
HAL Id: lirmm-01840853
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01840853

Submitted on 16 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Meta-implementation of vectorized logarithm function
in binary floating-point arithmetic

Hugues de Lassus Saint-Geniès, Nicolas Brunie, Guillaume Revy

To cite this version:
Hugues de Lassus Saint-Geniès, Nicolas Brunie, Guillaume Revy. Meta-implementation of vectorized
logarithm function in binary floating-point arithmetic. ASAP 2018 - 29th IEEE International Con-
ference Application-specific Systems, Architectures and Processors, Jul 2018, Milan, Italy. pp.1-8,
�10.1109/ASAP.2018.8445102�. �lirmm-01840853�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01840853
https://hal.archives-ouvertes.fr

Meta-implementation of vectorized logarithm
function in binary floating-point arithmetic

Hugues de Lassus Saint-Geniès∗†, Nicolas Brunie‡, and Guillaume Revy∗†
∗Univ. Perpignan Via Domitia, DALI, Perpignan, France

†LIRMM, Univ. Montpellier, CNRS (UMR 5506), Montpellier, France
‡Kalray, Montbonnot-Saint-Martin, France

Abstract—Besides scalar instructions, modern micro-
architectures also provide support for vector instructions. They
enable to treat packed inputs (typically 4 or 8) in a single
instruction. The challenge is now to write vector programs
to support mathematical functions like sin, cos, exp, log, · · ·
which efficiently exploit those vector instructions. This article
focuses on the design of vectorized implementation of log(x)
function, and more particularly on its automation for different
formats and micro-architectures. First it rewrites a classic range
reduction in a branchless fashion so as to use at best recent
micro-architecture features, like rcp (reciprocal) instruction,
and to treat all inputs in the same flow. Second it details
rigorously how to achieve “faithfully rounded” implementations.
Third it shows how to automate this implementation process
using the MetaLibm framework, on SSE/AVX and AVX2
supporting micro-architectures. Finally we illustrate that this
process enables to achieve high throughput implementations for
the binary32 and binary64 formats in a fully automated way.

Keywords: logarithm function, vector micro-architectures,
faithful rounding, automated design

I. INTRODUCTION

Nowadays, most modern micro-architectures embrace new
hardware support for vector instructions in floating-point arith-
metic, besides scalar instructions. They enable to treat packed
inputs (typically 4 or 8) in a single instruction, thus potentially
increasing the performance of floating-point programs. The
challenge is now to use these instructions properly to write ef-
ficient vectorized implementations of mathematical functions.
These are widely used in scientific programs manipulating
floating-point computations, for which performance improve-
ment is crucial (like in physics, for example).

In this article, we deal with the vectorized implemen-
tation of the logarithm function, log(x), in floating-point
arithmetic, with a particular focus on its automation through
the MetaLibm framework [1], [2]. It enables to describe the
implementation of a function using a meta-language and to
generate C codes optimized for different micro-architectures.
For performance purpose, we target “faithfully rounded” im-
plementations, that is, with 1-ulp accuracy. Even if, since 2008,
the IEEE 754 standard recommends the correct rounding for
scalar elementary functions like log(x), no output accuracy
is required nor recommended for functions with vector argu-
ments [3], and “faithful rounding” is often sufficient in high-
performance computing context, for example in physics [4].

Several vectorized implementations of mathematical func-
tions have already been proposed. The commercial Intel

SVML library1 provides intrinsic support for vectorized math-
ematical functions, but it is not freely available. Other, non-
commercial implementations have been proposed. In 2015,
Intel contributed the GNU Libmvec to glibc 2.22.2 AMD also
contributed the proprietary ACML_MV (no longer available)
and the AMD LibM.3 All these libraries support a set of
vectorized mathematical functions. GNU Libmvec claims rea-
sonable testing to pass 4-ulp maximum relative error, while
ACML_MV was announced returning results accurate to at
most 1 ulp, but with unpredictable behavior for subnormal
inputs. Unfortunately, GNU Libmvec is written in assembly
code, which reduces portability. The VDT is another open
source effort [4]: in terms of accuracy, log(x) function is
announced with at most 2 bits different compared to AMD
LibM. Two recent projects are Yeppp4 and SLEEF,5 the latter
providing 3-ulp vectorized function versions. Finally in 2016, a
new SIMD vector library is proposed [5]. Written in high-level
C language, log(x) is accurate to at most 1.0825 ulp. Note that
the accuracy of these implementations is not guaranteed since,
to our knowledge, it is obtained by non-exhaustive testing.

We provide here high throughput “faithfully rounded” im-
plementations of log(x), in the binary32 and binary64 formats,
and with a guarantee on the output accuracy. We propose
also a meta-implementation of this function in the MetaLibm
framework, enabling to write different optimized binary32
versions. This work being parametrized by the precision and
code generation being based on MetaLibm backends, this can
easily be extended to any other precision. Our functions do
not handle special inputs, producing unpredictable outputs in
these cases, and the subnormal inputs are considered in the
main flow. This results in branchless programs, which avoids
an expensive fallback treatment for these inputs (like most of
the vector libraries presented above do) at a small overhead.

Therefore the main contributions of the article are:
• A branchless range reduction, designed to use at best

some special features available on SSE/AVX and AVX2
instruction sets,

• A rigorous description of how to achieve “faithful round-
ing” in a guaranteed fashion,

1See https://software.intel.com/en-us/node/524289.
2See https://sourceware.org/glibc/wiki/libmvec.
3See https://developer.amd.com/amd-cpu-libraries/amd-math-library-libm/.
4See http://www.yeppp.info/.
5See http://sleef.org.

https://software.intel.com/en-us/node/524289
https://sourceware.org/glibc/wiki/libmvec
https://developer.amd.com/amd-cpu-libraries/amd-math-library-libm/
http://www.yeppp.info/
http://sleef.org

• The meta-implementation of this range reduction in the
MetaLibm framework, parametrized by the precision, and
enabling to generate different function versions, opti-
mized for various instruction sets and vector sizes.

