-linearity in the neighbourhood
of 1, since the tree branches particularly on this part of I . The
correspondance between the polynomials Pi and the segments
is located under the tree in figure 5.
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Fig. 5: Tbin corresponding to f =
√
(− log(x)), εapp = 10−3,

I = [0.03125; 1] and Nd = 2

VI. REDUCED TREE DETERMINATION

So as to minimize the computation time, the proposed
method aims to optimize the dichotomous segmentation of
I , reducing the number of levels in the tree modeling the
segmentation. Indeed, the first step of the algorithm allows
to know the number of bits to be tested to know in which
segment the value x is. Then, the tree can be modified as long
as the sum of the bits allocated to each level is equal to the
depth of the binary tree Tbin. To know the best allocation of
these bits, a tree of solutions Tsol is computed. It allows to
minimize the time of computation as well as the hardware
resources necessary to save tables P and T .

A. The Tree of Solutions

Having the depth Nlmax of the binary tree Tbin, the number
of bits to be tested to know in which interval the value x
is, is known. The same number of bits has to be allocated
to the reduced tree Treduced. Besides, reducing the depth of
the tree Treduced, the memory space required to store the



polynomials (table P) and their associated tables (table T )
does not have to increase. The tree of solutions studies all the
possible allocation configurations and computes the theoretical
required memory space depending on the allocation chosen.
The depth of the tree of solutions is equal to the number of
levels required and each path in the tree corresponds to an
allocation configuration.

The tree computed in that step is the Tree of Solutions Tsol.
Each node of that tree contains the number of bits allocated
to the associated level of the node, and the leaves of the
tree contain the value of the equation giving the required
memory space to store tables P and T . However, to compute
Tsol, the Remez algorithm shall not be called to save time.
Consequently, from Tbin, the list of the segments from the
Dichotomous Segmentation is obtained and has to be compared
to the one obtained with each allocation configuration. If a
segment obtained with the new allocation is not included in
one from the list of segments obtained from Tbin, then the error
of approximation on that segment is bigger than the required
error. Conversely, if a segment from the new segmentation is
included in one from the list extracted from Tbin, then the
error of approximation is smaller than the error required and
that segment does not have to be segmented again.

Finally, to quickly know which path is the best given Tsol,
the sole comparison of the values contained by the leaves is
needed. A branch-and-bound algorithm can be used in that part
to reduce the computation time for Tsol but is not needed since
that computation is done upstream and not on the DSP. When
the best allocation is found, the new tree Treduced is computed
and the coefficients of the polynomials as well as the list of
segments created are saved.

B. Reduced Tree Determination on an example

The Reduced Tree Determination is shown on the example
given in Subsection V-C. The depth of the binary tree obtained
in the Dichotomous Segmentation Step is 6. The tree of
solutions obtained requiring depth(Treduced) = 3 is in figure
6. The characteristics of the different allocation configurations
at each node are given in the node itself: the number of bits
allocated to the associated level are written in the node. The
memory required by each allocation is indicated under each
branch in bytes.
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Fig. 6: Tsol with f =
√
( − log(x)) on I = [2−5; 1], with

εapp = 10−3 and Nd = 2

According to the memory space required by each path
indicated in figure 6, the allocation configuration leading to

the minimum memory space is the sixth path (nodes drawn
in red in figure 6). To build Treduced of depth 3, 2 bits are
allocated to the first level (the initial segment is subdivided in
4 segments), 1 bit is allocated to the second level, i.e. if needed
(by comparing with the values obtained in the list of segments
given by Tbin), the segments obtained in the previous level are
subdivided in 2 parts. Finally, 3 bits are allocated to the last
level, thus the same comparison is made with the list given by
Tbin. If needed, the segments obtained in the previous level
are subdivided in 8 parts.

On the example, Treduced obtained is represented in figure
7. The table detailing the segments corresponding to the
polynomials is table I. Each bound of the segments can be
written as a sum of powers of two, necessary to ease the
addressing. As figure 7 shows it, 13 polynomials are created
with that decomposition instead of 64 expected. That allocation
leads then to the minimum memory space required to store
both the polynomials coefficients and the tables to index them.
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35 36 37 38 39 310 311 312

Fig. 7: Treduced with f =
√
(− log(x)) on I = [2−5; 1] with

εapp = 10−3 and Nd = 2

Pi Associated segment
0 [2−5; 2−3]

1 [2−3; 2−2]

2 [2−2; 2−1]

3 [2−1; 0.75]
4 [0.75; 0.875]
5 [0.875; 0.890625]
6 [0.890625; 0.90625]
7 [0.90625; 0.921875]
8 [0.921875; 0.9375]
9 [0.9375; 0.953125]
10 [0.953125; 0.96875]
11 [0.96875; 0.984375]
12 [0.984375; 1]

