
CATERPILLAR: Coarse Grain Reconfigurable Architecture
for Accelerating the Training of Deep Neural Networks

Yuanfang Li∗, Ardavan Pedram∗†
∗Stanford University, †Cerebras Systems
{yli03,perdavan}@stanford.edu

Abstract—Accelerating the inference of a trained DNN is a well
studied subject. In this paper we switch the focus to the training
of DNNs. The training phase is compute intensive, demands
complicated data communication, and contains multiple levels
of data dependencies and parallelism. This paper presents an
algorithm/architecture space exploration of efficient accelera-
tors to achieve better network convergence rates and higher
energy efficiency for training DNNs. We further demonstrate
that an architecture with hierarchical support for collective
communication semantics provides flexibility in training vari-
ous networks performing both stochastic and batched gradient
descent based techniques. Our results suggest that smaller
networks favor non-batched techniques while performance for
larger networks is higher using batched operations. At 45nm
technology, CATERPILLAR achieves performance efficiencies
of 177 GFLOPS/W at over 80% utilization for SGD training
on small networks and 211 GFLOPS/W at over 90% utilization
for pipelined SGD/CP training on larger networks using a total
area of 103.2 mm2 and 178.9 mm2 respectively.

1. Introduction

State of the art Deep Neural Networks (DNNs) are be-
coming deeper and can be applied to a range of sophisticated
cognitive tasks such as image recognition [1] and natural
language processing [2]. Convolutional Neural Networks
(CNNs) [1] and Recurrent Neural Networks (RNNs) [2] are
some of the commonly used network architectures that are
inspired by the Multilayer Perceptron (MLP) [3]. Most of
the community has focused on acceleration of the forward
path/inference for DNNs, neglecting the acceleration for
training [4], [5]. Training DNNs is a performance and energy
costly operation that routinely takes weeks or longer on
servers [6]. This makes the task of navigating the hyper pa-
rameter space for network architecture expensive. However
the nature of computation in training DNNs makes it an ex-
cellent candidate for specialized acceleration if the necessary
computation/communication functionality is supported [7].

Today, acceleration of the training process is primarily
performed on GPUs [6]. However, GPUs suffer from funda-
mental computation, memory, and bandwidth imbalance in
their memory hierarchy [5]. Thus, the fundamental question
is what are the compute architecture, memory hierarchy, and
algorithmic tradeoffs for an accelerator designed to train
deep neural networks. In this paper we aim to address the
design tradeoffs by introducing a Coarse Grain Reconfig-
urable Architecture (CGRA) for training MLPs.

We focus on training MLPs, an important class of DNNs
currently used on state of the art servers [5], with several
variants of Backpropagation (BP) [8] learning. Although

Figure 1. An MLP with 2 hidden layers h1 and h2.

the computation and the communication graph for CNNs
and RNNs are more complex compared to MLPs, we chose
MLPs for the following reasons. First, MLPs are inherently
memory bound and more challenging to accelerate [9].
Second, several research studies on the principles of BP and
optimization in DNNs investigate MLPs because of their
simpler network-architecture [10], [11], [12]. Finally, MLPs
represent the fully-connected layers of CNNs [1]. Hence,
we believe this effort establishes a platform for future work
on accelerating the training of CNNs and RNNs.

The challenge in training DNNs is that the fastest con-
verging gradient descent algorithms in terms of passes over
the dataset are not efficient in conventional architectures
as they are based on GEneral Matrix-Vector multiplication
(GEMV), which is a bandwidth limited operation. For sparse
network weights, sparse matrix-vector multiplication is even
less compute intensive. However, as the size of the network
shrinks, and is able to fit on local storage, the overall
cost of communication drops [13]. GPUs use a variant of
DNN training that groups samples into batches in order to
overcome bandwidth limitations at the cost of more epochs
to convergence and perform GEneral Matrix-Matrix multi-
plication (GEMM), which is a compute intensive kernel.

Given the fundamental differences in various techniques
for training MLPs, we aim to compare the design space
of accelerators and the memory hierarchy for various con-
figurations of networks and training algorithms. This paper
makes the following contributions:

• Techniques to decrease dependencies, and increase
locality and parallelism for training DNNs and their
effect on convergence.

• Exploration of the design space of accelerators for
various BP algorithms.

• CATERPILLAR: an efficient architecture for train-
ing DNNs targeting both GEMV and GEMM kernels
exploiting optimized collective communications.

• Evaluation of the costs of convergence of various
networks, training algorithms, and accelerators with
respect to both performance and energy efficiency.

ar
X

iv
:1

70
6.

00
51

7v
2 

 [
cs

.D
C

] 
 8

 J
un

 2
01

7



time 

t

x h1 h2 h3 ŷ
h11 h21 h31

δ31δ21
δ11

h12 h22 h32

δ32δ22δ12

h1i h2i h3i

δ3iδ2iδ1i

x h1 h2 h3 ŷ
h11:4 h21:4 h31:4

δ31:4δ21:4

δ11:4

h15:8 h25:8 h35:8

δ35:8δ25:8δ15:8

x h1 h2 h3 ŷ
h11 h21 h31

x h1 h2 h3 ŷ
h11:4 h21:4 h31:4

h15:8 h25:8 h35:8

δ35:8

b c da
Figure 2. Methods of learning. Each arrow demonstrates one sample’s movement through the forward and backward path in time for a network with three
hidden layers. (a) SGD, (b) MBGD, (c) DFA, (d) CP.

The rest of the paper is organized as follows: Sec-
tion 2 describes various BP algorithms for training DNNs.
Section 3 discusses the proposed CGRA, and the algo-
rithm/architecture tradeoffs. Section 4 presents the exper-
imental results. Section 5 reviews related work. Finally, we
conclude in Section 6.

