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Abstract—Convolutional Neural Networks (CNNs) are widely
used in deep learning applications, e.g. visual systems, robotics
etc. However, existing software solutions are not efficient. There-
fore, many hardware accelerators have been proposed optimizing
performance, power and resource utilization of the implemen-
tation. Amongst existing solutions, Field Programmable Gate
Array (FPGA) based architecture provides better cost-energy-
performance trade-offs as well as scalability and minimizing
development time. In this paper, we present a model-independent
reconfigurable co-processing architecture to accelerate CNNs.
QOur architecture consists of parallel Multiply and Accumu-
late (MAC) units with caching techniques and interconnection
networks to exploit maximum data parallelism. In contrast to
existing solutions, we introduce limited precision 32 bit Q-format
fixed point quantization for arithmetic representations and oper-
ations. As a result, our architecture achieved significant reduction
in resource utilization with competitive accuracy. Furthermore,
we developed an assembly-type microinstructions to access the
co-processing fabric to manage layer-wise parallelism, thereby
making re-use of limited resources. Finally, we have tested our
architecture up to 9x9 kernel size on Xilinx Virtex 7 FPGA,
achieving a throughput of up to 226.2 GOp/S for 3x3 kernel size.

Index Terms—CNN, Reconfigurable Co-Processor,
High-Throughput  Architecture, Hardware Acceleration,
Programmable Processing Fabric, Q-Point Fixed Precision

I. INTRODUCTION

Convolutional Neural Networks (CNN or ConvNet) are
perhaps the most widely used neural network model for Deep
Learning (DL) applications, e.g., image classification, speech
recognition, language processing etc. As an example, LeCun
et el. in [1][2] and Hinton et el. in [3]] provided details of such
applications with record accuracy. ConvNets have simple ker-
nel based computational structures which significantly reduce
their computational time and resources. As a result, ConvNets
are algorithmically simpler and more accurate compared to
other neural network models [3]].

CNNs are very computationally intensive and the convolu-
tion layers account for the largest part by far. This is because
convolution require a large number of multiply-accumulation
operations. Computational complexity of the ConvNet is also
increasing with today’s complex learning models, represen-
tations and dimensionality of data. Therefore, it is increas-
ingly challenging to train DL models and infer based on
them. However, existing software solutions are not efficient.
Therefore, many accelerators have been proposed over the
years to efficiently carry-out CNNs on hardware. Particularly,
number of FPGA based hardware accelerators [4]|[.5][6][Z][8]
have been explored, taking advantage of their reconfigurability,
programmability and low power. Among FPGA accelerators,

co-processing architectures [7][8] have significant flexibility
and scalability. Also, well designed FPGA architectures can
be used to exploit high level of data parallelism.

Advancements in today’s ConvNet accelerators focus on
optimizing cost-energy-performance. However, the complexity
of deep learning applications have also created a demand for
better performance together with high accuracy. In the recent
past, single and double precision floating point arithmetic was
mostly used. An architecture based on high precision, e.g.
floating-point arithmetic, is also relatively resource intensive
and power consuming, but provides higher accuracy to the
applications. Therefore, number of studies [9][LO][11] have
highlighted the importance of precision in ConvNet implemen-
tations. Sakr et al. in [12] and Gupta et al. in [9] have demon-
strated competitive results of deep neural networks with lim-
ited numerical precision. Also, the precision or representation
of numerical values is directly associated with the resource
utilization, thus cost. More importantly, with diverse range
of deep learning applications, the cost-performance-energy-
accuracy trade-off has leveraged its importance. Therefore, it
is important to achieve high performance and accuracy with
limited and reduced precision. However, most of the previous
implementations were heavily depending on the floating point,
either single precision or double precision. This approach
might not be best suited for limited resource environments,
e.g. embedded applications.

In this paper, we present a novel reconfigurable co-
processing architecture to accelerate ConvNets. We have also
introduced the Q-format fixed point quantization arithmetic
to reduce the resource utilization of the FPGA hardware
while maintaining the accuracy at a competitive level. This
approach significantly reduces the resource utilization and
processing time, enabling the use of this architecture for
range of embedded applications. Also, proposed architecture
is highly model independent and efficient, but reconfigurable
and programmable. In addition, we introduce CISC like mi-
croinstructions to control the hardware operations at run time
which is used to gain layer-wise parallelism reusing limited
resources.

