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ABSTRACT

k-mer counting is a popular pre-processing step in many bioinformatic algo-

rithms. KMC2 is one of the most popular tools for k-mer counting. In this

work, we leverage the computational power of the GPU to accelerate KMC2.

Our goal is to reduce the overall runtime of many genome analysis tasks that

use k-mer counting as an essential step. We achieved 4.03x speedup using

one GTX 1080 Ti with one CPU (Xeon E5-2603) thread and 5.88x speedup

using one GPU with four CPU threads over KMC2 running on a single CPU

thread. This speedup is significant because accelerating k-mer counting is

challenging due to reasons like serialized portions of code and overhead of

disk operations.
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CHAPTER 1

INTRODUCTION

The deoxyribonucleic acid (DNA) molecule found in the cell encodes informa-

tion essential for the functioning of an organism. The DNA may be consid-

ered a sequence of molecular units called nucleotides or bases. Sub-sequences

along the DNA, called genes, contain information regarding proteins that a

cell may synthesize. Proteins are essential agents in cellular processes. Dur-

ing protein synthesis, cellular machinery reads the sequence of bases in a

gene in the DNA, and maps this sequence of bases into a sequence of amino

acids, which form a protein molecule [1]. Being the source of information

regarding which proteins should be synthesized, and regulating cellular ac-

tivities in other ways [2], the DNA sequence is of primary importance to

the functioning of the organism, and knowledge of the specific sequence of

bases in the DNA in an individual is essential in many biological and clinical

applications.

Sequencing technologies such as Next Generation and Third Generation Se-

quencing (NGS, TGS) platforms provide a means to obtain large quantities

of data regarding the sequences in the DNA. Data available from sequencing

platforms are called sequencing reads. Sequencing reads are text sequences

representing DNA segments sampled from some unknown location in the

DNA. The reads from one of the most popular NGS platforms available to-

day, Illumina [3], are short, up to a few hundred bases long, compared to the

human genome that is around 3 billion bases long. Each base in the DNA is

covered by more than one read on average, providing redundant information

(Figure 1.1) guarding against errors introduced during the sequencing pro-

cess. In order to get a better picture of the complete DNA from sequencing

reads, additional algorithms are used such as read alignment [4], and read as-

sembly [5]. Genomic analysis usually can proceed only after sequencing reads

are processed using tools such as these. It is also possible to perform error-

correction on the sequencing reads, by exploiting the inherent redundancy in
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the data. In some applications such as read assembly, error-correction can

be a very valuable operation.

Figure 1.1: Coverage of sequencing reads calculated using the number of
reads that are sequenced from a specific base in sequenced DNA

k-mer counting refers to counting the frequencies of all k-length substrings

in a collection of sequencing reads, where the alphabet is Σ = {A,C,G, T}.
k-mer counting is a fundamental step in many bioinformatic algorithms men-

tioned before, as many algorithms such as read assembly manipulate sequenc-

ing data at the level of k-mers [6]. A specific example is BLESS 2 [7] which

is an error-correction tool for NGS data. BLESS 2 uses a k-mer occurrence

histogram to determine a threshold for solid or error-free k-mers in sequenc-

ing reads, and the remaining k-mers are corrected by the algorithm based on

the solid k-mers in the dataset. There are also other tools that use k-mer

counting, e.g., MUSCLE [8], Arachne 2 [9], BFC [10] and Mash [11].

The basic idea behind k-mer counting is very simple. A naive method

would be akin to building a hash table that maps a k-mer to its count.

However, when the number of k-mers becomes very large, such as in the case

of the human genome, this approach becomes inefficient. This method is also

extremely slow and implementing multi-thread safe locking mechanisms also

results in a worse performance than a single-threaded implementation [12].

To make k-mer counting efficient, different algorithms have been devel-

oped. Tools like Jellyfish [13] and BFCounter [14] rely on hash tables and

Bloom filters. These structures require 10s of GBs of memory. Tools like

DSK [15] and KMC2 [16] take a different approach by storing intermediate

results on disk instead of keeping everything in memory. This results in a

smaller memory footprint for these tools.