2. Multilayer Perceptron (MLP)

The key purpose of the MLP is to output a prediction
(generally a classification label) for a given input. Figure 1
shows a three layered MLP, where x is the input, ŷ is the
output, and h1 and h2 are the activations of the first and
second hidden layers respectively. Wi is the set of weights
such that Wi(j, k) is the weight from the jth element of the
input to the kth element of the output at layer i. At each
neuron of a hidden layer a nonlinear activation function f
is performed on the sum of the weighted inputs. At the
output layer the softmax function turns ŷ into a vector of
probabilities for the possible classes. A bias can be added
by appending a +1 term to the input vector at each layer.

The network is trained on input-label pairs (x, y) where
x is the input as before and y is the correct label represented
as a one-hot vector. Training is performed in two stages.
During the forward pass the prediction, ŷ, is calculated:

a1 = xTW1, h1 = f(a1)

ai = hTi Wi, hi+1 = f(ai)

ay = hT2W3, ŷ = softmax(ay)

During the backward pass, the error in the prediction is
calculated at the output and backpropagated to previous
layers to provide an estimate of the weight’s gradient with
respect to the error. The weights are then updated using
gradient descent:

e = ŷ − y
δ2 = e� f ′(h2)WT

3

δ1 = δ2 � f ′(h1)WT
2

W3 =W3 − ηhT2 e
W2 =W2 − ηhT1 δ2
W1 =W1 − ηxT δ1

It is apparent that MLP training consists of a series of large
GEMV and GEMM operations, making it an ideal candidate
for specialized hardware acceleration. Once the MLP model
is trained, inference is performed on an unseen sample by
running the forward pass only. Although MLP is a simpler
neural network compared to CNNs and RNNs, by increasing
the size and number of the hidden layers as well as the
number of training samples, it performs as well as other
complex models on tasks like digit classification [14].

2.1. Stochastic/Minibatch Gradient Descent
(SGD/MBGD)

In SGD (Figure 2(a)), each training sample goes through
the forward and backward passes and updates the weights.
Thus, a single pass through a training set of size K results
in K updates to the weights [8]. MBGD (Figure 2(b)) is
a variant of SGD that groups training samples into ”mini-
batches”. The weights are updated after each minibatch
goes through the network so that a single pass through the
training set results in K/b weight updates, where b is the
size of the minibatch. This allows some parallelization of
the training process as several samples can be processed at
once. However, the sequential nature of BP still prevents
parallelization across layers.

2.2. Feedback Alignment (FA)

MLPs are meant to mimic how the brain works, but a
BP algorithm such as SGD is not biologically plausible as
it requires weight symmetry in the forward and backward
pass. To circumvent this, Lillicrap et al. propose the use of
a fixed random feedback weight, Bi, for each layer during
the backward pass [15]. The change in learning is:

e = ŷ − y
δ2 = eBT

2 � f ′(h2)
δ1 = δ2B

T
1 � f ′(h1)

Despite the use of random feedback weights, FA can per-
form as well or better than standard MBGD. However, it is
necessary to either use batch normalization or significantly
lower the learning rate to prevent the gradients from growing
too large, especially for deep networks [10].



2.3. Direct Feedback Alignment (DFA)

DFA (Figure 2(c) [16]) backpropagates the last layer’s
weights to all previous layers as follows:

e = ŷ − y
δ2 = eBT

2 � f ′(h2)
δ1 = eBT

1 � f ′(h1)

Like FA, DFA also requires either batch normalization or a
smaller learning rate. However for a typical neural network,
the dimension of the output layer is significantly smaller
than the hidden layers. This means that the Bi’s will be
significantly smaller than their corresponding Wi’s, reducing
the number of computations required to backpropagate the
error by up to several orders of magnitude. Figure 2(c)
shows DFA also introduces parallelism during the backward
pass as the error for all layers can be calculated at once.

2.4. Pipelined/Continuous Propagation ((MB)CP)

Continuous propagation allows parallelization across
layers by relaxing the constraint that a full forward and
backward pass through the network is required for each
set of samples before the weights can be updated [17]. In
CP, forward and backward passes through a layer can occur
simultaneously - in particular the weights can be applied to
the current sample on its forward pass at the same time that
the previous sample updates the weights on its backward
pass. Figure 2(d) demonstrates the CP algorithm as samples
are propagated through the layer and time. Once the pipeline
has been initialized, all layers are simultaneously working.

3. CATERPILLAR Architecture

This section motivates the design of the CATERPILLAR
architecture by demonstrating the available parallelism and
locality for each of the existing MLP training algorithms
in Section 2. We then build on these insights and propose
an architecture that provides the required computation and
communication functionalities.

3.1. Discussion of Various Algorithms with Respect
to Locality and Parallelism

Training the neural network requires a series of GEMV
and/or GEMM operations. There are two cases to consider:
(1) the entire network’s weights fits in the local memories
and (2) it does not fit and some of the weights must be
stored off-core. Below we briefly describe various methods
of exploiting parallelism and locality in the different training
methods.

In the SGD algorithm, only a single sample passes
through the entire network at once. Thus, the compute kernel
of this algorithm is GEMV, which is memory bound and
inefficient, especially when the entire network does not fit
in the aggregate local memories of each core. For a matrix of

size m×n GEMV requires mn weight accesses to produce
n elements of the output. Thus each of the proposed variants
on BP aims to overcome this drawback by introducing and
exploiting various sources of parallelism and locality.

Note that even in case (1) when the entire network
is stored locally, SGD remains inefficient as GEMV itself
is inherently an inefficient operation especially when per-
formed on a 2D array of processing elements. In addition
to broadcasting the input vector across one dimension, a
reduction must be performed across the opposite dimension
to sum up the partial sums into a single output vector.
Consequently, there are m broadcasts and n reductions to
transform an input of size m to an output of size n.

Data parallelization: Algorithms that use minibatches
(MBGD, MBCP, DFA) exploit parallelism in sample data by
passing several samples through the network at once. This
transforms the computations in each layer of the network
into a series of GEMM operations. Furthermore, by accu-
mulating the gradient estimates from several samples into
one weight update, the number of memory accesses needed
for the weights is divided by the batch size. The further the
minibatch size is increased, the greater parallelism achiev-
able, but if the minibatch size is too large, the algorithm
will fail to converge to an acceptable value. In practice,
minibatch sizes on nodes range from 2 to 100 [19] and can
go up to 10,000+ on clusters [20].

