arXiv:1707.01939v1 [cs.LG] 6 Jul 2017

High-Performance FPGA Implementation of
Equivariant Adaptive Separation via Independence
Algorithm for Independent Component Analysis

Mahdi Nazemi, Shahin Nazarian, and Massoud Pedram
Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
{mnazemi,shahin,pedram} @usc.edu

Abstract—Independent Component Analysis (ICA) is a di-
mensionality reduction technique that can boost efficiency of
machine learning models that deal with probability density
functions, e.g. Bayesian neural networks. Algorithms that im-
plement adaptive ICA converge slower than their nonadaptive
counterparts, however, they are capable of tracking changes in
underlying distributions of input features. This intrinsically slow
convergence of adaptive methods combined with existing hard-
ware implementations that operate at very low clock frequencies
necessitate fundamental improvements in both algorithm and
hardware design. This paper presents an algorithm that allows
efficient hardware implementation of ICA. Compared to previous
work, our FPGA implementation of adaptive ICA improves clock
frequency by at least one order of magnitude and throughput
by at least two orders of magnitude. Our proposed algorithm is
not limited to ICA and can be used in various machine learning
problems that use stochastic gradient descent optimization.

I. INTRODUCTION

ICA [1] is a method for finding components that

— represent essential structure of data,
— are statistically independent,
— and have non-Gaussian distributions.

ICA can be used to reduce the dimensionality of input features
in order to improve performance of a machine learning model,
reduce the memory required for storing features, and enhance
visualization. Dimensionality reduction is also a beneficial
preprocessing step for transforming the original problem into
a smaller problem suitable for hardware implementation. ICA
is used in a wide variety of applications including the ones
that deal with electroencephalogram (EEG) and Electrocar-
diography (ECG) ([2], [3], [4], and [5]), face recognition [6],
predicting stock market prices [7], mobile phone communica-
tions [8], etc.

In problems where underlying distributions of input features
remain unchanged, the training phase can be done once in
software in order to find model parameters. Model parame-
ters are then transferred to the hardware that is required to
implement model deployment, a task which is typically much
simpler than training. However, if underlying distributions of
input features change over time, an adaptive method that can
track these changes is preferred. This requires repeating the
training phase in software followed by transferring parameters
to hardware after each pass of training, or designing a piece
of hardware that is capable of model creation, training, and
deployment. Because software implementations are usually
slower than their hardware counterparts and communication

of parameters can be costly, especially for pin-constrained
platforms like FPGAs, the main focus of this paper will be
on the solution that implements model creation, training, and
deployment in hardware.

In this work, we introduce a modified version of Equivariant
Adaptive Separation via Independence (EASI) [9] algorithm
for independent component analysis which is more suitable
for hardware implementation. The hardware implementation
of our proposed algorithm operates at a much higher clock
frequency compared to previous implementations, has a con-
siderably higher throughput, and converges faster.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Next, Section III explains
problem formulation of ICA followed by EASI algorithm.
After that, Section IV and Section V discuss the proposed
algorithm for ICA, its hardware implementation, and experi-
mental results. Finally, Section VI concludes the paper.

II. RELATED WORK

This section reviews some of the related work on hardware
implementation of various ICA algorithms. Du et al. [10]
introduce parallel ICA (pICA), an extension to FastICA [11],
for hyperspectral image analysis. Similar to FastICA, pICA is
a nonadaptive method and is therefore incapable of tracking
changes in distributions of components. Odom [12] imple-
ments EASI on an FPGA using a multi-cycle architecture,
16-bit fixed-point variables, and variable learning rate. Mayer-
Baese [13] implements EASI on FPGA and shows that it
consumes about the same amount of resources compared to
generalized Hebbian algorithm PCA, but is more robust and
can separate many more signals than the PCA algorithm. The
hardware implementation of [13] is slow, has a low throughput,
and consumes a huge number of FPGA resources.

III. BACKGROUND
In the standard linear model, input features are modeled as
linear combinations of some independent components:

Xmx1l = Amxnsnxl m>n

where x is a column vector of input features, A is the mixing
matrix comprised of row vectors a;,i = 1,2,...,m, s is a
column vector of random independent components s;,;j =
1,2,...,n, m is the dimensionality of input features, and n is
the dimensionality of independent components. Independent

{mnazemi, shahin, pedram}@usc.edu

components are assumed to be non-stationary, so that different
linear models may be in effect at different times.