With recent drops in sequencing cost, high-coverage sequencing data is

becoming abundant. For instance, the genome-in-a-bottle [17] database pro-

vides 300x coverage human genome sequences, which results in hundreds

of billions of bytes of data. This abundance of data is desirable from the
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perspective of gaining new knowledge about the DNA as well as improving

the accuracy of analyses. However, as genomics becomes accepted more and

more in the clinic, this puts stress on the execution times of computational

tools that analyze the data, which need to run faster than before, analyzing

higher coverage data from more patients. It then becomes paramount to

accelerate core functionalities, such as k-mer counting, that are present in

many bioinformatic pipelines.

Modern GPUs provide us with massive computational power, recently

achieving 100 Teraflops of performance in Deep Learning applications [18].

While computing platforms such as GPUs are harder to program, and need

expert knowledge to leverage performance, it is also attractive to offload core

computations in a domain to these devices because they can impact many

applications at once. This can be especially true of applications in big-data

domains such as bioinformatics, where growing volumes of data necessitate

faster execution of applications beyond what conventional computing plat-

forms can facilitate. k-mer counting, as has been discussed, is a functionality

leveraged by many tools in bioinformatics, and is hence a fit candidate for

acceleration, capable of impacting many tools used in the field.

Motivated by these factors, in this work, we present our efforts in acceler-

ating k-mer counting leveraging the GPU. We chose KMC2 as the algorithm

because it is one of the most memory-efficient, and hence suitable for GPU

computation. At the same time, there are some challenges posed by the

algorithm in moving it to GPU. First, many portions of the code are not

easily parallelized. There are other portions in the code that are data paral-

lel and also involve a significant amount of the runtime, but since each data

item may take a different amount of time to process, these chapters cause

thread divergence, degrading the performance of the GPU. Managing these

issues without impacting overall performance is important. Second, there is

some I/O overhead in KMC2 in the form of disk-access. Using a GPU, in

addition, involves data-transfer overheads through PCIe. Effectively hiding

these overheads behind computations is key to extracting performance from

KMC2.

To the best of our knowledge, this is the first work that attempts to accel-

erate KMC2 on the GPU. We achieved a significant speedup over the original

CPU implementation while maintaining a small memory footprint. We be-

lieve that our implementation may be used by other applications that use
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k-mer counting, such as those listed before, to further improve their perfor-

mances.

The contributions of this work are as follows:

� An analysis of the issues in implementing KMC2 on the GPU architec-

ture.

� The first implementation, to the best of our knowledge, on GPU,

achieving accelerated performance over the original CPU version, po-

tentially helping many bioinformatic applications that use k-mer count-

ing.

The rest of the thesis is organized as follows: Background regarding GPU

computation and KMC2 is in chapter 2, our implementation of KMC2 on

GPU is described in chapter 3 and, finally, results and conclusion are pre-

sented in chapter 4 and chapter 5.
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CHAPTER 2

BACKGROUND

2.1 GPU Computation

Recent advances in the development of GPUs provide us with unprecedented

computational power in these devices. A GPU has thousands of cores to exe-

cute parallel work efficiently while a CPU only contains a few cores optimized

for latency.

One of the most well-known use-cases for GPUs is machine learning. Data

scientists and researchers have been using GPUs for machine learning pur-

poses for a variety of different applications, such as image classification

and natural language processing. Various open source machine learning li-

braries utilizing GPUs have been developed, such as PyTorch [19] and Tensor-

Flow [20]. In addition to applications developed in machine learning, GPUs

are also popular in general purpose computing. CUDA [21] is a parallel com-

puting platform that makes the development of general purpose computing

on GPU easy and elegant. CUDA provides users with the option of process-

ing serial code on the host side while processing parallel workloads on the

device.

Figure 2.1: CUDA memory model
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Figure 2.1 represents the typical memory model in a GPU. There are four

memory levels in a GPU: register (R/W 1 cycle), shared memory (R/W 5

cycles), global memory (R/W 500 cycles) and constant memory (R only;

5 cycles). The data transfer between the CPU and GPU is through the

PCIe port. GPUs have a limited amount of memory compared to CPUs

which could have hundreds of gigabytes of RAM within a single system. Fast

access memory like shared memory and constant memory are very limited in

size, usually fewer than 100 kB. In addition to the limitation in size, there are

additional limitations on shared memory access with regard to which threads

may access a block of shared memory.