Section II briefly describes the background of our research
including Q-point arithmetics. In section III, we explain the de-
sign space exploration for our architecture including data par-
allelism, caching and pipelined operations. Finally, in Section
IV, details of the implementation along with results obtained
for this new architecture are provided with a comparison. In
our implementation, we used ImageNet [[13] dataset of 2012



ILSVRC competition. Also, for the comparison purpose we
used AlexNet [3] and ZyncNet [8]]. Section V provides the
conclusion with possible future developments.

II. BACKGROUND

A ConvNet is a multi-layer feed forward neural network
with convolution filters and nonlinearity [L][2]. Over the
past few years, many different CNN architectures have been
proposed to address the efficiency and accuracy of various
learning tasks. As a subsequent outcome, different approaches
like LeNet [1]], AlexNet [3], VGG [14], GoogLeNet [15],
ResNet [16], SqueezeNet [[17]], have been proposed to accel-
erate the learning and inferencing with better performance. In
general, ConvNet architectures consist of several layers, i.e.
convolution layers, activation and pooling layers [3]] organized
in different configurations.

In CNNs, the output feature map is obtained by following
steps. For each ConvNet filter, input feature map of length
lin, width w;, and depth D;, is convoluted with a shifting
k x k large kernel with same depth of D;,,. Then convoluted
data will be passed through activation function. The sigmoid,
tanh and ReLu are commonly used as activation functions for
ConvNet. In order to reduce the spatial size, computational
complexity and number of parameters pooling layers are used
in between successive Convolutional layers.

The mathematical representation of convolution layer and
activation function is shown in equation
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Here, ¥ , D;,, k, F and b represent the corresponding
output feature, depth of input feature, kernel length, activation
function and bias respectively.

DiCecco et al. in [[/] proposed an end-to-end FPGA ac-
celerated co-processing framework for Caffe CNN in which
an FPGA layer can be used as a co-processor alongside
other layers running on a host processor. But, in such an
approach, memory becomes a bottleneck when the size of the
layers and parameters are increasing. Therefore, users have
the flexibility to decide which part of the program should be
running on FPGA, either a specific portion or the complete
program. Therefore, flexibility and programmability is one
of the key areas of focus in FPGA accelerated architectures.
The problems was addressed by some techniques such as an
instruction set to program CNN hardware [3].

Several other research explored the implementation of
CNNs on FPGAs [4] [S][6] to make use of the low power,
reconfigurability and programmability. A more comprehensive
and state-of-the-art FPGA based accelerator was proposed
by David Gschwend in his thesis [8], ZyncNet-An FPGA-
Accelerated Embedded Convolutional Neural Network. This
architecture demonstrated competitive results in performance,
accuracy and memory management compared to existing ar-
chitectures [3][14][15][16][17]. Even though their approach
produced highly competitive results, the design used model

specific approach and High Level Synthesis (HLS). The
authors also used single precision floating point for repre-
sentations and arithmetic operations, causing high resource
utilization.

The main reason behind application specific designs is to
support parallelism [18]][7]. According to existing techniques,
data parallelism is highly exploited on custom hardware
designs alongside model parallelism, layer parallelism and
pipeline parallelism. One or more of these techniques can be
found in almost all existing accelerators, e.g. ZyncNet [8]. In
particular, inherently parallel pixel operations can be carried
out concurrently when CNNs are used in image processing
applications. Pipeline parallelism is applied when operating
different dependent steps of operations concurrently on parallel
threads which is well suited for feed forward computations of
CNNs. Most accelerators have used these techniques in the
past.

The Q-Point representation is a fixed point format where
the number of fractional bits and integer bits are specified
prior to the usage. Depending on the number of bits in its
representation, Q Format limits the range of numbers it can
represent with an acceptable degree of accuracy [19]. The
Q-Format number is represented as Q(,—p—1,m) Where n
is the total number of bits, m is fractional bits and single
sign bit. Overflow is avoided by using the proper number
of fractional and integer bits depending on the weights and
the input feature data. This simple representation of numbers
makes the arithmetic operators for Q-Point representation
hardware efficient. Furthermore, fixed point Q-Format numer-
ical arithmetic significantly reduces resource utilization and
power consumption. But, it has a trade off with numerical
precision and accuracy. However, some recent research sug-
gests that numerical precision might not be the case for CNNs
(L2]191119].