An important caveat of data parallelization is that for all
BP algorithms, the activations calculated during the forward
pass must be stored for use during BP. Thus as the minibatch
size grows, more memory is needed to store the activations.

Activation locality: During the backward pass, the acti-
vations, hi, computed during the forward pass are needed in
order to update the weights, introducing activation locality
between the forward and backward pass. However, layers are
visited in the reverse order during BP so that for a single
sample, the first activation to be produced is the last one
to be consumed. For SGD/CP, the size of the activations is
negligible compared to the weights, in which case, the acti-
vations can be stored without incurring significant memory
overhead. While activation size is still smaller than weight
size for algorithms using minibatches, as the network grows
deeper, the total size of activations to be stored grows and
the memory overhead becomes a concern. For a network
with L layers trained using minibatches of size b, if the
first layer is m × n, the size of activations to be stored is
Lbn. If Lb ≥ n, this becomes larger than the size of the
layer’s weights. This issue is more evident in CNNs than
MLPs, as they are usually deeper and have huge sample
sizes [21]. This issue is mitigated with reverse checkpointing
and recomputing the activations in earlier layers [22]. Here,
only the activations for some layers are saved. During BP
when an activation that has not been saved is needed, the
network propagates the last saved activation for that input
through the forward path again.

Layer parallelization and weight locality: CP intro-
duces layer parallelization by pipelining the samples through
the network. Instead of distributing the weights for a layer
to all cores, as in SGD, they can be distributed to a subset



0,0	 0,1	 0,15	

15,0	
SRAM	
SPAD	
7	

SRAM	
SPAD	
6	

SRAM	
SPAD	
5	

SRAM	
SPAD	
4	

Core	
0	

Core	
1	

Core	
2	

Core	
3	

7	 6	 5	 4	

SRAM	
SPAD	
0	

SRAM	
SPAD	
1	

SRAM	
SPAD	
2	

SRAM	
SPAD	
3	

PE
(0,0)

PE
(0,1)

PE
(0,2)

PE
(0,3)

PE
(1,0)

PE
(1,1)

PE
(1,2)

PE
(1,3)

PE
(2,0)

PE
(2,1)

PE
(2,2)

PE
(2,3)

PE
(3,0)

PE
(3,1)

PE
(3,2)

PE
(3,3)

`

MEM B

Address Regs

Row Bus 
Write

Column Bus 
Write

A B

µ programmed 
Controller

Column 
Bus Read

Row Bus 
Read

MAC
Accumulator

Cin

Memory Interface

RF
MEM A

`

MEM B

Address Regs

Column Bus 
Write

A B

µ programmed 
Controller

MAC
Accumulator

Cin

RF
MEM A

a)	 b)	 c)	

16	Columns	

16	
rows	

to/from	Core	In	Same	Column	

to/from
		Core	In	Sam

e	row
	

Figure 3. CATERPILLAR: (a) Array of cores with ring communication; (b) core with 16× 16 PEs connected to column and row broadcasts; (c) PE [18].

of cores, creating a pipeline of layers mapped on the cores
and allowing all layers to be processed simultaneously. With
each GEMV operation distributed to a smaller number of
PEs, the number of reductions needed decreases, increasing
utilization. Additionally, the ability to perform the forward
and backward passes through a layer simultaneously allows
the weights updated by the backward pass to be applied
immediately to the forward activations, thus decreasing the
memory accesses for the weights by half compared to SGD.

Dependency elimination: By propagating the output
layer’s error to all previous layers, DFA eliminates the
dependency between layers during the backward pass, al-
lowing all weight updates to proceed in parallel. If the size
of the network is large enough that all compute units are
busy, this provides little advantage. However, in the case
of small networks, this allows parallelization of the layers
during the backward pass.

3.2. CGRA for Training

The presented locality and parallelism exploration
demonstrates that for networks which do not fit in the local
memory of the cores, an architecture optimized for GEMM
will perform well by performing a minibatch learning algo-
rithm. However, the same architecture must also support the
high communication demands of GEMV operations if the
network is small enough to be stored locally, in which case
either SGD or CP can be used to train the network without
incurring memory access and communication overheads.

Since GEMM and GEMV inherently use the same inner
kernel, an architecture inspired by an array of Linear Alge-
bra Cores (LACs) [18], [23] will perform well. The LAC
consists of nr × nr Processing Elements (PEs). Each PE
contains a half precision floating point multiply-accumulate
unit (FPU) and a local SRAM. PEs are connected across
columns and rows by low-overhead broadcast buses. The
architecture uses a 2 × C array of these cores connected
in a systolic fashion that can support unidirectional ring
communication. Communication between cores is systolic
such that the number of cycles to pass data from one core
to another is equal to the distance between the cores. Each
core also has its own private off-core memory. Figure 3
shows the multicore architecture for an array of 2× 4 cores
with 16 × 16 PEs each. The following section presents a
detailed description of how different training methods map
to the architecture.

3.3. Mapping of Various Learning Methods

CP/MBCP: To perform CP, the architecture must sup-
port fast broadcast and reduction of partial products between
and within the core for GEMV. To compute the matrix-
vector multiplication within each core, the weights are dis-
tributed to the array of PEs in 2D round robin fashion and
the input vector to the layer is broadcast across the row
buses. Each PE performs a MAC operation and produces a
partial sum of the output vector. To sum the partial products,
each PE broadcasts its value along the column bus and these
values are summed together in the diagonal PEs, which
broadcasts the final output vector out along the row buses.

Layers of the network may not be the same size, thus
larger layers must be assigned to more cores to keep the
cores busy with a stream of activations. To address the lack
of symmetry between the number of cores across layers, a
method of reducing partial sums across a non-square array
of cores is demonstrated in Figure 4 for the case of two
cores exploiting the diagonal PEs in each core.