From the software programmer’s view, GPU computation in CUDA is

launched in the form of threads, and threads are organized into groups called

thread blocks. Threads within a block are provided means to cooperate

closely (e.g., access of the same shared memory space). Formally, threads in

the same block execute in a SPMD (single program, multiple data) fashion

and share memory and synchronization. From the hardware perspective, the

scheduling unit in the GPU is called a warp, and each warp has machinery

to perform computations of a certain number of threads in single instruction

multiple data (SIMD) fashion. This means all threads executing within the

same warp execute the same instruction at any clock cycle. It may be noted

that for efficiency, the programmer may deem a block of software threads

to span an integer multiple of warps in the hardware. A block is a conve-

nient abstraction, allowing the programmer, in many cases, to express the

application such that code executing in one block is largely independent of

code executing in another, and the dependencies within a block are efficiently

handled by the facilities provided by the GPU for threads in a block to coop-

erate. At the same time, when different threads executing within a warp take

different execution paths due to branches, the different execution paths are

serialized and the throughput of the warp is reduced. Therefore, GPUs are

not suitable for computations with large degrees of such branching among

the threads.

Many bioinformatics algorithms require substantial computation effort. In

many cases, they are data-parallel due to certain assumptions such as that

reads sequenced from a particular site in the DNA may be considered in-

dependent. However, there are also some features that discourage parallel

execution. Careful consideration of dependencies in the application to de-
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termine an appropriate level of abstraction in the code where the execution

is parallel and independent, and the mapping of these abstractions to the

parallel execution units on the GPU (such as blocks or threads), are impor-

tant to extract performance from GPU computation in these applications.

In addition, the memory required by the code mapped to each parallel exe-

cution unit on the GPU (a block or a thread) should not be too high since

the GPU trails the CPU significantly in that department, or additional steps

may be needed to enable efficient sharing of such resources across threads

or even blocks. Various GPU-based bioinformatics algorithms have been de-

veloped in recent years, such as read alignment [22], read mapping for RNA

sequence [23] and assembly [24].

In the context of k-mer counting, we need to process all the sequenc-

ing reads and collect statistics from them. Processing across reads may be

largely independent, but there are dependencies within each read. Thus it

is very attractive to assign a read to a thread or a block. At the same

time, data-structures shared among such units induce external dependencies

among them.

In the following chapters, we will discuss the original KMC2 and the meth-

ods we follow to implement the algorithm on GPU.

2.2 KMC2

There are two key concepts behind KMC2: signature and super k-mer.

A signature is an idea adopted from minimizers [25]. A signature is lexi-

cographically the smallest m-mer where m is smaller or equal to k. Another

constraint for a signature is that it cannot contain substring sequence AA

except at the beginning of the signature and it does not start with AAA

or ACA. Many sequencing reads have runs of As and a large amount of k-

mers would share the same signature if the constraint is not applied. This

constraint further reduces disk usage and memory usage.

A super k-mer is formed by consecutive k-mers in a read, which share the

same signature.

Figure 2.2 is an example of splitting reads into super k-mer assuming the

signature length is 4 and k is 7. First, KMC2 determines the signatures of

the k-mers in a read. If consecutive k-mers share the same signature, they
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will be merged into a super k-mer.

Figure 2.2: Example of signature and super k-mer

KMC2 includes two major stages and one pre-processing stage. The pre-

processing stage obtains a well-balanced signature map. The first stage finds

all the super k-mers and distributes them across bins. The second stage

collects statistics from the super k-mers in the bins.

In the pre-processing stage, KMC2 samples a relatively small number of

reads from the dataset and performs a profiling on these reads to get the

distribution of signatures in the super k-mers. Based on the profiling result,

KMC2 divides signatures into bins by balancing the number of super k-mers

stored in each bin. Assuming the sampled reads fairly represent all the reads

in the read dataset, this signature map will be well-balanced across the bins

for the whole dataset as well.

In the first stage, KMC2 scans through each read to find the super k-mers.

Then the super k-mers are distributed across the bins and stored on disk,

based on the signatures of the super k-mers and the signature map obtained

in the pre-processing stage. The usage of super k-mers rather than k-mers

allows reduction in disk footprint. The fact that the bins are balanced helps

reduce memory footprint when each bin is opened in memory for further

processing in the second stage. Otherwise certain bins may be too large - the

largest bin will set the required memory size for the application.

In the second stage, KMC2 processes the bins one at a time. For each bin,

KMC2 expands the super k-mers stored in the bin by splitting them into

(k, x)-mers. The idea of (k, x)-mers is introduced to reduce the number of

strings to be sorted in the next sorting phase of the algorithm. The (k, x)-mer

representation utilizes the concept of the canonical representation of k-mers.