III. ARCHITECTURE

The proposed architecture is directly focusing on Field
Programmable Gate Arrays (FPGAs). This accelerator archi-
tecture includes reconfigurable-parameters which provides the
ability of re-reconfigurability, depends on the CNN architec-
ture which run on top of the accelerator. The reconfigurable-
parameters which used in this system are as follows:

o The depth of input features (D;,)

« Filter Size (5)

o Number of filters (V)

« Pooling Filter Size (P)

« Activation Function Selection (Selsr)

« Pooling Layer Configuration (Conf,)

The Processing Fabric (PF) is the core logic processing area
of the design. Moreover, the it is highly parallel and can be
reused for multiple layers by accessing the parameters in each
layer from the internal instruction memory.

The parallelism of independent operations is the state-of-
the-art for accelerating neural networks. In this architecture,
we have identified such independent processes and imple-
mented them in parallel in order to exploit a high level of data
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parallelism. However, such a design is hardware intensive and
consumes a large amount of power. This problem is reduced
by reusing limited resources with layer wise parallelism.
Also, this architecture use parallel multi-channels to accelerate
processing feature data in depth (D;,,). Before running a CNN
on top of this processing fabric, D, should be set to input
feature depth of the processing CNN architecture.

The Q-Format fixed point arithmetic is used in the architec-
ture which consists of less hardware intensive and less time
consuming arithmetic operations. Therefore, it has advanced
the overall architecture as well.

Instruction set architecture gives the ability to process
different input features sizes and enable zero padding. This
gives the architecture more flexibility to run different CNN
architectures on top of this hardware acceleration platform.

The conceptual design of the architecture is shown in figure
[T} It contains separate data flow path and instruction flow path
as in Harvard Architecture. As shown in the figure [T} there
are 2 major units in this system. They are Process Controller
(PC) and the Matrix Web (MW). The main responsibility
of the Process Controller is to fetch instruction and execute
instructions. The instruction execution is mainly focused on
memory addressing. The MW consists of arithmetic and logic
units which are the main functional elements of the processing
architecture. The input feature data, weights and biases are
cached within the Matrix Web. This caching system and
interconnection is extensively shown in figure 2] Moreover,
using Direct Memory Access controllers (DMA), data is
transfered as bulk between main memory and processing fabric
in order to reduce the total number of execution Instructions
and execution time per layer. After instructions are fetched
into the system, first, the weights and bias for each kernel is
loaded into dedicated caches through data lines. Input data is
then fetched and processed in the MW and processed. Then
processed data is passed on to data buffer and finally, output
data is moved to main memory through DMA transactions.

The Matrix Web (MW) is the major arithmetic and logic unit
in the system. Figure 2] shows a detailed structure of MW. The
size of the MW depends on the number of filters (IV), filter
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size (S) and the depth of the input features(D;,) which are
reconfigurable parameters to the processing fabric.

As shown in the figure [T} Cell Body Units (CBU) are the
basic processing elements to the processing fabric. It simulates
the process of convolution filter. The CBU calculates the
output feature data according to the equation [Il Each CBU
has internal weight caches, internal MAC units, an activation
layer and a pooling layer as shown in figure [3] pooling
layer can be enabled while configuring processing fabric by
setting the Con f, reconfigurable parameter. C'on f,, parameter
expects width of pooling kernel. Activation function to the
CBU unit is also a reconfigurable parameter (Selr). For
each MAC unit there is a dedicated Weight cache. The weight
caches are filled before feeding the input data. The input
data is first buffered into a pre-fetch data buffer and pass
into the caches through a simple interconnect. Each CBU is
synchronized to operate in the same input data in same clock
cycle. Therefore, data cache is shared between each CBU,
using a Crossbar interconnection. The output data of different
kernels can be processed massively parallel by using more
CBUs. The final calculated data is buffered and forwarded in
to the main memory as shown in the figure [3] This massively
parallel architecture reduces the input feature data re-usage.
The number of MAC Units per Cell Body depend on the depth
of input features and the number of CBUs depend on number
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of filters that can be parallel processed depend on the hardware
availability of FPGA as shown in figure [2] The instruction set
gives the flexibility to use number of parallel CBUs in this
manner. Using high number of parallel CBUs we can minimize
the input feature data re-usage.