The article is organized as follows: Section II details the
range reduction we use to achieve required accuracy, while
Section III gives some guidelines on how to build accurate
enough programs. Then Section IV provides some implemen-
tation details. In Section V, we present the work done in the
MetaLibm framework. And Section VI gives some numerical
results, before a conclusion in Section VII.

II. ALGORITHM FOR log(x) WITH FAITHFUL ROUNDING

We consider here that the input x is neither a special input
(NaN, ±∞, ±0, or x ≤ 0), nor the particular input x = 1. All
the floating-point numbers manipulated, as well as the floating-
point operations carried out, are in precision p ≥ 2.

A. Range reduction

Let x 6= 1 be a positive floating-point number as defined in [3]
with the sign s = 0:

x = m · 2e, (1)

where m ∈ [1, 2 − 21−p] and e ∈ {emin, · · · , emax}. Many
techniques have already been designed for the implementation
of log(x). They are generally based on table lookup and/or
polynomial evaluations [6]–[13]. Here let ri denote an approx-
imation of 1/m. Then using log(x) = e · log(2)+ log(m), the
log(x) function is computed as follows:

log(x) = (e+ τ) · log(2)− log(2τ · ri) + log(1 + u),

where u = ri · m − 1. Here τ = [m >
√
2] is introduced

to avoid the catastrophic cancellation that may occur while
computing e · log(2) + log(m) when e = −1 and m ≈ 2 as
in [13]. Note that this rewriting enables to avoid code branches,
and to take advantage of the rcp instruction, returning an
approximation of the reciprocal and available on recent vector
micro-architectures.

Furthermore when x is a subnormal floating-point number,
a usual way consists in rescaling x in the normal range. Hence
let x′ be a floating-point number defined as:

x′ = x · 2λ with λ ∈ {0, · · · , p− 1}, (2)

where λ is the number of leading zeros in the binary repre-
sentation of m. It follows that x′ = 2e

′ ·m′ ≥ 2emin and

log(x) = (e′+ τ −λ) · log(2)− log(2τ · ri)+ log(1+u), (3)

with m′ ∈ [1, 2 − 21−p], represented exactly with only one
precision-p floating-point number. The quantity ri is thus an
approximation of 1/m′ obtained with the rcp instruction
truncated on i bits, and u = ri · m′ − 1. In addition the
value − log(2τ · ri) is retrieved from a lookup table using
the i > 0 most significant fraction bits of the significand of ri.

Note the way subnormal inputs are handled here. It is
different from the one usually seen in vector function imple-
mentations, for which calling a fallback routine for these inputs

is often preferred. However, treating subnormal inputs in the
general flow has no great impact on performance as discussed
in Section VI-D.

B. How to determine ri, u, τ , and − log(2τ · ri)?
Let us now detail the computation of ri, u, τ , and − log(2τ ·ri).

Determination of ri. Let assume an rcp instruction available,
that returns an approximation of 1/m′ with a relative error
bounded by κ:

rcp(m′) = 1/m′ · (1 + εrcp), with |εrcp| ≤ κ. (4)

The quantity ri is then computed by truncating rcp(m′) on
i > 0 fraction bits. In order to improve and to re-center error
enclosure, we first add one half-ulp on i bits. Thus we have

ri = rcp(m′) · (1 + εri), with |εri | ≤ 2−i−1,

since m′, ri > 0. It follows that ri = 1/m′ ·(1+εrcp)·(1+εri).
Hence:

ri = 1/m′ · (1 + ε) with ε = εrcp + εri + εrcp · εri , (5)

where
|ε| ≤ κ+ 2−i−1 + κ · 2−i−1. (6)

This assumption on rcp is not restrictive at all. This kind of
instructions is available on a many vector micro-architectures,
like on Intel’s ones since SSE and considered in this article,
or on ARM’s ones through the VRECPE (Vector Reciprocal
Estimate) instruction.6 If it is not the case, it can be emulated
with full division or lookup table, as discussed in Section V.
For example, using Intel intrinsics guide,7 we know that
SSE/AVX instruction sets provide a binary32 rcp instruction
with a maximum relative error less than 1.5·2−12, that is, with
|εrcp| ≤ 1.5 · 2−12, while on more recent micro-architectures,
AVX-512 instruction set provides also a binary64 rcp in-
struction with |εrcp| ≤ 2−14. On SSE/AVX-supporting micro-
architectures, the binary32 instruction can also be used to
approximate 1/m′ for a binary64 input: m′ must first be
casted to the binary32 format, thus slightly increasing the
approximation error: |εrcp| ≤ 1.5 · 2−12 + 2−24 + 1.5 · 2−36.

Determination of u. Since u = ri ·m′−1, we deduce from (5)
that the quantity u = ε, that is, u is the error occurring when
approximating 1/m′ by ri.

Property 1: Let x 6= 1 be a positive floating-point number
as in (1). The quantity u in (3) can be represented exactly
with only one precision-p floating-point number as long as
the parameter i is chosen so that:

i ≤ emax − 2 and κ · (2i + 2−1) < 2−1. (7)

Proof: Let M and R be the integer significands of m′ and
ri, respectively. Since ri is obtained after truncating rcp(m′)
on i > 0 fraction bits, its significand can be stored on at most
i+ 1 bits. Hence

m′ =M · 21−p and ri = R · 2δ−i,
6See ARM Compiler armasm Reference Guide.
7See https://software.intel.com/sites/landingpage/IntrinsicsGuide/.