The objective of ICA is to find a separation matrix that
finds an estimate of independent components, without having
any prior information about independent components, s, or the
mixing matrix, A. This can be written as

Ynxt = BrxmXmx1

where y is a column vector of estimates of independent
components and B is the separation matrix.

One of the major advantages of ICA over other dimension-
ality reduction techniques such as PCA and factor analysis is
that it deals with non-Gaussian distributions, e.g. heavy-tailed
distributions that are common in many real-world datasets.

Another advantage of ICA is that it finds components that
are statistically independent. This property has a considerable
impact on machine learning models that deal with probability
density functions (PDFs). For example, in Bayesian neural
networks where inputs, weights, and/or outputs are represented
by PDFs, a challenging and computationally expensive step
is sampling these possibly dependent density functions. This
problem becomes more complicated when the dependency
among distributions involves higher-order statistics (HOS).
Consequently, if ICA is applied to input features as a pre-
processing step, the PDF of each feature in reduced space can
be easily sampled independent of other features.

There are two general ways for estimating independent
components. The first one is by direct use of HOS and
by maximizing a measure of non-Gaussianity. The intuition
behind these methods is that because sum of two random
variables is closer to a Gaussian than original ones, esti-
mated components are independent when a measure of non-
Gaussianity is maximized. The second one is by indirect
use of HOS through nonlinear decorrelation. The rationale
behind these methods is that if y; and y; are independent, any
nonlinear transformations g(y;) and h(y;) are uncorrelated.
Therefore, they try to find the separation matrix such that y;
and y; are uncorrelated and transformed components g(y;) and
h(y;) are also uncorrelated.

EASI is a gradient-based algorithm that estimates inde-
pendent components using nonlinear decorrelation. EASI has
several advantages compared to other algorithms for ICA.
First, it is an adaptive algorithm which makes it suitable
for problems where underlying distributions of input features
change over time. In problems where adaptivity is not a must,
there are superior algorithms such as FastICA, which seeks
an orthogonal rotation of whitened data through a fixed-point
iteration scheme. Second, it is equivariant, i.e. convergence
rates, stability conditions, and interference rejection levels de-
pend only on normalized distributions of source signals and are
independent of the mixing matrix. Third, unlike other methods
that require whitening of input features as a preprocessing
step, it merges whitening with separation, which improves
parallelism. And last but not least, the basic operations are
computationally efficient since it only requires addition and
multiplication.

Fig. 1 shows the block diagram of EASI algorithm. First,
the separation matrix is initialized with random values. Then,
in each iteration k, the separation matrix is multiplied by

input features in order to generate output features. A nonlin-
ear function g(.) is applied element-wise to output features
in order to introduce HOS to the problem. The output of
nonlinear function and output features are fed to the module
that calculates relative gradient H [9] (aka natural gradient
[14]). Finally, relative gradient is multiplied by learning rate
1 to update elements of the separation matrix for the next
iteration. The same steps are repeated until convergence.
One of the issues with this algorithm that has caused previ-
ous implementations to be relatively slow is the loop-carried
dependency due to the separation matrix update. Section IV
explains how our design addresses this issue and leads to a
hardware that can operate at a higher clock frequency and
throughput compared to previous implementations.

IV. PROPOSED ALGORITHM AND HARDWARE
IMPLEMENTATION

EASI is a suitable algorithm for adaptive ICA since it
implements a stochastic gradient-descent (SGD) optimization.
Compared to batch gradient-descent, SGD is much faster and
more computationally efficient because it updates model pa-
rameters based on a single training sample instead of the whole
dataset. In other words, model parameters for each training
sample are strongly affected by the immediately preceding
training sample. One the other hand, the disadvantage of SGD
is that it takes noisier steps towards the minimum which can
complicate convergence.