In the forward pass (a), each core receives a portion of
the input activation and calculates a partial product of the
output. Each core then performs the reduction internally,
and subsequently passes its result to the other to sum it
to the final output (c). In the backward pass (b), the input
is broadcast across both cores and each core reduces within
itself to produce a portion of the output (d). Note that GEMV
produces a transposed output, thus in (a) the reduction must
occur in the diagonal PEs and in (b) the diagonal PEs
broadcast to produce an untransposed output.

The LAC architecture contains fast broadcast buses.
However, the reduction operation remains expensive as each
PE in a column must broadcast its partial sum, with (nr−1)
cycles required to produce one output for an array of nr×nr
PEs. As the reduction is performed on the diagonal PEs,
the remaining PEs are idle during this time. Fortunately, the
pipelined nature of CP allows an overlap in computation
of the next sample either in the forward or backward pass
with reduction of the current sample. There is no conflict
in the broadcast buses, as reductions use the column buses
and broadcasts during computation use the row buses (this is
reversed for the backward pass). Thus the only overhead in
CP is the extra cycles required to fill and empty the pipeline,
which is proportional to the depth of the network.

SGD: For the SGD algorithm, since there is limited
parallelism between layers, a single GEMV operation is



Input
Activation

Output	Activation

Broadcast

Reduce

Transpose
&	send	
in	time

Core	1	Partition

Core	2	Partition

Current	Layer’s	weights

to	next	
layer

From	
previous	layer

Output	
delta

Input	delta

Back	to
previous	layer

Reduce

Transpose

Core	1	
Partition

Core	2	
Partition

Reduce

Broadcast

Back	from	
next	layer

Broadcast,	Transpose,	and	reduce	
on	the	core

Reduce1

Reduce2

Broadcast

Broadcast

Reduce

(a)

(b)

(c) (d)Broadcast

Broadcast

Figure 4. GEMV across multiple cores: (a), (c) forward pass through layer;
(b), (d) backward pass through layer.

performed by all of the PEs. This means the computation for
all layers will be performed sequentially and by the same
PEs. The mapping of CP and SGD are therefore similar
with one major difference: Instead of passing the result of
the current layer to the next set of cores, it is rebroadcast
to perform the GEMV operation for the next layer.

The expensive overhead of reduction can drop the uti-
lization to half. To address the reduction overhead, direct
communication is added between neighboring PEs. This
drops the cost of reduction of nr elements in nr PEs
from nr − 1 to log(nr) − 1 as it allows more parallel
communication between short distance PEs.

MBGD: For MBGD with small batch sizes, training
occurs in the same method as SGD. During minibatch
training with larger batches, all cores are working on the
same layer and produce a single matrix output. Within cores,
GEMM occurs as described in [18], but cores must also now
be able to pass results to each other between layers.

In the forward pass, the ith core contains a row panel
Wi, of the weights and accesses all elements of the input
activation X , to produce a row block Yi of the output
activation. Below we show an example for three cores:[

Y1

Y2

Y3

]
=

[
W1

W2

W3

]
[X]

In order to make the complete output Y available to all
cores as input for the next layer, an all-gather [24] operation

is performed between layers where each core passes its Yi
to the next, using the ring communication. For a ring of
2 × C cores with n2r PEs per core,(nb − nb/c)/nr cycles
are required to communicate an output of size n× b.

In the backward pass, the errors need to be multiplied
by the transpose of the weights from the forward pass. As
each core’s off-core memory contains only a portion of the
weights, a transpose is performed with the weights in place
by changing the input. Each core now contains a column
panel of the weights WT

i and receives a row block of the
input error, Y T

i , then calculates a partial product of the
output error:

[X1] + [X2] + [X3] = [WT
1 WT

2 WT
3 ]

[
Y1

Y2

Y3

]
To obtain the final output a reduce-scatter [24] operation is
performed. The systolic ring communication between cores
is used with the same communication overhead as for all-
gather.

FA: FA is best used when memory limitations are not an
issue, since twice the weight accesses and storage is required
for both Wi and Bi compared to SGD. In addition, the need
for batch normalization makes FA impractical architecturally
since the inputs to each layer must either be normalized or
the network must be trained for more epochs to achieve
similar convergence as MBGD. Liao et al. also showed
that the use of feedback alignment led to no performance
improvement over traditional gradient descent when applied
to a MLP network trained on TIMIT dataset [10]. Thus
feedback alignment is not further considered in the current
study on MLPs although it may be revisited for CNNs.

DFA: The difference between DFA and MBGD is that
during the backward pass, error is not propagated between
layers, i.e., the output error of the current layer is not
needed as input to the next layer. However the reduce-scatter
operation is still required to sum the partial sums to obtain
the final output, thus the mapping to the architecture is the
same.

Activation Function: For all algorithms, to calcu-
late the nonlinear activations at each layer, Goldschmidt’s
method [25] [26] [27] is used, which can be implemented
with a lookup table and the existing FPU in the PE. Calcula-
tion of the activation thus requires a local memory access to
the lookup table and a few iterations of multiply and accu-
mulate operations. Note that the derivative of the activation
required during the backward pass can be easily calculated,
as for typical nonlinearities it is a linear function of the
activation itself, i.e. for the sigmoid activation function it is
σ′(x) = σ(x)(1− σ(x)).

3.4. Architectural Tradeoffs

In a single epoch, each sample passes through the
network once on the forward pass and once on backward
pass for all BP algorithms, but the number and manner of
weight updates varies. Thus the number of FPU operations
required for each algorithm is the same and only the amount



of memory accesses, local storage and overhead differs.
The exception is the DFA algorithm, which calculates each
hidden layer’s error using the last layer’s error. For all other
algorithms, each sample has a forward pass, a backward
pass and a gradient calculation for all layers, resulting in

a total of 3K
L∑

i=1

mini MAC operations for a network of

size L with mi×ni layers trained on K samples. For DFA,

the backward pass requires only K
L∑

i=1

minL operations as

each set of weights is applied to the last layer’s error. The
activation function for each layer must also be applied to
each sample, but this is negligible compared to the cost of
the matrix multiplications.