Table I
SUITABLE VALUES FOR i FOR DIFFERENT COMBINATIONS (eMAX, κ).

emax κ i ∈ · · ·
127 1.5 · 2−12 [1, 10]
1023 2−14 [1, 12]
1023 1.5 · 2−12 + 2−24 + 1.5 · 2−36 [1, 10]

with δ ∈ {−1, 0}. Using u = ri ·m′ − 1, we rewrite u as:

u = R ·M · 2δ−i+1−p − 1

= 2δ−i+1−p ·
(
R ·M − 2p−1+i−δ

)
.

Since p ≥ 2 and i > 0, then if i ≤ emax − 2, we deduce that
δ − i + 1 − p ∈ [emin + 1 − p, 1 − p] is the exponent of a
floating-point number. Moreover the value U defined as:

U = R ·M − 2p+i−1−δ

is an integer. Using (6), since u = ε, we deduce that:

|U | ≤ κ · 2p · (2i + 2−1) + 2p−1.

Therefore if i is chosen so that κ · (2i + 2−1) < 2−1, then
|U | < 2p, and u is a precision-p floating-point number, which
concludes the proof.

From Property 1, we know that for certain values of i, the
quantity u fits exactly in only one floating-point number in
precision p. These values are given in Table I, for different
combinations (emax, κ). As a consequence, in order to im-
plement the sequence computing u, a first choice may be to
use an fma, returning exactly u in a single instruction, and
available on recent micro-architectures. If it is not available, an
alternative is to use multi-word arithmetic, like double-double
arithmetic in [14], [15]. This is discussed in Section VI.

Determination of τ and − log(2τ ·ri). The value − log(2τ ·ri)
is an approximation of − log(2τ/m′), and it is retrieved from
a lookup table, indexed only by the i most significant fraction
bits of ri, and not by τ . It follows that this table is built
such that for the entries corresponding to τ = 0, it contains
approximations of − log(1/m′), while for the others (τ = 1),
it contains approximations of − log(2/m′).

As a consequence, each cell in the table must represent m′

values for which τ is the same. In this sense, τ cannot be
decided using m′, but it must be decided using the i most
significant fraction bits of ri, as well, denoted by idx below.
And since ri is a floating-point number, τ is computed as:

τ =

{
1 if idx ≤ b(2/

√
2− 1) · 2ic,

0 otherwise.
(8)

This way, when m′ ≈ 1, we may have idx = 0 and τ = 1,
while τ should be 0. Hence in this particular case, the value
of τ must be explicitly set to 0.

Note that τ in (8) may not correspond exactly to the
definition of τ in Section II-A: this is not an issue since
we have a certain latitude for the value involved in the test.
Usually

√
2 is chosen to re-center the fraction around 1, but

other values around
√
2 do also work.

C. How to ensure faithful rounding?

Let r be an approximation of log(x), with x 6= 1 a positive
floating-point number. For accuracy purpose, the value r is
represented as the unevaluated sum of two floating-point
numbers rh and r` in precision p, that is

r = rh + r` with |r`| < 1
2 ulp (rh) ≤ 2−p · |rh|. (9)

Our goal is to compute r so that rh is a “faithful rounding”
of log(x), that is, either RD(log(x)) or RU(log(x)). To do
this, following [16], a sufficient condition is:

|rh − log(x)| < ulp (log(x)) . (10)

Using the triangular inequality, we have:

|rh − log(x)| ≤ |(rh + r`)− log(x)|+ |r`|.

Hence from (9) and assuming ulp (log(x)) = ulp (rh), we
deduce that if

|(rh + r`)− log(x)| ≤ 1
2 ulp (rh) , (11)

then (10) holds. When log(x) ∈]2k−1 · (2 − 2−p), 2k[, with
k ∈ Z, we have ulp (log(x)) = 1

2 ulp (rh): these cases are
ignored at implementation time, and the accuracy of the result
for these particular inputs is checked a posteriori by exhaustive
testing.

Now let us distinguish three cases:
• Case 1: When e′ + τ − λ = 0, and x′ ∈ X with

X =

[
1 + κ

1 + 2−i−1 − 21−p
,

1− κ
1− 2−i−2

]
,

we show that log(2τ · ri) = 0, and log(x) = log(1 + u).
In this case, since | log(x)| > 2−p, we have |rh| ≥ 2−p

and ulp (rh) ≥ 2−2p+1. (See [13, Prop. 3] for details.)
• Case 2: When e′ + τ − λ = 0 and x′ /∈ X :

| log(x)| > min

with min = min(| log(inf(X))|, | log(sup(X))|). Then

|rh| ≥ min and ulp (rh) ≥ ulp (min) .

• Case 3: Otherwise, e′ + τ − λ 6= 0: thus we have
| log(x)| > log(

√
2). Hence without loss of generality,

we deduce that | log(x)| > 2−2, then |rh| ≥ 2−2 and
ulp (rh) ≥ 2−p−1.

It follows that if

|r − log(x)| ≤ θ with θ =


2−2p in Case 1,
ulp (min) /2 in Case 2,
2−p−2 in Case 3,

(12)

then (11) holds, and rh is a “faithful rounding” of log(x). For
example, for (p, i) = (24, 8), we have:

min ≈ 6.1 · 10−4 and ulp (min) = 2−34.

Distinguishing these three cases will help us in certifying
the error entailed by the evaluation of the program in finite
precision as explained in Section IV-B.

III. GUIDELINES TO BUILD ACCURATE ENOUGH PROGRAM

This section gives some guidelines to build a program that
returns a “faithful rounding” of log(x). It is based on the eval-
uation of a particular polynomial. Then, this section presents
how to constraint some coefficients of this polynomial, so that
the special input 1 can also be handled in the general flow.

A. Program to handle the general flow

Let x 6= 1 be a floating-point number. Our goal is now to build
a program that computes r = rh+r` as in (12). Following [13],
we use a 3-step process:
• We consider log(x) as the exact result of the function F

defined as in (3):

F (x) = (e′ + τ − λ) · log(2)− log(2τ · ri) + log(1 + u).