TABLE I: Correspondence between the polynomials Pi and
the segments

VII. EXPERIMENTS

The proposed method aims to minimize the computation
time and the memory footprint to compute the approximated
value of f(x). Nevertheless, to know the optimal polynomial
degree and the optimal depth of Treduced to suit the criteria
of the processor targeted (in terms of memory space) and of
the application (in terms of computation time), Pareto curves
are needed. These curves provides the system designer with
the optimal points for each polynomial degree tested, and
take into account the number of levels in the tree as well
as the required memory space that can be computed or the



computation time, knowing the size of the indexing table T
and of the coefficients table P as well as the equation giving
the computation time depending on the degree Nl and the
number of levels Nl. These curves represent the memory space
required depending on the depth of Treduced or the memory
space required depending on the computation time in cycles.
The functions chosen for the experiments are two composite
functions (hardly computed with a basic CORDIC algorithm)
and a trigonometric function to be able to compare the obtained
results with an implementation of CORDIC.

Finally, the proposed method is compared to the use of
libm, to an implementation of the CORDIC method and to the
LUT method.

A. Experiments with the function
√

(− log(x))

The curves are drawn in figures 8 and 9 for the function√
(− log(x)) approximated on [2−5; 20], allocating a maximal

error for the Remez approximation of εapp = 0.01 and a
maximal error for fixed-point coding of εfxp = 0.01. The
equation giving the computation time depending on the degree
Nd and the number of levels Nl depends on the processor used
and on the precision of fixed-point coding (single or double).
These results have been obtained with a DSP C55x [3].

Experimentally, the only degrees that are adapted to the
approximation of that function are 1 and 2. The maximal fixed-
point coding error obtained with 1-degree polynomials, what-
ever the number of levels in the tree and in single precision, is
4.878 ·10−4 and is consequently inferior to εfxp. Nevertheless,
with 2-degree polynomials, in single precision, the maximal
fixed-point coding error obtained is 6.21 · 10−2 > εfxp. To
be able to suit the fixed-point error criterion, data have to be
coded in double precision. In double precision, with 2-degree
polynomials, the maximal fixed-point coding error is 3.9·10−3.
2-degree polynomials coded in double precision are adapted
but higher degree polynomials lead to a too high fixed-point
coding error.

Besides, the computation time has been determined given
an equation depending on the fixed-point coding and on the
processor, and determined experimentally. The equation giving
the computation time depending on the degree Nd and the
number of levels in the tree Nl with the provided C-code, in
single precision on the target C55x, is:

t = 9 + 8 ·Nl + 3 ·Nd (1)

In double precision, the coefficients to store raise dramatically,
hence the preferable use of 1-degree polynomials in the case
of the example:

t = 2 + 8 ·Nl + 63 ·Nd (2)

Finally, the computation time using the library libm is
constant and equal to 4528 cycles. The mean speed-up of the
proposed method compared to the use of such a library is then
with Nd = 1 equal to 98.82 and with Nd = 2 equal to 96.51.

Finally, the mean speed-up of the proposed method com-
pared to the use of libm is 98.7 on the DSP C55x.
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B. Experiments with the function exp(−
√
(x))

1) Experiments on DSP C55x: The function exp(−
√
(x))

is studied on the interval [2−6; 25]. The trees for 1-degree
polynomials to 3-degree polynomials have been computed with
depth varying from the maximal depth (binary tree) to a depth
of 2. The evolution of the memory space required to store, on
the one hand, polynomial coefficients table P and shifts table
D for fixed-point computations Sn−pol and on the other hand
both the polynomial coefficients table P , the shifts table D
and the indexing table T Sn−tot, depending on the number
of levels in the tree Nl is drawn on figure 10. The trees are
computed with a maximal error criterion εapp of 5 · 10−3. The



data and coefficients are on 16 bits, the fixed-point coding of
the input is Q6,10 and the tests have been computed on the
DSP C55x .
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Fig. 10: Evolution of the memory space required to store
Sn−pol(circles) and Sn−tot(diamonds)

The less levels the tree has, the greatest number of poly-
nomials there is. Consequently, Sn−poly is high since the size
of the tables P and D are high. Nevetheless, since the tree has
a reduced depth, few indexing tables are needed (the depth of
the table T is equal to the number of levels in the tree). On
the contrary, the most levels the tree has, the less polynomials
there are and Sn−poly is low since the size of tables P and D
decreases. However, the table T is the biggest because of the
number of levels in the tree.