Mini-batch gradient-descent (MBGD) optimization that
takes a few training samples at a time has the best of both
worlds in that it is fast and reduces noisy steps [15]. MBGD
applies the same model parameters (separation matrix in this
problem) to the training samples within a mini-batch, averages
the updated model parameters, and applies them to the next
mini-batch. It has been shown that MBGD improves perfor-
mance, because it avoids getting stuck too quickly in local
minima, and convergence, because it only relies on a small
number of training examples, at the cost of increasing resource
consumption proportional to the mini-batch size. Our proposed
approximation to stochastic gradient descent optimization is
similar to MBGD in that it determines model parameters based
on a few training samples instead of a single sample, in order
to improve performance and convergence.

Another problem with SGD is that it has trouble making
progress where the surface curves more steeply in one di-
mension than in another [16]. SGD with Momentum [17] is
a solution that amplifies gradient for dimensions in which
gradients point in the same direction and dampens gradient
for dimensions where gradients switch direction in order to
improve convergence rate. SGD with momentum remembers
the update at each iteration, and determines the next update as
a convex combination of the gradient and the previous update.
Furthermore, it is relatively low-cost to implement SGD with
momentum in hardware because it only requires addition and
multiplication.

We propose sequential MBGD (SMBGD) for updating
the separation matrix. SMBGD updates the relative gradient
matrix according to Eq. 1.

gp_{7ﬁ51+uH$ p=0
-

= 1
BHI™ 4 uH?, 0<p<P M)

Y = Bx,
" >
2
&
4 Nonlinearity:
= —>
3 g(y,)
E
=
g v Y
g 2
= 7 T 7
(H. =1-y,y, +8y.)Y, —Y.&Y,)
J

\

4(B, =B,—uH B,)

Fig. 1. Block diagram of vanilla EASI algorithm.

In this equation, k is the mini-batch index, p is the training
sample index within each mini-batch, P is the number of
training samples in each mini-batch (mini-batch size), and ~,
5, and p are hyperparameters of the model. ~ is the coefficient
that incorporates momentum using gradients in previous mini-
batches and [is the coefficient that relates various training
samples within a mini-batch. Note that for the first mini-batch,
v is set to zero. Fig. 2 shows the block diagram of EASI
with SMBGD. To avoid confusion, the following details are
removed from the diagram: p is incremented in each loop
iteration and when p = P, p is reset to zero, H,f is reset
to a zero matrix, and k is incremented.

The advantages of SMBGD are threefold. First of all, it
gets around the loop-carried dependency, which is favorable
for a pipelined architecture. The pipelined implementation
increases clock frequency by breaking down combinational
logic into smaller pieces and increases throughput of the
circuit. Additionally, in contrast to MBGD that consumes
multiple identical hardware resources, SMBGD allows train-
ing samples to enter the pipeline one after another, hence
significantly decreasing resource consumption compared to
MBGD. Second, it calculates a weighted average of model
parameters which improves convergence similar to MBGD.
The difference though is that SMBGD multiplies exponentially
decaying weights to model parameters found in a mini-batch
in order to accentuate more recent samples and account for
adaptivity. Third, it incorporates a momentum term which fur-
ther improves convergence rate. In problems where underlying
distributions change smoothly, larger values of 7 speed up
convergence. On the other hand, if distributions change rapidly
over time, a lower value of v dampens the effect of previous
gradients and puts a higher weight on current samples.

It should be noted that a pipelined implementation for
SGD/MBGD increases resource consumption without consid-
erable improvement in the throughput. The reason is that
because of the data dependency explained earlier in Section III,
the pipeline has to be stalled until the separation matrix is
updated and the next training sample is fed. On the other
hand, SMBGD allows a new training sample to be read at
each clock cycle and fed to the pipeline. Additionally, in

P
X k

Nonlinearity:

g(yy)

A/ \ 4

~
[H,g =1-y;(y))" +8(yD¥)) —yie(y)’
_J

repeat until convergence

~
YH. +uH], p=0

=
BH!™ +uH!, 0<p<P
_J

y

[B[" =B/~ H/B/]

Fig. 2. Block diagram of EASI algorithm with SMBGD
optimization.

contrast to popular implementations of MBGD, SMBGD does
not lead to a linear increase in resource consumption due to its
compatibility with pipelined implementations. While MGDB
is beneficial in platforms such as GPUs, our proposed update
rule is preferable in platforms like FPGAs.