• Since F cannot be evaluated directly, we approximate the
function F by another function P :

P (x) = (e′ + τ − λ) · L2 + log_tbl(i) + a(u).

Here L2 approximates log(2) so as |L2 − log(2)| ≤ θ1,
and log_tbl(i) returns − log(2τ · ri) with an error no
greater than θ2. And finally a(u) is a polynomial ap-
proximant of the function log(1 + u) over the interval I
defined in (6) for ε, and with the approximation error
defined as:

max
u∈I
|log(1 + u)− a(u)| ≤ θ3.

• We finally evaluate P by a finite-precision evaluation
program P , that computes rh + r` and returns rh.

Using the triangular inequality, we have:

|r − log(x)| ≤ |F (x)− P (x)|+ |P (x)− P(x)|
≤ |e′ + τ − λ| · θ1 + θ2 + θ3 + θ4,

where θ4 is a bound on the evaluation error of P . Assuming
the three cases of Section II-C, in order to ensure that the
condition in (12) holds, we must build a program so that

|e′ + τ − λ| · θ1 + θ2 + θ3 + θ4 ≤ θ. (13)

This is detailed in Section IV-B.

B. How to handle the special input 1 in the general flow?

Let us now consider the case x = 1. Hence we have x′ = 1,
and m′ = 1. And from (4), we know that

rcp(m′) ∈ [1− κ, 1 + κ].

Recall that the quantity ri equals rcp(m′) plus one half-
ulp on i bits, then truncated on i fraction bits. Therefore if the
parameter i is chosen such that

2−i−2 ≥ κ and 2−i−1 ≤ 2−i − 21−p − κ, (14)

then, we can deduce that ri = 1. In this case, the computation
of log(x) is reduced to the evaluation of log(1 + u). For our
implementations, this appears for all the values i in Table I,
but for i = 10 when (p, κ) = (24, 1.5 · 2−12) and (p, κ) =
(53, 1.5 · 2−12 + 2−24 + 1.5 · 2−36).

As a consequence, since u is the error entailed by the
approximation of 1/m′ by ri, we deduce also that u = 0.
It follows that to handle the special input 1 in the general
flow, i must be chosen to satisfy (14), and the polynomial
approximant a(u) in Section III-A must be built so as the first
coefficient (a0) is zero, to ensure that a(u) = 0 in this case.

IV. SOME IMPLEMENTATION DETAILS

This section gives some details on our implementation process,
for the example of the binary32 format. After some elements
on the way used to write branchless programs, it presents how
to certify the accuracy of the output programs.

A. Branchless program

For performance purpose, a key point consists in writing
branchless programs. First τ is a boolean introduced to avoid
the catastrophic cancellation that may occur while reconstruct-
ing the result. It is actually an integer ∈ {0, 1} determined in
a branch-free fashion using comparison instructions.

Second, we must compute x′ = x · 2λ, defined in (2).
Once λ is known, this could be performed with a floating-
point multiplication. However, as observed in [17], multiplying
two floating-point numbers may lead to a huge overhead,
when one of both operands is a subnormal number which
may be the case. An alternative is to work on the bit string
encoding x using the standard binary interchange format
encoding [3, § 3.4]. Let the following bit string encode a
binary32 subnormal floating-point number x:

0 00000000 000000000︸ ︷︷ ︸
λ=9

101010000000000.

Computing x · 2λ just consists in shifting this bit string by
λ+ 1 bits to the left. With λ = 9, we obtain:

0 00000001 01010000000000 0000000000︸ ︷︷ ︸
λ+1=10

which encodes x′ ≥ 2emin . This sequence of operations relies
on arithmetic and logical instructions, but it requires a routine
returning λ if x is a subnormal number, and 0 otherwise. The
instruction set we target does not embrace any instruction
enabling to count the number of leading zeros in a bit
string. Various techniques can be implemented in software
for computing this, but either they are costly or they use
branches [18]. In our implementation, we use the following
piece of code, presented here for the binary32 arithmetic, but
that can be adapted to any other formats. It works on an
integer X , that represents the bit string of a floating-point x.

1typedef union { uint32_t i; float f; } cfloat32;
2
3uint32_t lambda_or_zero(uint32_t X) {
4cfloat32 Z;
5Z.i = X | 0x3f800000; // exponent of the
6// floating-point number 1
7Z.f -= 1.f;
8uint32_t mask = 0xffffffff + ((X >> 23) != 0);
9uint32_t value = ((Z.i >> 23) - 127) & mask;
10return -value;
11}

Table II
IMPLEMENTATION PARAMETERS FOR VARIOUS VALUES i AND p = 24,

AND TABLE AND POLYNOMIAL COEFFICIENT SIZES (# BYTES).

i d θ2 θ3 table coefficient

3 9 2−52.69 2−52.01 64 68
4 7 2−52.29 2−49.62 128 52
5 6 2−52.10 2−49.82 256 44
6 5 2−51.36 2−48.88 512 36
7 5 2−51.20 2−54.50 1024 36
8 4 2−51.04 2−48.98 2048 28
9 4 2−51.03 2−52.93 4096 28

1) If x is a normal number, its exponent field (X >> 23)
is non-zero, and mask = 0. Hence the routine returns 0.

2) Otherwise if x is a subnormal number:

x = 2−126 × 0. 000 · · · 000︸ ︷︷ ︸
λ

1 · · · .

Then at Line 5, we have:

Z = 20 × 1. 000 · · · 000︸ ︷︷ ︸
λ

1 · · · .

At Line 7, the subtraction is exact due to Sterbenz
lemma. Thus as long as 1 − p ≥ emin, we have
Z = 2−λ × 1. · · · .The exponent field of x being zero,
we deduce that mask = 232 − 1 = 1111 · · · 1111, and
value = −λ. Hence the routine returns λ.