For SGD and CP, which use GEMV operations, to
avoid high communication cost with off-core memory, the
network must be able to fit onto the local core memory.
In addition to storing the weights for each layer, the in-
put and activation for the layer must also be stored for
use during BP. When performing the GEMV operation,
extra memory is also required to store the partial sums,
thus the total memory required for the network to fit is
L∑

i=1

(L − i + 1)(mi + ni +max(mi, ni) +mini)/(2Cn
2
r),

where n2r is the number of PEs/core and 2C is the number
of cores. If this is larger than the available memory, part
of the network must be stored off-core, which will impact
the effective utilization if the off-core memory bandwidth is
insufficient.

For MBGD, the weights can be stored off-core and thus
local memory is only required to store the activations, which

are size
L∑

i=1

(L− i+ 1)(mi + ni)b where b is the minibatch

size. If this is larger than the available memory, only part
of the activations can be stored and reverse checkpointing
must be used.

In SGD, DFA and MBGD, the weights are accessed once
during the forward pass and once during the backward pass
for each weight update performed. Thus for a single epoch

over K samples, SGD requires 2K
L∑

i=1

mini accesses while

MBGD requires (2K/b)
L∑

i=1

mini accesses. DFA also re-

quires an additional (K/b)
L∑

i=1

minL accesses to the random

weights Bi during the backward pass. Additional memory
accesses are required to apply the activation function during
the forward pass and access the activation during the back-

ward pass but these are on the order of K
L∑

i=1

ni and thus

negligible compared to weight accesses.
The CP and MBCP algorithms allow the weights to be

accessed only once for both the forward and backward pass,
thus the number of memory accesses is halved compared to

SGD/MBGD to (K/b)
L∑

i=1

mini.

TABLE 1. ENERGY AND AREA FOR FPU AND SRAM BLOCKS.
Energy/Op Area

Half-precision FPU 2.63pJ 0.0056mm2

16KB Local SRAM 3.5pJ (per 2 bytes) 0.0617mm2

512KB Off-Core SRAM 16pJ (per 2 bytes) 1.948mm2

4. Evaluations

To study the interplay between algorithms and archi-
tecture we perform two classes of studies. First, we study
the convergence rate of various methods compared to each
other. Next, we investigate how this rate is translated in
the architecture mapping and how existing parallelism and
locality affect the energy and speed to convergence. This
also allows for evaluation of the proposed architecture and
its various characteristics such as memory size, number of
PEs per core, memory per PE, and number of cores with
regard to various learning approaches.

4.1. Methodology

Networks, Dataset, and Algorithms: We explore dif-
ferent network sizes and learning methods tested on a subset
of the MNIST dataset in order to determine convergence and
accuracy results. All networks use ReLU as the hidden layer
activation. As the networks are trained on only a subset of
the complete MNIST dataset, the accuracies achieved are
lower. However, experimentation with the complete dataset
and comparisons with existing results show that the rela-
tive rates of convergence and accuracies achieved by the
different networks and learning algorithms behave similarly
for the complete dataset. As the purpose of this study is to
compare different networks and learning methods and not to
achieve the best possible accuracy, the difference between
results for the complete dataset and the subset are negligible.

Four different sized networks are trained using SGD, CP,
MBGD and DFA with batch sizes of 2, 4, 8, 50 and 100 for
each. To demonstrate the effect of increasing network depth,
4, 5, and 6 layer networks with hidden layers of size 500×
500 are chosen. A 2500-2000-1500-1000-500-10 network is
used to represent a network that is both deep and wide and
with varying hidden layer dimensions.

Architecture: Software studies showed no discernible
difference between training with 16bit floating point and
32bit floating point, thus we choose to use half-precision
Floating Point Units (FPUs) in the PEs. Each PE has 16KB
of local memory [18] and each core has 512 KB of private
SPAD memory. Table 1 shows the energy per operation for
the FPU and energy per access for the local and off-core
memory, as well as respective areas of the units. Energy
and area values for memories, wires, and look-up tables
were obtained and estimated from [9] and CACTI [28]
respectively. The Half-Precision FPU area and energy were
obtained from [29]. All estimates are for implementation
in bulk CMOS operating at 1 GHz frequency. These values
are used to analytically derive time, energy and performance
results for the proposed architecture.

We consider two arrangements of PEs: 2×16 cores with
16×16 PEs each, and 2×4 cores with 4×4 PEs each, result-
ing in a total area of 103.2mm2 and 178.9mm2 respectively.



0

10

20

30

40

50
Ep

oc
hs

Accuracy	in	50	Epochs	(500-500-500-10)

80% 85% 88% 90% 91% 92% 93%

92%

88% 90% 91%

90% 90%

93%

88%

88%
91%

90%

88% 88%

90%

88%

(a)

0

10

20

30

40

50

Ep
oc
hs

Accuracy	in	50	Epochs	(500-500-500-500-10)

80% 85% 88% 90% 91% 92% 93%

93%

90%
91%

92%		

91%

92%

93%
88%

90%

90%

88%

88%

91%

85%

85%

(b)

0

10

20

30

40

50

Ep
oc
hs

Accuracy	in	50	Epochs	(500-500-500-500-500-10)

80% 85% 88% 90% 91% 92% 93% 94%

93%

91%

91%

92%

91%

93%

94%

90%
90%

88%

88%
88%

90%

88%
85%

(c)

0

10

20

30

40

50

Ep
oc
hs

Accuracy	in	50	Epochs	(2500-2000-1500-1000-500-10)

80% 85% 88% 90% 91% 92% 93% 94%

93%
92%

92%

93% 93%
93% 94% 92% 91%

88%

90%

88%

90% 90%
88%

(d)

Figure 5. Epochs for each network to reach different accuracies for each of the training methods applied to four different neural networks. (a) a 500-500-
500-10 network trained for 50 epochs, (b) a 500-500-500-500-10 network trained for 50 epochs, (c) a 500-500-500-500-500-10 network trained for 50
epochs, (d) a 2500-2000-1500-1000-500-10 network trained for 30 epochs.

We choose to use energy required for convergence to given
accuracies as the comparison unit, because of the need for
a uniform measure between all networks and algorithms.