A k-mer can have two forms, one is directly the k-mer, the other is its reverse

complement; whichever is lexicographically smaller is the canonical form of

the k-mer. A (k, x)-mer is a (k, x′)-mer, 0 ≤ x′ ≤ x. (k, x)-mers are split from

the super k-mers in such a way that the canonical form of a k-mer belongs

8



to only one (k, x)-mer. Then we sort the expanded (k, x)-mers, collect the

k-mer counts in it and write the results to the output file.

Figure 2.3: Example of how counts are extracted from one (k, x)-mer

The following is an example of how statistics are collected from the sorted

(k, x)-mers. Assume x is set to 1. Then the extracted (k, x)-mers are either

k-mers or (k+ 1)-mers. There are six possibilities in which we could find the

canonical k-mer:

� Some (k, 1)-mer with length k

� A suffix of a (k + 1)-mer preceded by A

� A suffix of a (k + 1)-mer preceded by C

� A suffix of a (k + 1)-mer preceded by G

� A suffix of a (k + 1)-mer preceded by T

� A prefix of a (k + 1)-mer

KMC2 sorts all the (k, x)-mers and then splits them into six subarrays. R0

contains k-mers. RA, RC , RG and RT contain subarrays starting with A, C,

G and T, and R1 contains all the (k + 1)-mers. KMC2 scans through these

six arrays. For RA, RC , RG and RT , KMC2 uses the k-mer from its suffixes.

For R1, KMC2 uses the k-mer from its prefixes. Then KMC2 finds the next
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lexicographically smallest k-mer from these six subarrays. If it is the same

as the most recently added k-mer, KMC2 increases the counter associated

with that k-mer. Otherwise, KMC2 adds this k-mer to the resulting array.

In this fashion, KMC2 collects counts of all k-mers in the sorted arrays by

going through all the k-mers in lexicographical order.

Figure 2.3 shows how k-mer counts are collected from a super k-mer. In

this example, k is 9, x is 1 and the signature of this super k-mer is AACG.

Recollect that a (k, 1)-mer is a (k + 1)-mer or a k-mer such that every k-

mer in the (k, 1)-mer is in its canonical form. If such a (k + 1)-mer cannot

be found for a part of the super k-mer, then simply a k-mer is used as

the (k, 1)-mer. For instance, the first (k, 1)-mer is ACGTCAACG instead

of ACGTCAACGT because the canonical form of the second k-mer, CGT-

CAACGT, is its reverse complement. This means the first two k-mers cannot

be merged to form a single (k, 1)-mer. The canonical k-mers of the second

and third k-mer are both their reverse complements. Therefore, the second

(k, 1)-mer is the reverse complement of CGTCAACGTG. All the rest of the

(k, 1)-mers are found in such a fashion. After all the (k, 1)-mers are found

in the super k-mer, they will be sorted in lexicographical order and divided

into six sub-arrays as mentioned above. In this example, we only have three

sub-arrays because we do not have (k + 1)-mer preceded by A, G or T. To

collect the results from the sorted (k, 1)-mers, we looked at the k-mers from

R0, suffixes from RC and prefixes from R1. The counts of all the k-mers are

collected in such a manner.
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CHAPTER 3

APPROACH

3.1 Analysis of KMC2

Before we started to implement KMC2 on GPU, we did an analysis of KMC2

to find out the most time-consuming portions of KMC2 using a single thread

with k-mer length set to 44. Splitter is the function used to extract super

k-mers from the reads in the first stage. Expander is the function used to

find the (k, x)-mers from the super k-mers in the second stage. Sorter is the

function used to sort the (k, x)-mers in the second stage.

Table 3.1: k-mer counting profiling result

Total run time 420 s

First stage 134 s

- splitter 129 s

Second stage 286 s

- expander 50 s

- sorter 217 s

Table 3.1 summarizes the results of this analysis. Not mentioned in this

table are the functions reader, writer and collector. The reader reads input

files, and the writer dumps the results of the first stage onto disk. The

collector processes the final part of the 2nd stage and writes the final results

to disk. As may be seen here, in the first stage, the majority of time is spent

on the splitters. In the second stage, the most time-consuming function is

the sorter. The expander takes some time to process, but it is still much

shorter compared to the sorter. Both the splitter and the sorter, the most

time-consuming parts in KMC2, are parallelizable. This analysis shows that

it is plausible to implement KMC2 on GPU.
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Figure 3.1: Overview of GPU accelerated KMC2. Rectangles with dotted
lines are processes that are parallelized using CUDA.