This is a well-known technique, but to our knowledge, this
has never been published.

B. Certified evaluation program

Recall that in this section, we target the binary32 arithmetic,
that is, with p = 24. For accuracy purpose, we must build an
evaluation program, so that the bound in (13) is satisfied. And
as mentioned in Section II-C, we must distinguish three cases.
Indeed, the error bound θ = 2−48, which is the tightest in (12),
could not have been proven on the whole input interval.

From now we start by determining the polynomial degree
and coefficients. To avoid branches for deciding in which cases
the inputs fall, we choose to implement the log(x) function
with a single degree-d polynomial. Since θ1, θ2, θ3 ≥ 0, we
know from (12) and (13) that L2 and a(u) must be built
so as θ1, θ3 ≤ 2−48. To reach such θ1 bound, L2 must be
represented as the unevaluated sum of two binary32 floating-
point numbers. Remark also that the lookup table index size i
influences the approximation interval, and thus the degree d:
once the couple (i, d) is chosen, the polynomial approximant
together with the certified error bounds θ1, θ2 and θ3 are
computed using the Sollya tool.8 This way, we obtain θ1 ≈
2−53.33. In addition Table II shows the polynomial degree d,
the error bounds θ2 and θ3, as well as the memory occupancy
in bytes for lookup table and polynomial coefficients, for
different table index sizes i. In the rest of the example, we
choose to implement log(x) using a table indexed by 8 bits

8See http://sollya.gforge.inria.fr/ and [19].

and a degree-4 polynomial, which represents the best trade-off
in terms of performance as shown in Section VI.

The remaining part is to compute the program evaluation
error bound θ4, and to check if the bound (13) holds. This
error corresponds mainly to the error due to the evaluation of
the polynomial approximant a(u) in finite precision arithmetic,
combined with the error entailed by the reconstruction. Note
that the way used to evaluate a(u) may be determined by
using the software tool CGPE,9 which enables to build several
schemes to evaluate a given polynomial. Then bounding the
evaluation error is carried out using the Gappa tool, that
uses interval arithmetic and rewriting rules in order to bound
error entailed by the evaluation of a program in finite preci-
sion.10 Notice that our implementation works with double-
single arithmetic, that is, with numbers represented as the
unevaluated sum of two binary32 floating-point numbers. Thus
we first need to adapt the error bounds computed in [22,
§ 4] for double-double addition and multiplication to our
context, and to pass them to Gappa: we found a relative
error bound of 2−44 and 2−45 for double-single addition and
multiplication, respectively. Using them, we thus find that the
absolute evaluation error of the polynomial is not greater than
≈ 2−51.75, which is actually less than 2−48. Then according
to the case, we obtain:

θ4 ≤


2−50.75 in Case 1,
2−45.49 in Case 2,
2−36.21 in Case 3,

and in all cases, the condition in (13) holds.11

V. TOWARD AUTOMATED IMPLEMENTATION

This section presents some insights on how to automate the
implementation of this function. It starts with a description of
the MetaLibm framework, before some details on its extension
to our context.

A. The MetaLibm framework
The MetaLibm framework enables to describe the implemen-
tation of a function using a meta-language in a Python syntax.
More particularly it consists in describing a mathematical
function implementation as a set of high-level basic blocks.
Then the MetaLibm backend translates each of these basic
blocks in a specific instruction set, thus automatically out-
putting programs optimized for various floating-point formats
and micro-architectures [1], [2]. For example, the following
piece of code describes the multiplication x · x in this meta-
language, where x is the input variable of our program.

y = Multiplication(x, x, tag="y",
precision = ML_Binary32)

Then, if scalar architectures are targeted, MetaLibm simply
generates the sequence y = x * x, while if x86 architec-
tures with AVX2 are targeted, it provides the following piece
of C code, where vec_x is the vector equivalent of x.

9See http://cgpe.gforge.inria.fr/ and [20].
10See http://gappa.gforge.inria.fr/ and [21].
11The Sollya and Gappa scripts are available upon request.

http://sollya.gforge.inria.fr/

carg = GET_VEC_FIELD_ADDR(vec_x);
tmp = _mm256_load_ps(carg);
y = _mm256_mul_ps(tmp, tmp);

As other examples, when fma or rcp instructions are not
available, MetaLibm may replace them by a call to fma/fmaf
libm functions or a loookup table, respectively.

So far this framework has been actively developed as a fast
and efficient code generation tool for two kinds of final users.
The first kind is experienced software developers who aim
at implementing elementary mathematical functions libraries
optimized for different architectures. The second kind is non-
expert numerical software users, interested in customized
mathematical code generation for their applications. Among
the main features, it enables:
• To develop multi-architecture-specific meta-codes, and to

support transparently different accuracies (improved, nor-
mal, degraded or customized), producing automatically
different code versions,

• To factor common code across software and hard-
ware architectures, for various IO precisions and micro-
architectures, reducing thus the development time,

• To vectorize meta-code according to different micro-
architectures, to fit at best the underlying architecture.

The latter mainly consists in removing code branches, and
inserting tests and data selections, instead. This technique
implies speculative execution, and thus increases the code size,
and eventually the evaluation latency. However for throughput
purpose, this may be quite efficient as shown on Cephes
library [23]. Our programs are already written in a branchless
fashion: thus this vectorization step will not have any impact
on the produced optimized code. But this remark reinforces
our choice to write branchless codes, including the handling
of subnormal inputs in the general flow.

In this work, an effort has been made to enhance the back-
end of MetaLibm, with all the needed instructions unavailable
so far, but also to provide support to build efficient polynomial
evaluation schemes, as detailed in Section V-B below.