4.2. Software Experimental Results

Figure 5 shows the validation accuracy achieved for the
four chosen networks. Each epoch constitutes a single pass
over the entire dataset. The network in Figure 5(a) is small
enough that even SGD and CP require many epochs to reach
convergence, although the accuracy reached is higher than
for other algorithms. In Figure 5(b), the additional hidden
layer causes the epochs to convergence for SGD and CP to
drop by 60% so that they converge faster and to a higher
accuracy than the minibatched algorithms. In general, SGD
and CP are able to achieve the highest accuracy in the fewest
epochs of all algorithms as the weights are updated once
for each sample in an epoch. CP also performs as well or
better than SGD in all cases, although this is not true for the
MBCP. Further for small minibatches, minibatches of size
eight outperform those of size two and four for all networks
as it can support a slightly higher learning rate.

For the same learning method compared across the
different networks, larger networks are able to converge to
higher accuracies in fewer epochs. This behavior is espe-
cially evident between the network in Figure 5(c) and the
largest network in Figure 5(d). Here, instead of increasing
depth of the network, the size of each layer is increased.
However, the larger size of the network means more aggre-
gate calculations and weight updates, which will have an

impact on the energy and time performance when mapped
to the architecture.

The difference in convergence rate and highest achiev-
able accuracy between learning methods also becomes less
evident as the network size increases. Thus as network size
increases, MBGD’s performance approaches that of SGD in
terms of accuracy and is also able to reach this accuracy in a
comparable number of epochs. The architectural implication
is that minibatch training can be used for larger networks
that do not fit on local memory without sacrificing accuracy.
Note that in the same number of epochs, DFA always
achieves a lower accuracy than other learning methods due
to the lower learning rate.

4.3. Architecture Experimental Results

Figures 6-8 demonstrate the energy required for three
networks as well as the breakdown into FPU energy and
memory access energy. The energy of broadcasts was found
to be negligible and is not included here. Network 1 in
Figure 6 is small and fits completely on the local core
memories for all configurations. For the same 90% accu-
racy, SGD requires 70% of the energy as MBGD for large
minibatches while CP requires 30%. Examination of energy
breakdowns shows that for minibatch algorithms, energy
usage is dominated by the FPU while for SGD memory
access energy is 1.5 times higher than FPU energy. The
energy cost for CP is split evenly between FPU and memory
accesses. This is due to the fact that both minibatched



0

1

2

3

4

5

6
TO

TA
L

FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

SGD BGD2 BGD4 BGD8 BGD50 BGD100 CP CP2 CP4 CP8 DFA2 DFA4 DFA8 DFA50 DFA100

En
er
gy
	(J
)

Energy	Breakdown	(500-500-500-10)
4x4	PEs/core,	2x16	Cores,	16KB	Memory/PE

80% 85% 88% 90% 91% 92% 93%

Figure 6. Energy required to achieve accuracy for various learning methods on a small 500-500-500-10 network that fits on 2× 16 cores with 4× 4 PEs
each.

0

5

10

15

20

25

30

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

TO
TA

L
FP
U

PE
	M

EM
O
FF
	M

EM

SGD BGD2 BGD4 BGD8 BGD50 BGD100 CP CP2 CP4 CP8 DFA2 DFA4 DFA8 DFA50 DFA100

En
er
gy
	(J
)

Energy	Breakdown	(2500-2000-1500-1000-500-10)
4x4	PEs/core,	2x16	Cores,	16KB	Memory/PE

80% 85% 88% 90% 91% 92% 93% 94%

35.4566.55 38.38

Figure 7. Energy required to achieve accuracy for various learning methods on a large 2500-2000-1500-1000-500-10 network that does not fit in local PE
memory. High communication cost is required for bringing in weights from off-core memory for SGD and CP; these two algorithms would not be used
in practice but energy results are presented here for completeness

0

5

10

15

20

25

30

35

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

TO
TA

L
FP
U

PE
	M

EM

SGD BGD2 BGD4 BGD8 BGD50 BGD100 CP CP2 CP4 CP8 DFA2 DFA4 DFA8 DFA50 DFA100

En
er
gy
	(J
)

Energy	Breakdown	(2500-2000-1500-1000-500-10)
16x16	PEs/core,	2x4	Cores,	16KB	Memory/PE

80% 85% 88% 90% 91% 92% 93% 94%

38.85

Figure 8. Energy required to achieve accuracy for various learning methods on a large 2500-2000-1500-1000-500-10 network that fits on 2× 4 cores with
16× 16 PEs each.

and CP algorithms reduce the number of weight accesses
required each epoch compared to SGD.

Network 2 in Figure 7 is representative of a large net-
work that does not fit in local core memories. Although
the minibatch algorithms require more epochs to converge
to the same accuracy as SGD and CP, their total energy
consumption is lower due to the smaller number of weight
accesses. For networks that do not fit on the core, SGD
and CP must access weights from off-core, substantially
increasing energy usage. As discussed previously, SGD and
CP also require higher bandwidth to access the weights if
they do not fit locally. These results suggest to perform
training using minibatch algorithms for networks that do
not fit.

Network 3 in Figure 8 is the same as network 2 but
trained on an architecture with more PEs such that the

network fits locally. Unlike the smaller network 1, MBGD
with batch size of 50 now performs better than SGD in terms
of energy cost, although still not as well as CP. Comparison
of FPU energy only shows that batched algorithms have a
higher energy cost due to the greater number of epochs, but
this is balanced out by the lower memory access energy.
As discussed in the previous section, MBGD’s performance
in terms of epochs increases with network size. Here, the
difference in energy consumption for FPU operation be-
tween minibatched and non-minibatched methods is small
enough that memory access energy becomes the dominant
factor differentiating the two methods. However, the faster
convergence and higher accuracy of CP causes it to perform
better than MBGD even for large networks.