In CBU after Weight cache, bias cache and input feature
cache is filled with data, they forwarded MAC units according
to the instructions from PC. In MAC units, input feature is
multiplied and added together. In the first layer of Addition
Plane, 2(*=1 x D, addition units are implemented. If the
kernel size is not a power of 2, the unoccupied Addition Units
(AU) are padded zero. This process is pipelined in order to
increase the throughput. Such a implementation makes the sys-
tem work at a high frequency. The number of Multipliers and
Adders depends on S and D,,,, the reconfigurable parameters
to the Processing Fabric.

After processing through MACs, results of the MAC units
are forwarded to BA. The number of MAC units connected to
the BA depends on (D;,,) as shown in [3] They are connected
using series of adder layers as in MACs. After the Bias
adder, the result is forwarded to AF. The activation function
is enabled and selected in the configuration level, therefore
it is a reconfigurable parameter. Activation functions include
Sigmoid, tanh, ReLU and Max. After AF data is stored in
a temporary cache call Pooling cache. Thereafter the data
is proceed to the pooling layer. The size of Pooling cache
depends on the pooling kernel size. In this implementation
MAX pooling is used. The scalability of the Pooling layer
is maintained by using the width of pooling kernel (C'on f).
Making pooling kernel size to 1 is similar to deactivating the
pooling layer. Finally, processed data is passed to the data
buffer.

No. of mul. units per MAC Unit = kK2 ()
No. of mul. units per Cell Body = D;, X k2 3)

[(2xlogz(k))]
No. of adders per Cell Body = D;,, x Z 2"
r=0
[(toga(Din))]
+ 2P (4)
p=0

Here, k and D;,, stand for filter width and input feature data
depth.

The Process Controller (PC) is responsible for instruction
execution. The scalability in the configuration level is
achieved by using the scalable instruction set which scales
with the number of kernels in the system, number of weights
per kernel and depth of the input. The Instructions that
fetch into the PC follows the CISC (complex instruction set
computer) instruction type. In the Process Controller unit,
there are 2 basic types if instructions as shown below.

MatrixWeb Control Instructions: feature width, feature
depth, Stride Length, Zero Padding enable, Convolve.

Memory Control Instructions: Address space of Input
features, Address space of Weights, Address space of Biases,
Address space of Outputs.

The memory locations of weights and biases related to each
layer are injected into the processing fabric with Memory
Control Instructions. MatrixWeb Control Instructions Config-
ure the Matrix Web according the CNN network that is to
be processed in the accelerator. The instruction set gives the
flexibility to use dynamic number of parallel Cell Bodies
which depend on the hardware limitation of FPGA.

As shown in figure 4] MatrixWeb Control Instructions and
Memory Control Instructions are the main type of instructions
for our system. It contains several fields for each type. In
both instruction types, the TYPE field is in common. As
the name suggest, it is used to identify the type of the
instruction, MatrixWeb Control Instruction or Memory Control
Instruction.

In MatrixWeb, Control Instruction CONFIG field is respon-
sible for giving the system the instruction of starting convo-
lution, clearing (or flushing) the weights and the biases that
are cached within MAC units and stop convolution. The Input
Feature Detail (IFD) field is required to identify the depth
and width of the input feature data. It gives the system the
flexibility to process different sizes of input data. The Stride
Len. (SL) specifies the stride with which the filter is slided.
The Zero-Pad (ZP) field is used to zero pad the input features
using internal logic which reduces the input feature size.
In addition, enabling zero padding through instruction will
decrease the requirement of input feature space. In order to
configure them, MatrixWeb Control Instructions are released
to each Cell Body Unit.

- INPUT FEATURE STRIDE
TYPE |CONFIG. | CELL BODY ID DETAIL SIZE ZERO PAD
a. MatrixWeb Control Instruction
TYPE | CONFIG. FILTER DETAIL STARTING ADDRESS
b. Filter Memory Control Instruction
TYPE | CONFIG. STARTING ADDRESS

c. Input Memory Control Instruction

Fig. 4. Basic Instructions of the Architecture

Filter Memory Control Instructions are used to point out the
memory space of Weights, the memory space biases and the
Memory space of Output feature for each corresponding Cell
Body. There are 3 Filter Memory Control Instructions for each
cell body. There is one Input Memory Control instruction for
the system for single input feature data set.

The total number of cycles that is needed to load Weights



and biases depend on the number of kernels, the depth of the
input data set, number of weights and bias per kernel. The
number of cycles that is needed to process input feature data
is directly correspond to the width and depth of the data set.