B. The case of polynomial evaluation schemes

As shown in Section II-A, our implementations of log(x)
function rely on the evaluation of a polynomial, whose degree
may vary from 4 up to 9 (Table II). Various schemes may
be used to evaluate a given degree-d polynomial. In order
to achieve high throughputs, we chose to use CGPE (Code
Generation for Polynomial Evaluation) to generate an efficient
polynomial evaluation scheme on the targeted architecture.
Given the polynomial coefficients and a bound on the eval-
uation error, it enables to automatically write and certify
programs to evaluate this polynomial. At first developed for
VLIW integer processors to provide fixed-point computation
abilities to this kind of hardware, it has recently been extended
to handle floating-point computations. But above all, one of
its main features is its capability in computing polynomial
evaluation schemes, exposing more or less instruction-level
parallelism. To do this, it is based on exhaustive and heuristic

algorithms that look for low latency polynomial evaluation
schemes on abstract customizable architectures.

CGPE is written in C++ and is available as a command-line
tool. Since MetaLibm is written in Python, a first step was
to develop Python bindings for CGPE (called PythonCGPE).
This package provides a non-exhaustive interface to CGPE
features in Python that gives means to automatically generate
efficient polynomial schemes given adder and multiplier laten-
cies. It uses heuristics for polynomials of degree greater than 6
to avoid blocking MetaLibm whenever the search space grows
too large. Note that even with these heuristics, the search space
may get huge when the degree increases. Hence as soon as
d ≥ 12, we choose to skip the schemes computation step, and
to rely only on the classic Estrin’s rule. This is a well-known
limit of the CGPE software tool, and solving this issue is out
of the scope of this article.

VI. NUMERICAL RESULTS

We have written various versions of log(x), and evaluate their
performance. This section compares our implementations to
existing solutions, and it studies the impact of three design
parameters: table size, fma/rcp use, and subnormal handling.

A. Experimental protocol

We measured the reciprocal throughput of handmade and
generated routines, and evaluate them against the Lib-
mvec routines. All benchmarks were run on an Intel R©

Xeon R© Processor E5-2650v4, which features the AVX2 in-
struction set extensions. The operating system was Cen-
tOS Linux release 7.4.1708, running a Linux kernel ver-
sion 3.10.0-693.2.2.el7.x86_64. All source code was com-
piled using GCC 7.2.0, linked against glibc 2.26, both
compiled from source. Shared compiler flags included -O3
-mtune=native. For Libmvec benchmarks, we also had to
enable -ftree-loop-vectorize -ffast-math and
link against GNU libm. The former option is used to vectorize
loops, while the latter enables mathematical simplifications,
flushes subnormal arguments and results to zero, among
other optimizations, and is required to activate the Libmvec.
For all benchmarks, to enable AVX2 code generation we
simply used the -march=core-avx2 flag, while we used
-march=corei7 to restrict GCC to emitting SSE4 code.

To evaluate these performances, we used either automated
micro-benchmarks provided by MetaLibm or custom micro-
benchmarks for the handmade version and Libmvec routines.
These custom micro-benchmarks tried to reproduce plausi-
ble workloads by using pseudo-random inputs, but also rare
workloads by using only subnormal inputs. The benchmarks
were designed to warm up the L1 cache before the main
measurement, so that cache-miss penalties could be kept to
a minimum. Also, we chose to take the minimum measured
reciprocal throughput for each micro-benchmark. We claim
that this represents the best the CPU can actually compute
when there is the least noise perturbing the measures. This
can be further justified by the fact that we benchmarked sep-
arately pseudo-random input vectors versus subnormals-only

Table III
MEASURED PERFORMANCES OF OUR IMPLEMENTATIONS COMPARED TO THE GNU LIBMVEC, IN CYCLES PER ELEMENT (CPE).

Version ISA -ffast-math Accuracy Workload Reciprocal throughput (CPE) Reciprocal throughput (CPE)
enabled in binary32 in binary64

Libmvec 128 bits SSE4 yes 4 ulp Pseudo-random 1.2 5.9
Libmvec 256 bits AVX2 yes 4 ulp Pseudo-random 0.3 1.3
Libmvec 128 bits SSE4 yes 4 ulp Subnormals 6.7 40.5
Libmvec 256 bits AVX2 yes 4 ulp Subnormals 2.6 15.2

Handmade 128 bits AVX2 no 1 ulp Any 18.8 80.2
Handmade 256 bits AVX2 no 1 ulp Any 10.5 42.2

ML-generated 128 bits AVX2 no 1 ulp Any 19.0 n/a
ML-generated 256 bits AVX2 no 1 ulp Any 11.0 n/a

vectors, which may yield lower performance. We also bench-
marked constants-only vectors, which might have yielded
better throughputs for vectorized memory gather.

B. Performance of the log(x) function
In this section, we measured the reciprocal throughput of the
generated routines, and compared them to SSE4 and AVX2
reference implementations coded by hand and to SSE4 and
AVX2 versions of Libmvec logf/log routines. In this exper-
iment, our implementations use fma, rcp, and tables indexed
by i = 8 bits as in Section IV-B, and we use MetaLibm and
custom micro-benchmarks, for generated and handmade codes,
respectively. To gain in confidence, the binary32 versions
have been exhaustively verified and compared with the values
returned by the MPFR library.12 Performance results are given
in Table III, in cycle per element (CPE).