These results suggest that for large networks, MBGD can
perform better in terms of energy than SGD even when there



0

5

10

15

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

N
1

N
2

N
3

SGD BGD2 BGD4 BGD8 BGD50 BGD100 CP CP2 CP4 CP8 DFA2 DFA4 DFA8 DFA50 DFA100

Ti
m
e	
(s
)

Time	to	Accuracy	for	Different	Networks	and	Architectures	

80% 85% 88% 90% 91% 92% 93% 94%

N1 - (500-500-500-10),	4x4	PEs/core,	2x16	Cores,	16KB	Memory/PE
N2	- (2500-2000-1500-1000-500-10),	4x4	PEs/core,	2x16	Cores,	16KB	Memory/PE
N3	- (2500-2000-1500-1000-500-10),	16x16	PEs/core,	2x4	Cores,	16KB	Memory/PE

17.1 17.7

Figure 9. Time required to achieve accuracy for various learning methods and networks.

0

5

10

15

20

25

SG
D

BG
D2

BG
D4

BG
D8

BG
D5

0

BG
D1

00 CP CP
2

CP
4

CP
8

DF
A2

DF
A4

DF
A8

DF
A5

0

DF
A1

00

GF
LO

PS
/m

m
2

GFLOPS/mm2 for	Different	Networks	and	Architectures

(500-500-500-10)	 4x4PEs/core,	2x16	Cores,	16KB	Memory/PE

(2500-2000-1500-1000-500-10)	 4x4PEs/core,	 2x16	Cores,	 16KB	Memory/PE

(2500-2000-1500-1000-500-10)	 16x16PEs/core,	 2x4	Cores,	 16KB	Memory/PE

Figure 10. GFLOPS/mm2 for various learning methods and networks.

is enough local memory to store the entire network. Further,
CP consistently outperforms all other training methods. The
energy to convergence results for DFA indicate that although
direct propagation of the error from the last layer leads to
fewer FPU operations, thus less energy required per epoch,
the slower convergence rate causes the algorithm to consume
more energy to reach the same accuracy.

Figure 9 illustrates the time required for each network
to reach given accuracies on the architecture operating at
1GHz. As in the energy performance comparisons, CP per-
forms better than SGD and requires less time to converge
to the same accuracy. While software studies showed that
the epochs required to converge to the same accuracy was
similar for the two algorithms, the pipelining and weight
locality utilized by CP allows it to achieve better perfor-
mance on the architecture. When the network does not
fit in local memory for CP and SGD, the need to fetch
weights from off-core memory can significantly increase the
time to convergence. For Network 2 which does not fit on
the core, the utilization drops from 99% to 75% for CP
and from 81% to 47% for SGD. From software studies,
the epochs to convergence for minibatched algorithms is
similar to batched for large network sizes. Architecturally,
however, minibatched algorithms can converge faster than
non-minibatched algorithms if the network does not fit even
when it requires more epochs.

Figure 10 and Table 2 show the performance in
GFLOPS/W and GFLOPS/mm2 for SGD, CP and MBGD
applied to networks of different sizes respectively. CP con-
sistently outperforms SGD in all cases. For networks that
do not fit on core, MBGD demonstrates the highest per-
formance, followed by CP and SGD, while for networks

TABLE 2. GFLOPS/W FOR (A) A SMALL NETWORK THAT FITS ON
2× 16 CORES OF 4× 4 PES; (B) A LARGE NEURAL NETWORK THAT

DOES NOT FIT ON THE SAME ARCHITECTURE; (C) THE SAME NEURAL
NETWORK THAT FITS ON 2× 4 CORES OF 16× 16 PES.

Network Dimensions BP Method GFLOPS/W
SGD 177

500-500-500-10 CP 204
MBGD 195
SGD 98

2500-2000-1500-1000-500-10 CP 127
MBGD 187
SGD 185

2500-2000-1500-1000-500-10 CP 211
MBGD 195

that do fit, CP outperforms MBGD. Although performance
of MBGD can be greater than CP/SGD due to the reduced
energy cost of accessing fewer weights, it is not as accu-
rate as either, especially for small networks (90% vs. 92%
accuracy for small networks and 93% vs 94% accuracy for
large networks) and also takes longer to converge. Thus,
there is a tradeoff between performance and accuracy/time
to convergence that must be considered when determining
which training method to use. When comparing between
networks of different sizes, it can be seen that for the same
architecture size, while the larger network reaches higher
accuracy, the time to convergence to a lower accuracy is
smaller for smaller networks. The flexibility of the archi-
tecture in supporting both batched and non-batched training
algorithms provides the user with freedom to determine the
learning method to use based on the time and accuracy
constraints of their network application.

The best overall performance of the architecture occurs
for a network of size 2500-2000-1500-1000-500-10 mapped
to a 2 × 4 array of cores with 16 × 16 PEs, with training
done using CP. From an algorithmic perspective, the size and
depth of the network leads to higher accuracy and fewer
epochs to convergence while the greater number of PEs
both increases the effective utilization of the architecture
and eliminates costly accesses to external memory.

CATERPILLAR achieves 98% effective utilization of
the FPUs and performance of 211 GFLOPS/W for networks
that fit on cores using CP. Further, when the same network
does not fit on the cores, using minibatched algorithms
MBGD can achieve 187 GFLOPS/W at 94% utilization.

5. Related Work

Several FPGA implementation efforts have been per-
formed to accelerate the training of neural networks
[30] [31] [32]. Maximum performance of up to 10 G Mul-



tiply Accumulates (GMACs) is achieved in [32]. However,
these works are limited in scope as they focus on either
retraining [30] or shallow 2-layer neural networks [31].
Furthermore, there is no support for performing different
learning algorithms as for Caterpillar architecture.

Gupta et al. have shown that 16-bit fixed precision can
achieve the same accuracy as floating-point if stochastic
rounding is used [11]. Our preliminary studies suggests that
the convergence rate and accuracy decreases for networks
deeper than two layers with stochastic rounding. Further
study is required to completely characterize the performance
of stochastic rounding compared to floating point.

The work in [33] showed that CP can outperform
MBGD’s speed and accuracy for CNNs. In this paper we
apply and evaluate CP for MLPs.