®)

C is the number of cycles to fetch all (total) instructions.
Here v and D;,, represents the number of cell bodies and input
feature data depth.

Data is transferred between the main memory of the pro-
cessing system and hardware accelerator unit using DMASs
over PCle. Multiple channels are used in order to minimize
the data traffic.

C=7+Dim+2)xy+1

IV. PERFORMANCE EVALUATION

We developed a software model identical to our hardware
architecture using C/C++. It is capable of handling fixed
point as well as single and double precision floating points.
Furthermore, the architecture was implemented using Verilog
which was later used with software simulation to verify results.
Both software and hardware implementations are combined
together with System Verilog and Direct Programming Inter-
face (DPI) to create hardware simulation. The final design
was synthesized and implemented on Xilinx Virtex-7 FPGA
XC7VX485T using Vivado 2015.4 software. Also, our co-
processor was designed to be connected with host machine
via PCle interface.

With the provided reconfigurability and programmability,
our framework capable of handling different CNN architec-
tures, e.g. AlexNet, SqueezeNet, ZyncNet etc. But, for the
accuracy comparison, in this section, we present results based
on accelerating two different CNN architectures on two base
designs.

TABLE I
Comparison of proposed architecture to existing CNN architectures.
"Layers’ is the number of convolution layers. Also, MACCs, Parameters and
Activations are in millions

Layers MACCs Params Activs. Top-5 Error
Case B* 18 530 2.5 8.8 15.7%
ZyncNet 18 530 2.5 8.8 15.4%
Case A* 5 1140 62.4 2.4 20.3%
AlexNet 5 1140 62.4 2.4 19.7%
VGG-16 16 15470 138.3 29.0 8.1%
GoogLeNet 22 1600 7.0 10.4 9.2%
ResNet-50 50 3870 25.6 46.9 7.0%
SqueezeNet 18 860 1.2 12.7 19.7%

In case A, AlexNet CNN architecture and in case B, Zync-
Net CNN architecture are processed on top of our processing
fabric by setting up reconfigurable parameters accordingly.

For each CNN architecture, we use both software and
hardware simulation to train the model based on ImageNet
dataset. Thereafter, we use the same setup with trained weights
to predict on ImageNet validation data set, particularly with
Q(16,15)> Q-point representation in hardware. Since, our soft-
ware simulation is capable of handling both fixed and floating

precision, we calculated the absolute difference (error) for each
data point and operation. Table I provides a details of final top-
5 accuracy obtained from the results. As shown in the table,
final accuracy has dropped, particularly with 0.6% in the Case
A and 0.3% in the Case B when using 32 bit fixed precision
which is a tolerable amount.
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Fig. 5. Average error as a function of input values for different kernel width

A similar method is carried-out for finding the accuracy
of MAC units. As shown in the figure [6] the accuracy and
its variation with respect to different input value ranges and
different kernel sizes is presented and evaluated within this
comparison. Since the CNNs often provide only a certain range
of input values, it is easy to show that the proposed neural
network is sufficiently capable of providing an accurate output
for the requirement.

In this performance evaluation @ (16,15), Q-point represen-
tation is used. Changing the kernel size and input data values,
accumulated error readings have been obtained. These accu-
racy readings, the error values have been plotted as functions
of kernel size and input value.

The test is carried out for different value ranges and different
kernel sizes as shown in figure [5} The error for each constant
kernel size increases exponentially with the input data values.
As in figure 5] the average error for input values 0 to 50 stay
well below 0.1 for any kernel width from 3 to 9.
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Fig. 6. Average error as a function of kernel width for input values between
0 and 1



TABLE II
Existing FPGA based CNN compared to proposed architecture

[ Metric [ Zhang [4] [ Suda [3] [ Qui [6] [ DiCecco [7] [ ZyngNet [8] ] Proposed |
Frequency(MHz) 100 120 150 200 200 200
Precision 32 bit float 8/16 bit fixed 16 bit fixed 32 bit float 32 bit float 32 bit fixed
FPGA Version Virtex 7 VX485T | Stratix-V GSD8 | Zynq XC7Z045 | Virtex 7 XC7TVX690T-2 | Zynq XC7Z2045 | Virtex 7 XC7VX485T-2
DSP Utilization 2,240 (Not specified) 780 1,307 739 576
Host Connection on-chip PCle on-chip PCle on-chip PCle
GFLOPS/GOPS 61.62 136.5 187.8 50 (Not Specified) 226.2