We observe that using our approach, we achieve a binary32
implementation with a reciprocal throughput of ≈ 18.8 CPE
for vector size = 4 and ≈ 10.5 CPE for vector size = 8.
In binary64, the measured performances are ≈ 80.2 CPE for
vector size = 2 and ≈ 42.2 CPE for vector size = 4, that is, by
a factor of ≈ 4 compared to binary32 versions. We observe
similar performances for binary32 routines automatically gen-
erated with MetaLibm. Obviously, we are far away from the
Libmvec implementations, whose reciprocal throughputs vary
from 0.3 up to 6.7 in binary32 according to the vector sizes and
the input ranges. This might be due to the fact that binary32
Libmvec implementation relies on the evaluation of a small
degree polynomial, done using single precision arithmetic
only, while in our cases polynomials are evaluated using
double-single arithmetic. A direct consequence is the accuracy
of the output: indeed our implementations are correct to 1 ulp,
while Libmvec provides functions correct to at worse 4 ulp.
Furthermore Libmvec has a scalar fallback for special inputs
such as NaNs, infinities or zero. Since subnormal numbers are
flushed to zero with -ffast-math, the Libmvec routines
are much less efficient when dealing with a subnormals-only
vector, by a factor of ≈ 5 in binary32 and ranging from
6.8 up to 11.7 in binary64. Conversely as our scheme unifies
normal and subnormal handling, performance is not affected
by a subnormals-only vector. (The same remarks hold for the
binary64 format.)

12See http://www.mpfr.org/ and [24].

Table IV
MEASURED PERFORMANCES (CPE) ON AVX2 OF OUR GENERATED

IMPLEMENTATIONS, IN BINARY32 ARITHMETIC AND FOR VECTORS OF
SIZE 4 (V4) AND 8 (V8), WITH OR WITHOUT FMA/RCP.

i 3 4 5 6 7 8 9

v4 / original 57.7 49.6 43.4 20.3 20.4 19.0 19.0
v8 / original 30.3 25.5 13.5 12.2 12.2 11.0 11.0

v4 / no-fma 74.8 66.6 56.1 51.9 51.9 49.6 49.6
v8 / no-fma 39.8 35.6 30.4 27.7 27.7 26.5 26.5

v4 / no-rcp 98.0 70.3 65.3 55.0 49.5 46.9 46.9
v8 / no-rcp 55.3 42.0 34.2 29.3 25.7 15.3 15.3

An interesting observation is that the multiple-indices vec-
torized accesses to tabulated values were not penalizing,
although data were accessed at non-contiguous locations. This
may be explained by the fact that all tables are small —
typically less than 2 kB for binary32 precision and less than
4 kB for binary64 — therefore fitting easily in the 32-kB L1d
cache of the tested processor.

C. Impact of table size and architectural features

The range reduction presented in Section II-A heavily re-
lies on some particular architectural features, like fma and
rcp instructions. In this section, we modified our meta-
implementation, to produce binary32 routines relying on multi-
word arithmetic and table lookup, instead, respectively, to
observe the impact on performance of using these features.
Table IV reports the performance of these routines in CPE,
for different table index sizes, from 3 up to 9 bits, and for
different vector sizes (typically 4 and 8),

As expected, the performance of the routines increases when
the index size and consequently the table size increase. Using
this table we may conclude that, for performance purpose, a
table indexed by 8 bits seems to be a good choice, with a
thoughput of 19.0 CPE.

Note that fma and rcp instructions have a great impact
on performance of our generated implementations. Indeed
by replacing fma with multi-word arithmetic, we observe a
slowdown factor between 1.29 and 2.61 for vector size = 4,
and between 1.31 and 2.4 for vector size = 8. Regarding rcp,
using table lookup, instead, leads to a slowdown of a factor
between 1.41 and 2.7 for vector size = 4, and between 1.39
and 2.53 for vector size = 8. In the latter case, Property 1

http://www.mpfr.org/

Table V
MEASURED PERFORMANCES (CPE) ON AVX2 OF OUR GENERATED

IMPLEMENTATIONS, IN BINARY32 ARITHMETIC AND FOR VECTORS OF
SIZE 4 (V4) AND 8 (V8), WITH OR WITHOUT SUBNORMAL HANDLING.

i 3 4 5 6 7 8 9

v4 / no-sub 56.3 47.3 21.2 19.0 19.0 17.8 17.8
v8 / no-sub 28.7 24.7 12.9 11.5 11.5 16.6 16.7

cannot be verified: u must be represented as the unevaluated
sum of two floating-point numbers, leading to huge overhead
in the polynomial evaluation. This reinforces the interest
and efficiency of our approach on recent micro-architectures,
supporting both fma and rcp instructions.

D. Impact of subnormal handling

In this section, we measured the cost of supporting subnormals
in the main flow. Thus we modified our meta-implementation,
to generate binary32 routines with and without subnormal
handling. To unplug subnormal handling, it suffices to remove
λ from all the computations. Table V shows the performance
of these routines in CPE, for a parameter i ranging from 3 up
to 9, for different vector sizes (typically 4 and 8).

An interesting observation is that treating subnormal inputs
in the main flow has no great impact on the performance of
the function. Indeed, for vector size = 4, the overhead remains
no greater than 2.3 CPE, expect for i = 5 (22.2 CPE), and it is
always less than 2 CPE but for i = 4, which is acceptable. And
for vector size = 8, this overhead is always less than 1 CPE, but
for i = 3 (1.6 CPE). Remark that for i ∈ {8, 9}, this technique
degrade routine performance, compared to the original. This
reinforces our choice to avoid branches and fallback routines
to treat subnormals separately.

VII. CONCLUSION AND PERSPECTIVES

This article addresses the implementation of log(x) functions
on vector micro-architectures, with a particular focus on its
automation through the MetaLibm framework. This enables to
achieve high throughput implementations with 1-ulp accuracy,
optimized for AVX/SSE and AVX2 micro-architectures, with
a relatively small overhead due to handling subnormals in the
main flow (less than 2 CPE).

In Table III, "n/a" indicates that MetaLibm were not able
to generate these functions. This is actually due to the lack of
certain meta-instructions in the framework backend. Ongoing
work focuses on integrating these requirements. In a near fu-
ture, this will enable generation of binary64 implementations,
as well. More generally, the IEEE 754 standard defines two
other formats, namely, the binary16 and binary128. These
techniques being parametrized by the precision, as a conse-
quence, using these to write implementations for these formats
would be reachable and of interest. This would require efforts
to eventually emulate underlying required missing arithmetic
(SIMD support for binary128, for example), and to adapt the
MetaLibm backend in consequence.