6. Conclusion

Our investigation for training MLPs demonstrates that
for various networks sizes, the target architecture should
support both GEMV (for pipelined backpropagation),
GEMM (for minibatched algorithms), and hierarchical col-
lective communications. For networks that do not fit on
chip, minibatched algorithms have comparable performance
to pipelined backpropagation, however for networks that fit,
pipelined backpropagation consistently performs the best.
Fast convergence on the algorithmic side in tandem with
layer parallelization and weight locality from an architec-
tural perspective allows Pipelined Continuous Propagation
to outperform all other training methods in terms of energy
and time to convergence, distinguishing it as a promising
training method for use with specialized deep learning ar-
chitectures.

Acknowledgments

We thank Hadi Esmaeilzadeh, Michael James, David
Koeplinger, Ilya Sharapov, Vijay Korthikanti, and Sara
O’Connell for their feedback on the manuscript. This
research was partially sponsored by NSF grants CCF-
1563113. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
National Science Foundation (NSF).

References

[1] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in NIPS, 2012.

[2] T. Mikolov et al., “Recurrent neural network based language model.”
in Interspeech, vol. 2, 2010.

[3] B. Widrow et al., “30 years of adaptive neural networks: perceptron,
madaline, and backpropagation,” Proceedings of the IEEE, vol. 78,
no. 9, 1990.

[4] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” arXiv preprint arXiv:1703.09039, 2017.

[5] N. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA44. IEEE Press, 2017.

[6] J. Dean et al., “Large scale distributed deep networks,” in NIPS, 2012.

[7] D. Zhang et al., “Neural networks and systolic array design,” Series
in Machine Perception and Artificial Intelligence, vol. 49, 2002.

[8] D. E. Rumelhart et al., “Learning internal representations by error
propagation,” DTIC Document, Tech. Rep., 1985.

[9] A. Pedram et al., “Dark memory and accelerator-rich system opti-
mization in the dark silicon era,” IEEE Design & Test, vol. 34, no. 2,
pp. 39–50, 2017.

[10] Q. Liao et al., “How important is weight symmetry in backpropaga-
tion?” arXiv preprint arXiv:1510.05067, 2015.

[11] S. Gupta et al., “Deep learning with limited numerical precision.” in
ICML, 2015.

[12] B. Recht et al., “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent,” in NIPS, 2011.

[13] S. Han et al., “EIE: efficient inference engine on compressed deep
neural network,” in ISCA43. IEEE Press, 2016.

[14] D. C. Ciresan et al., “Deep big simple neural nets excel on handwrit-
ten digit recognition,” Neural Computation, vol. 22, 2010.

[15] T. P. Lillicrap et al., “Random feedback weights support learning in
deep neural networks,” arXiv preprint arXiv:1411.0247, 2014.

[16] A. Nøkland, “Direct feedback alignment provides learning in deep
neural networks,” in NIPS, 2016.

[17] R. G. Gironés et al., “Systolic implementation of a pipelined on-line
backpropagation,” in MicroNeuro. IEEE, 1999, pp. 387–394.

[18] A. Pedram et al., “A high-performance, low-power linear algebra
core,” in ASAP. IEEE, 2011, pp. 35–42.

[19] M. Li et al., “Efficient mini-batch training for stochastic optimiza-
tion,” in 20th ACM SIGKDD. ACM, 2014.

[20] S. Zhang et al., “Asynchronous stochastic gradient descent for DNN
training,” in IEEE ICASSP, 2013, pp. 6660–6663.

[21] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] A. Gruslys et al., “Memory-efficient backpropagation through time,”
CoRR, 2016. [Online]. Available: http://arxiv.org/abs/1606.03401

[23] A. Pedram et al., “Codesign tradeoffs for high-performance, low-
power linear algebra architectures,” IEEE Transactions on Computers,
Special Issue on Power efficient computing, vol. 61, no. 12, pp. 1724–
1736, 2012.

[24] E. Chan et al., “Collective communication: theory, practice, and ex-
perience,” Concurrency and Computation: Practice and Experience,
vol. 19, no. 13, 2007.

[25] J. Cao et al., “High-performance hardware for function generation,”
in IEEE ARITH. IEEE, 1997, pp. 184–188.

[26] J.-A. Piñeiro et al., “Faithful powering computation using table look-
up and a fused accumulation tree,” in IEEE ARITH, 2001, pp. 40–47.

[27] A. Pedram et al., “Floating point architecture extensions for optimized
matrix factorization,” in IEEE ARITH. IEEE, 2013, pp. 49–58.

[28] N. Muralimanohar et al., “Architecting efficient interconnects for
large caches with CACTI 6.0,” IEEE Micro, vol. 28, 2008.

[29] S. Galal et al., “FPU generator for design space exploration,” in IEEE
ARITH, 2013, pp. 25–34.

[30] J. Park et al., “FPGA based implementation of deep neural networks
using on-chip memory only,” in IEEE ICASSP, 2016, pp. 1011–1015.

[31] V. T. Huynh, “Design of artificial neural network architecture for
handwritten digit recognition on FPGA,” 2017.

[32] H. P. Graf et al., “A massively parallel digital learning processor,” in
NIPS, 2009, pp. 529–536.

[33] M. James et al., “Continuous propagation: layer parallelism for
training deep networks,” 2017.

http://arxiv.org/abs/1606.03401

	1 Introduction
	2 Multilayer Perceptron (MLP)
	2.1 Stochastic/Minibatch Gradient Descent (SGD/MBGD)
	2.2 Feedback Alignment (FA)
	2.3 Direct Feedback Alignment (DFA)
	2.4 Pipelined/Continuous Propagation ((MB)CP)

	3 CATERPILLAR Architecture
	3.1 Discussion of Various Algorithms with Respect to Locality and Parallelism
	3.2 CGRA for Training
	3.3 Mapping of Various Learning Methods
	3.4 Architectural Tradeoffs

	4 Evaluations
	4.1 Methodology
	4.2 Software Experimental Results
	4.3 Architecture Experimental Results

	5 Related Work
	6 Conclusion
	References