3.2 Pre-processing Stage

In the pre-processing stage, a small number of reads are copied to the device

side to calculate the signature map. Each thread is responsible for collecting

statistics for one read. The signature map is later copied to the constant

memory on the device side. The signature map will be accessed multiple

times by every thread in the first stage and will not be changed later. There-

fore, moving it to the constant memory reduces memory access latency and

saves global memory on the GPU.

3.3 First Stage

Figure 3.1 (a) shows our implementation of the first stage. In the first stage,

the host will read the sequencing reads from the input file and store them

in a buffer. When enough reads are stored in the buffer, it will pass the

sequencing reads to the GPU side for processing. Each GPU thread is a

splitter responsible for one sequencing read in the read buffer. The splitter

splits super k-mers from the read it processes and stores them in a return

buffer in global memory on the device. The return buffer is organized into

different bins mirroring the super k-mer bins that will be stored on the disk.

After the return buffer is copied back to the host, it will be dumped into files

representing super k-mer bins on disk. One CPU thread is used in the first

stage to read sequencing reads from input file and write super k-mer bins on

disk.
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We have two options to implement the return buffer on the GPU side.

We could have a global buffer shared by all threads, or each thread could

have its own buffer. Using the global buffer is more memory efficient but it

requires a lock (for synchronization among the threads) for every bin in the

buffer. Another way to implement the return buffer is to give each thread

its own buffer space, which means locks may be avoided. After every thread

has finished its read, the return buffer is merged together before being copied

back to the host. The drawback of this approach is that if we have 512 bins,

we need to allocate enough space for every bin for each thread since we do not

know the distribution of signatures within each sequencing read beforehand.

Moreover, we need 512 counters for each thread to keep track of the number

of super k-mers in each bin. This results in a large memory overhead and

most bins will be empty in this case. Due to the limitation of global memory

on GPUs, this approach also limits the number of reads we could process

during each batch. Hence, the latter method turns out to be worse due to

the large memory overhead it introduces.

Hence, we prefer the first method, which requires locks. Implementing

locks and critical chapters in CUDA is tricky. A naive way to implement

locks in CUDA would be the following:

d e v i c e void c r i t i c a l c h a p t e r ( int &lock )

{
while ( atomicCAS(&lock , 0 , 1) != 0)

{
...

c r i t i c a l chapter
...

}
atomicExch(&lock , 0 ) ;

}

The idea is that a thread grabs the lock, finishes the critical chapter and

releases the lock afterwards. However, this design could result in dead locks.

If two threads within the same warp try to acquire the lock to the same bin,

one of them will grab the lock but it will never pass the loop to get the chance

to release the lock. This warp will be stuck in the while loop forever because

this warp will keep executing the while loop until the second thread gets the
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lock, but it never gets the chance to get the lock since the thread which has

the lock does not get the chance to release it.

The following is the actual implementation for critical chapter used in this

work:

d e v i c e void c r i t i c a l c h a p t e r ( int &lock )

{
volat i le bool leaveLoop = fa l se ;

while ( ! leaveLoop )

{
i f ( atomicCAS(&lock , 0 , 1) == 0)

{
...

c r i t i c a l chapter
...

leaveLoop = true ;

atomicExch(&lock , 0 ) ;

}
}

}

The keyword “volatile” is important in CUDA 8.0 and above to avoid dead

locks. Our implementation has 512 bins and has 512 locks within global

memory to synchronize writes to bins from all the threads.

To minimize the running time of the first stage, we overlapped the host and

device computations. The readers and writers (which could not be efficiently

parallelized on the GPU) constitute the operations performed by the host.

When the kernels for splitters are running on the device side, the host first

writes the result of the previous batch to the disk and then prepares the

reads for the next batch. Figure 3.2 shows the collaboration between GPU

and CPU in the first stage.

Though the data movement between host and device is fast, it is still not

negligible in our implementation. All kernels in CUDA launch in a stream.