We should mention that SMBGD is not limited to EASI
algorithm and in fact, can be used in various machine learning
problems that implement some flavor of SGD.

Section V studies the effect of proposed update rule on
convergence rate and compares the hardware implementation
of enhanced EASI with existing implementations.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Performance of Proposed Algorithm

In order to compare convergence rate of the proposed
update rule with SGD, we run multiple instances of the same
separation problem using different random initial values for
the separation matrix. The number of iterations required for
convergence are then averaged across different simulations and
compared for the two algorithms. Based on our simulations,
SGD requires an average of 4166 iterations for convergence
while SMBGD requires 3166 iterations. As a result, SMBGD
improves convergence rate by about 24%.

B. FPGA Implementation

In order to implement our pipelined design including SM-
BGD on FPGA, we use Chisel [18] to create parameter-
ized building blocks required for the design, such as 32-bit
floating-point operations, vector-vector outer product, matrix-
matrix addition/subtraction/multiplication, and matrix-vector
multiplication. Chisel is a hardware construction language em-
bedded in Scala [19] that allows hardware design in a higher
level of abstraction by providing object orientation, functional
programming, parameterized types, and type inference.

We use a cubic function in order to implement nonlinearity
efficiently. While previous implementations use tanh function
that is expensive in terms of hardware cost, a cubic function
requires fewer additions and multiplications. Note that the
choice of a nonlinear function, that only requires addition and
multiplication, does not affect clock frequency of the pipelined
circuit, but only affects the number of logic elements and
DSPs consumed on FPGA. Simpler nonlinear functions such
as rectified linear units (ReLU) that are popular in neural
networks may be applied to this problem to further reduce
the number of consumed resources on FPGA.

There is a computation and storage overhead for implement-
ing SMBGD which is quadratic in the number of dimensions
in reduced space (because H is a square matrix with dimen-
sionality n). This overhead is negligible compared to overall
complexity of EASI algorithm. However, for problems where
convergence rate is less important and resources on FPGA are
scarce, SMBGD ca be implemented without the momentum
term.

As stated earlier, a fair comparison of our work with previ-
ous work is hard because our work uses 32-bit floating point
variables and operations and a different nonlinear function. In
order to compare different implementations fairly, we use the
same architecture as the one used in [13], but use a cubic
nonlinear function and 32-bit floating point variables instead.
Both architectures are synthesized using Quartus Prime Lite
Edition on a Cyclone V SCSEMASF31C6 FPGA. Table I
compares different parameters of EASI with SGD and EASI
with SMBGD for a problem where the number of input
dimensions is m = 4 and the number of output dimensions is
n=2.

TABLE 1. EASI with SGD vs. EASI with SMBGD for m = 4
and n = 2.

Parameters EASI with SGD EASI with SMBGD
Clock Frequency (MHz) 4.81 55.17
Throughput (MIPS) 4.81 717.21
Adaptive Logic Modules 12731 10350

DSPs 42 42
Registers (bits) 160 3648

It can be seen that EASI with SMBGD operates at a
11.46 times faster clock frequency, has a 149.11 times higher
throughput, but causes a 22.8 times increase in register con-
sumption due to the overhead of pipeline registers. It should be
noted that while the clock frequency will remain the same for
various values of m and n, the throughput is proportional to
the number of pipeline stages which is equal to 10 4-log, mn.

VI. CONCLUSION

In this work, we proposed the stochastic mini-batch gradient
descent optimization technique for independent component
analysis using the EASI algorithm. EASI with SMBGD is
suitable for a pipelined implementation and improves both
clock frequency and convergence by using mini-batches and
introducing a momentum term. SMBGD is not limited to EASI
and can be used in various machine learning algorithms that
use stochastic gradient descent optimization. Our implemen-
tation of the EASI algorithm improves clock frequency 11.46

times, throughput 149.11 times, and convergence by 24%.
While this is a big step towards implementing independent

component analysis in hardware, limited resources available
on FPGAs restrict scalability of hardware implementation.
Although this issue can be simply addressed by using multiple
FPGAs that work in parallel, alternative solutions that achieve
this goal in a fundamentally different manner remain an
interesting research direction.