Then, computing the total memory space required depend-
ing on the computation time for a required error provides the
user with Pareto curves in figure 11 giving the optimal points
for the computation time or the memory footprint. The function
exp(−

√
(x)) on the interval [2−6; 25] can be approximated

by a polynomial of degree from 1 to 4 with datas coded on
16 bits, requiring a maximal total error (including εapp and
εfxp) of 10−2. The maximum values of the error of fixed-point
coding are in table II. A 5-degree polynomial does not suit this
approximation since the error obtained with fixed-point coding
is greater than the maximal error required.

Degree εfxp
1 [−2.8 · 10−3; 0]

2 [−2.5 · 10−3; 0]

3 [−2.5 · 10−3; 0.3 · 10−3]

4 [−2.4 · 10−3; 1.5 · 10−3]

5 [−2.7 · 10−3; 35.2 · 10−3]

TABLE II: Intervals of the fixed-point coding error de-
pending on the polynomial degree for the approximation of
exp(−

√
(x))

According to the Pareto curves on figure 11, when the
tree has a low number of levels, the required memory is high
but the computation time is minimum. Then, the computation
time increases with the number of levels of the tree while the
required memory decreases until it reachs a minimum. After
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Fig. 11: The Pareto curves for the approximation of
exp(−

√
(x)) on [2−6; 25])

that minimum for the required memory, it slightly tends to
increase with the computation time and the number of levels.

2) Experiments on ARM Cortex M3: The same function
is studied in the same approximation conditions on the target
of ARM, the microcontroller Cortex M3. The Pareto curves
representing the evolution of the memory space required
depending on the computation time are in figure 12.
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Fig. 12: The Pareto curves of the memory space required
depending on the computation time for the approximation of
exp(−

√
(x)) on Cortex M3

The computation time of the approximation of the value
f(x) using the proposed method and data formatted in single
precision on the Cortex M3 can be obtained thanks to the
following equation determined experimentally:

t = 27 + 17 ·Nl + 15 ·Nd (3)

C. Experiments with the function sin(x)

The proposed method is tested with a trigonometric func-
tion to compare the computation time and the memory space
required to the one obtained using the CORDIC method. The



value to compute is sin(π3 ). The segment on which the function
is approximated is [0; π2 ]. The depth of Tbin is then, with 1-
degree polynomials, 3. The total error of approximation is
ε = 0.01. With 2-degree polynomials the binary tree has a
depth of 1. The results obtained are presented in the table III.

Degree Depth Memory(bytes) Time(cycles)
1 2 38 28
1 3 42 36
2 1 16 23

TABLE III: Results obtained approximating sin(x) on [0; π2 ]
with an error of 0.01 and the proposed method

So as to compare the CORDIC method to the proposed
method on a trigonometric function (sin(x)), the curve of the
computation time depending on the precision required (figure
13) and the curve of the memory space required depending on
the precision required (figure 14) are drawn. Two degrees of
polynomial approximation are tested.
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Fig. 13: The evolution of the computation time depending on
the precision required for the CORDIC method, the proposed
method with 1-degree and 2-degree polynomials

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90
Evolution of the memory space required depending on the precision required

Precision required

M
em

or
y 

sp
ac

e 
re

qu
ire

d(
by

te
s)

CORDIC
Proposed method d=1
Proposed method d=2

Fig. 14: The evolution of the memory space required depend-
ing on the precision required for the CORDIC method, the
proposed method with 1-degree and 2-degree polynomials

The results obtained show that the computation time is

always lower for the proposed method. Besides, until a preci-
sion of 0.01, the proposed method consume less memory space
(with 2-degree polynomials) than the CORDIC method.

D. Comparison of the memory space required by the proposed
method and by the table-based method

Function εtot I Memtab Memprop (mean)
exp(−

√
(x)) 10−2 [2−6; 25] 8192 530√

(− log(x)) 0.02 [2−5; 1] 256 225
sin(x) 10−2 [0; π2 ] 256 84

TABLE IV: Comparison of the memory required for ap-
proximating the functions below using the proposed method
Memprop and using the table-based method Memtab

VIII. CONCLUSION

The non-uniform segmentation scheme followed by poly-
nomial approximation proposed in that paper provides the
system designer with Pareto curves giving the optimal points
for the memory footprint or the computation time. With these
Pareto curves, the system designer can then choose the degree
Nd and the depth of the tree saving the non-uniform seg-
mentation that suit the best the targeted application. Besides,
the proposed method has been compared to other existing
methods: in terms of software implementation, the methods
used currently are the CORDIC method or libraries such as
libm. Compared to the CORDIC method, the proposed method
is always faster and if the parameters of the approximation are
well chosen, consumes less memory. The proposed method has
also a mean speed-up equal to 97.7 on the DSP C55x compared
to the use of libm. Finally, compared to a hardware method
such as the LUT method, the gain in memory is significant.
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