When no stream is specified by the user, a single default stream will be

used. Figure 3.3 (a) shows an example of kernel launch without specifying a

stream. The kernel launch has to wait until all the sequencing reads for the
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Figure 3.2: Collaboration between host and device side in the first stage

Figure 3.3: Speedup using CUDA streams
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current batch are copied from host to device. After the splitter kernels have

finished, the next batch cannot begin immediately and has to wait for the

results from the previous batch to be copied from the device to the host. This

results in a higher latency due to computations waiting for data movement.

However, by specifying the number of streams to use (we used four streams

in our implementation), we can hide some of the latency of data movement

by overlapping data transfers with computations. Figure 3.3 (b) shows an

example of a kernel launch with four different streams. By splitting into four

different streams, we basically divided the splitter kernel into four smaller

sub-kernels in each batch. Each sub-kernel would process one fourth of the

sequencing reads in the current batch. This means the first sub-kernel can

launch after a fourth of the data is transferred, overlapping the computations

of the first sub-kernel with transfers for the second sub-kernel, and so on.

We may observe the challenges we mentioned before in action here. For

instance, each thread may take a different amount of time to process its

assigned read. This can cause divergence among the threads in the splitter

kernels. However, analyzing the execution times of the implementation, we

determined that the impact on performance due to thread divergence is not

significant because the host functions take about the same amount of time

to process as the kernels. We may also note the importance of pipelining the

CPU and GPU tasks (Figure 3.2), as well as the use of streams (Figure 3.3)

in minimizing the impact of I/O and PCIe overheads on overall performance.

3.4 Second Stage

There are three main steps in the second stage. The first one is the expander;

it is used to read the bins from the disk and pre-process the super k-mers.

The second step is a sorter to sort the result from the first step. The third

step is a collector to collect counts from the sorted results and store them in

the result file. Figure 3.1 (b) shows the implementation of the second stage.

The expander reads the super k-mers stored on disk and extracts the (k, x)-

mers from them for the sorters to process them later. To implement the

expander on the device side, we would need to first scan through the bin file

to find out all the super k-mers in each bin. Each thread in the device is

responsible for extracting the (k, x)-mers from one super k-mer. However,
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experiments showed this approach to be slower than directly running the

expander on the host side. According to our understanding, this is caused

by the overhead of scanning of the bin file, transferring it to the device

and thread divergence in the kernels. The super k-mers vary in length and

the positions of the (k, x)-mers differ in these super k-mers. This causes

divergence among the threads while extracting the (k, x)-mers from the super

k-mers on the device side. Therefore, the expander is implemented on the

host side with one thread for each bin file.

The sorter uses radix sort which can be easily parallelized on GPU. We

used radix sort implemented in Thrust [26] provided by NVIDIA to perform

the sorting on GPU.

The collectors count the number of occurrences of each k-mer and store the

result on disk. To complete this process, each collector has to scan through

the sorted array from the sorters and increase the counters corresponding to

the k-mer counts accordingly. The collector has to operate in serial order fol-

lowing the order returned by the sorter, which forces serialization. Therefore,

the collectors are implemented on the host side.

Overall, the second stage is organized as follows. While it is not attrac-

tive to parallelize the expander and collector within each bin on the GPU,

it is possible to parallelize them across bins on the host side using OpenMP

threads. The overall organization is shown in Figure 3.4. Each OpenMP

thread launches the expander, a sorter kernel and the collector. While the

expander and collector instances in the different OpenMP threads may oper-

ate independently, the sorter instances can only execute one after the other,

because they need the GPU resource, and only one GPU is available. This

also limits the amount of performance gain from the OpenMP parallelization.

Figure 3.4: Multi-threading in second stage
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CHAPTER 4

RESULTS

In order to evaluate the performance of the GPU acceleration for KMC2, we

tested our implementation against the original KMC2 [16] which is imple-

mented purely for CPU execution.

All experiments were done using Xeon E5-2603 v2 CPU and GeForce GTX

1080 Ti. For input data we used 40x coverage reads of length 100bp, simu-

lated from the Mouse Chromosome Y reference (accession number: NC 000087.7)

using the tool pIRS [27]. The data and additional details regarding it

are available at https://github.com/gowthami19m/SPECTACLE. The re-

sults are summarized in Table 4.1 and Table 4.2.

Compared to the original KMC2 implementation [16] running on a single

CPU thread, our implementation that uses one GPU achieved an overall

speedup of 4.03x when using a single CPU thread and 5.88x when using four

CPU threads for k=40. These accelerations are, respectively, 3.48x and 4.6x

for k = 50. Compared to the original KMC2 implementation [16] running on

4 CPU threads, our implementation using a single GPU and 4 CPU threads

achieves a speedup of 2x in the best case (k=40).