ACKNOWLEDGEMENTS

The authors would like to thank other members of the
VINE (Variational Inference-based Bayesian Neural Network
Engine) project team, Shuang Chen and Luhao Wang, for
helpful discussions. This research was sponsored in part by
a contract from DARPA’s Microsystems Technology Office.

REFERENCES

[1] P. Comon, “Independent component analysis, a new concept?” Signal
processing, vol. 36, no. 3, pp. 287-314, 1994.

[2] G. Srivastava, S. Crottaz-Herbette, K. Lau, G. Glover, and V. Menon,
“Ica-based procedures for removing ballistocardiogram artifacts from
eeg data acquired in the mri scanner,” Neuroimage, vol. 24, no. 1, pp.
50-60, 2005.

[3] C.-T.Lin, R.-C. Wu, S.-F. Liang, W.-H. Chao, Y.-J. Chen, and T.-P. Jung,
“Eeg-based drowsiness estimation for safety driving using independent
component analysis,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 52, no. 12, pp. 2726-2738, 2005.

[4] C.J.James and O. J. Gibson, “Temporally constrained ica: an application
to artifact rejection in electromagnetic brain signal analysis,” IEEE
Transactions on Biomedical Engineering, vol. 50, no. 9, pp. 11081116,
2003.

[5] S. Tong, A. Bezerianos, J. Paul, Y. Zhu, and N. Thakor, “Removal of ecg
interference from the eeg recordings in small animals using independent
component analysis,” Journal of neuroscience methods, vol. 108, no. 1,
pp. 11-17, 2001.

[6] M. S. Bartlett, Face image analysis by unsupervised learning. Springer
Science & Business Media, 2012, vol. 612.

[71 A.D. Back and A. S. Weigend, “A first application of independent com-
ponent analysis to extracting structure from stock returns,” International
Journal of neural systems, vol. 8, no. 04, pp. 473-484, 1997.

[8] A.Hyviérinen, J. Karhunen, and E. Oja, Independent component analysis.
John Wiley & Sons, 2004, vol. 46.

[9] J.-F. Cardoso and B. H. Laheld, “Equivariant adaptive source separa-

tion,” IEEFE Transactions on signal processing, vol. 44, no. 12, pp. 3017-

3030, 1996.

H. Du, H. Qi, and G. D. Peterson, “Parallel ICA and its hardware im-

plementation in hyperspectral image analysis,” in Defense and Security.

International Society for Optics and Photonics, 2004, pp. 74-83.

A. Hyv et al., “Fast and robust fixed-point algorithms for independent

component analysis,” IEEE Transactions on Neural Networks, vol. 10,

no. 3, pp. 626-634, 1999.

C. Odom, “Independent component analysis algorithm fpga design to

perform real-time blind source separation,” Master’s thesis, Florida State

University, 2012.

U. Meyer-Baese and U. Meyer-Baese, Digital signal processing with

field programmable gate arrays. Springer, 2007, vol. 65.

S.-I. Amari, “Natural gradient works efficiently in learning,” Neural

computation, vol. 10, no. 2, pp. 251-276, 1998.

S. Ruder, “An overview of gradient descent optimization algorithms,”

arXiv preprint arXiv:1609.04747, 2016.

R. S. Sutton, “Two problems with backpropagation and other steepest-

descent learning procedures for networks,” in Proc. 8th annual conf.

cognitive science society. Erlbaum, 1986, pp. 823-831.

N. Qian, “On the momentum term in gradient descent learning algo-

rithms,” Neural networks, vol. 12, no. 1, pp. 145-151, 1999.

[18] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis,

J. Wawrzynek, and K. Asanovié, “Chisel: constructing hardware in a

scala embedded language,” in Proceedings of the 49th Annual Design

Automation Conference. ACM, 2012, pp. 1216-1225.

M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,

N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger, “An overview of

the scala programming language,” Tech. Rep., 2004.

(10]

(11]

[12]

[13]
[14]
[15]
[16]

[17]

[19]