A kernel width of 3 is used as the initial parameter value
and is increased up to 9 while maintaining the input values in
the range O to 1. The error shows an exponential increase with
the increase of kernel size as shown in figure[6} Still, the error
values are extremely small compared to the input values even
for a kernel width of 9. Results from Figure [6] and Figure [3]
explains how accuracy drops when the model is getting bigger.
Increasing kernel sizes as well as parameters can significantly
change accuracy value. It causes much larger model in case
A to drop its accuracy more than the much smaller case B
model. However, obtained accuracy drops, i.e. 0.6% and 0.3%
for A and B respectively, lie within acceptable level.

CNN architectures have different requirements. As an exam-
ple, AlexNet needs up to 11x11 convolutions whereas ZyncNet
CNN [16] uses only up to 3x3 convolutions. But for the
performance and resource comparison, we used our Case B
(with 3x3 kernel size) hardware design and ZyncNet hardware.
In this comparison, we use 3x3 kernel size with 16 Cell Body

Units.

TABLE III
Resource Utilization of a single Cell Body Unit (CBU) with DSP for input

data depth (D;,) =1

[ Kernel Size | LUT | FF [ DSP |
3X3 2416 1299 36
4X4 3374 2013 64
5X5 5683 3157 100
6X6 7913 4433 144
X7 10536 | 5978 196
8X8 13143 | 7587 256
9X9 17338 | 9784 324

Table [III] illustrates the resource utilization of a single Cell
Body Unit with input data depth (D;,,) = 1 whereas Table
provides the resource utilization of a single Cell Body Unit
with input data depth (D;,,) = 3.

TABLE IV
Resource Utilization of a single Cell Body Unit (CBU) with DSP for input

data depth (D;,) =3

[ Kernel Size | LUT | FF [ DSP |
3X3 6721 3159 108
4X4 9360 4857 192
5X5 15039 7713 300
6X6 22169 10837 432
7X7 29487 14626 588
8X8 36812 18503 768
9X9 48684 | 23992 972

To compare with ZyncNet, we configured our co-processor
with 16 Cell Body Units, 3x3 kernel size and D;,=1. We
obtained results as shown in Table V. According to the results,
our approach shows significant reduction (about 22%) in the
DSP utilization. Moreover, our proposed architecture provides
226.2 GOPS at frequency of 200MHz. Compared to 16 bit
fixed precision implementations like [6l], our approach with
32 bit fixed precision has produce 22.5% more GOPS. More
details and a comparison can be found in the Table II.

TABLE V
Resource Comparison between ZynqNet and Proposed

[ Method | LUT | FF | DSP |
ZyngNet [8] | 154K | 137K | 739
Proposed | 117K | 21K | 576

According to the Table V, our approach shows less re-
sources utilization than previous approach. This is a direct
result of using fixed precision and developing a ground-up
architecture avoiding resource intensive High Level Synthesis
(HLS).

V. CONCLUSION

In this paper, we presented a novel co-processing archi-
tecture for Convolutional Neural Networks (CNNs), suitable
for reconfigurable devices such as FPGAs. It is developed
as a co-processor to accelerate existing software frameworks
and CNNs. As results showed, our approach is more scalable
and high throughput. Targeted for embedded applications, the
architecture demonstrates significant design flexibility. The
programmable processing fabric can be reused for multiple
layers by accessing and storing the hyper-parameters in each
layer. The Instruction Set Architecture (ISA) is capable of han-
dling convolutional layer operations. Moreover, our common
instruction set can be used to optimize different high level
programs into FPGA. Also, fixed point Q-Format precision
provided results that are sufficient for CNN computation
with reduced time and resource consumption providing less
complexity to the hardware. However, our result shows that
large models with high number of parameters have significant
accuracy deviation compared to small models. Therefore,
fixed precision can be efficiently used to accelerate more
compressed modes in hardware. It is also possible to further
accelerate the overall system by taking other layers including
the Pooling layer the hardware layer. We also showed that
32 bit fixed precision has significantly reduced the operation



time and resource utilization while maintaining both accuracy
and throughput at higher level. These results encourage future
advancements with further reduction in precision, e.g. 16 and
8 bit in fixed point, in hardware accelerators.
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