We also compared our implementation of KMC2 to two other popular k-

mer counting tools, JellyFish2 and DSK for k=40. When the JellyFish2 and

DSK implementations use 1 CPU thread, our implementation using 1 GPU

and 1 CPU thread achieves 7.24x improvement over JellyFish2 and 5.85x over

DSK. When all three tools use 4 CPU threads, our implementation achieves

4.32x speedup over JellyFish2 and 3.03x speedup over DSK.

From Tables 4.1 and 4.2, one may see the performance gains in the first

and second stages individually. The performance gains from the first stage

come mainly from accelerating the splitter which is parallelized on the GPU.

As presented in Table 3.1, the splitter is the dominant function in the first

stage. In the CPU implementation of KMC2, the splitter is parallelized

across multiple CPU threads. While the serial performance of each CPU
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thread is superior to that of a GPU thread, the GPU can launch many

more threads than a CPU can. There is some thread divergence in our

GPU implementation as we discussed before, but the performance of the

device-side functionality currently matches that of the host-side functionality,

constituted by the readers and writers, so this is not a detriment to overall

performance. Also, pipelining the host-side functionality with the device-side

functionality allows us to hide some overheads such as disk access in the first

stage.

Table 4.1: k-mer counting results, baseline is KMC2 with one thread

k-mer First Stage Second Stage Total

length=40 time speedup time speedup time speedup

KMC2

(1 thread)
127 1.0x 307 1.0x 435 1.0x

KMC2

(4 threads)
62 2.05x 85 3.61x 148 2.94x

GPU KMC2

(1 thread)
23 5.52x 85 3.61x 108 4.03x

GPU KMC2

(4 threads)
23 5.52x 51 6.02x 74 5.88x

DSK

(1 thread)
N/A N/A N/A N/A 866 0.50x

DSK

(4 threads)
N/A N/A N/A N/A 224 1.94x

JellyFish2

(1 thread)
N/A N/A N/A N/A 1072 0.41x

JellyFish2

(4 threads)
N/A N/A N/A N/A 320 1.36x
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Table 4.2: k-mer counting results, baseline is KMC2 with one thread

k-mer First Stage Second Stage Total

length=50 time speedup time speedup time speedup

KMC2

(1 thread)
101 1.0x 298 1.0x 400 1.0x

KMC2

(4 threads)
42 2.40x 80 3.73x 123 3.25x

GPU KMC2

(1 thread)
29 3.48x 86 3.47x 115 3.48x

GPU KMC2

(4 threads)
29 3.48x 58 5.16x 87 4.60x

The most time-consuming functionalities in the second stage are the ex-

pander and the sorter, as presented in Table 3.1. We parallelized the sorter

on the GPU and the implementation using Thrust provides significant per-

formance gains. In addition, we used OpenMP parallelization for the second

stage, similar to the software version of KMC2, which allows the expander

to process multiple bins in parallel, even though the OpenMP threads would

have to wait for their turn to use the GPU for executing the sorter afterwards.

Note that the speedup in the first stage is the same regardless of the number

of CPU threads we used because we are not using OpenMP in the first stage.

The speedup we achieved in the second stage using four CPU threads is

insignificant compared to the implementation using one CPU thread due to

the overhead mentioned in the previous chapter.
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CHAPTER 5

CONCLUSION

k-mer counting is an important bioinformatic function present in many algo-

rithms that are used to extract information from raw sequencing reads. With

increasing coverage and more data, the tools generally need to be faster. It

is hence valuable to accelerate common core functionalities such as k-mer

counting that can impact many such tools. We analyzed KMC2, one of the

most popular k-mer counters, and determined that there are parallelizable

chapters in it. We accelerated those functions on GPU, while dealing with

challenges such as thread divergence, and disk and data-transfer overheads.

Our method performs faster than KMC2 as well as a few other competing

tools, which are implemented on CPU. We believe that our implementation,

which is open-sourced, will help improve the performance of many tools that

use k-mer counting.

At the same time, we will be looking to further improve the performance

of our method in future work. For instance, it may be possible to launch

multiple kernels when more than one GPU is available on the system. A

detailed analysis of load-balancing among the host and the GPU devices

may be performed in this case to optimize the overall performance.
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