Research direction is twofold: First we could extend our
efforts to the implementation of certain elementary functions.

Following [13], a direct extension would be the optimized
implementations of log2(x) and log10(x). In addition, we
could concentrate on the design of efficient exponential or
trigonometric functions, which are also widely used in HPC.
Second we could adapt our work to produce programs with
different accuracy levels, like in [5] where 8 ulp is guaranteed.

REFERENCES

[1] N. Brunie, “Contributions to computer arithmetic and applications to
embedded systems,” Ph.D. dissertation, 2014.

[2] N. Brunie, F. de Dinechin, O. Kupriianova, and C. Lauter, “Code
generators for mathematical functions,” in 22d IEEE Symposium on
Computer Arithmetic, Jun. 2015.

[3] “IEEE standard for floating-point arithmetic,” IEEE Std. 754-2008,
pages 1–58, 2008.

[4] D. Piparo, V. Innocente, and T. Hauth, “Speeding up HEP experiment
software with a library of fast and auto-vectorisable mathematical
functions,” Journal of Physics: Conference Series, vol. 513, no. 5, p. 7,
2014.

[5] C. Lauter, “A new open-source SIMD vector libm fully implemented
with high-level scalar C,” in 2016 50th Asilomar Conference on Signals,
Systems and Computers , Pacific Grove, United States, Nov. 2016, pp.
407 – 411.

[6] P. T. P. Tang, “Table-driven implementation of the logarithm function
in IEEE floating-point arithmetic,” ACM Transactions on Mathematical
Software, vol. 16, no. 4, pp. 378 – 400, 1990.

[7] S. Gal, “Computing elementary functions: A new approach for achieving
high accuracy and good performance,” in Proceedings of the Symposium
on Accurate Scientific Computations. London, UK, UK: Springer-
Verlag, 1986, pp. 1–16.

[8] S. Gal and B. Bachelis, “An accurate elementary mathematical library for
the IEEE floating point standard,” ACM Transactions on Mathematical
Software, vol. 17, no. 1, pp. 26–45, 1991.

[9] W. F. Wong and E. Goto, “Fast evaluation of the elementary functions
in double precision,” in Twenty-Seventh Annual Hawaii International
Conference on System Sciences, 1994, pp. 349–358.

[10] ——, “Fast hardware-based algorithms for elementary function compu-
tations using rectangular multipliers,” pp. 278–294, 1994.

[11] ——, “Fast evaluation of the elementary functions in single precision,”
IEEE Transactions on Computers, vol. 44, no. 3, pp. 453–457, 1995.

[12] M. Schulte and E. Swartzlander, “Exact rounding of certain elementary
functions,” in Proc. of the 11th IEEE Symposium on Computer Arith-
metic (ARITH’11), 1993, pp. 138–145.

[13] G. Revy, “Automated design of floating-point logarithm functions on
integer processors,” in ARITH 23, Jul. 2016.

[14] C. Lauter, “Arrondi correct de fonctions mathématiques - fonctions uni-
variées et bivariées, certification et automatisation,” Ph.D. dissertation,
Université de Lyon - École Normale Supérieure de Lyon, 2008.

[15] F. de Dinechin, C. Lauter, and J.-M. Muller, “Fast and correctly rounded
logarithms in double-precision,” RAIRO - Theoretical Informatics and
Applications, vol. 41, no. 1, pp. 85–102, 2007.

[16] J.-M. Muller, “On the definition of ulp(x),” 2005.
[17] H. de Lassus Saint-Geniès and G. Revy, “Performances de schémas

d’évaluation polynomiale sur architectures vectorielles,” in ComPAS:
Conférence en Parallélisme, Architecture et Système, Jul. 2016.

[18] H. S. W. Jr., Hacker’s Delight. Addison-Wesley, 2003.
[19] S. Chevillard, M. Joldeş, and C. Lauter, “Sollya: An environment for

the development of numerical codes,” in Mathematical Software - ICMS
2010, ser. Lecture Notes in Computer Science, K. Fukuda, J. van der
Hoeven, M. Joswig, and N. Takayama, Eds., vol. 6327. Heidelberg,
Germany: Springer, September 2010, pp. 28–31.

[20] C. Mouilleron and G. Revy, “Automatic Generation of Fast and Certified
Code for Polynomial Evaluation,” in Proceedings of the 20th IEEE
Symposium on Computer Arithmetic (ARITH’20), E. Antelo, D. Hough,
and P. Ienne, Eds. Tuebingen, Germany: IEEE Computer Society, July
2011, pp. 233–242.

[21] G. Melquiond, “De l’arithmétique d’intervalles à la certification de
programmes,” Ph.D. dissertation, ÉNS Lyon, France, 2006.

[22] C. Lauter, “Basic building blocks for a triple-double intermediate
format,” Tech. Rep. RR-5702, 2005.

[23] D. Piparo, “The VDT Mathematical Library,” 2nd CERN Openlab/IN-
TEL Workshop on Numerical Computing, 2012.

[24] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A Multiple-precision Binary Floating-point Library with Cor-
rect Rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, 2007.

	Introduction
	Algorithm for log(x) with faithful rounding
	Range reduction
	How to determine ri, u, , and -log(2ri)?
	How to ensure faithful rounding?

	Guidelines to build accurate enough program
	Program to handle the general flow
	How to handle the special input 1 in the general flow?

	Some implementation details
	Branchless program
	Certified evaluation program

	Toward automated implementation
	The MetaLibm framework
	The case of polynomial evaluation schemes

	Numerical results
	Experimental protocol
	Performance of the log(x) function
	Impact of table size and architectural features
	Impact of subnormal handling

	Conclusion and perspectives
	References

