
The University of Manchester Research

A Soft Dual-Processor System with a Partially Run-Time
Reconfigurable Shared 128-Bit SIMD Engine
DOI:
10.1109/asap.2018.8445115

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Garcia Ordaz, J. R., & Koch, D. (2018). A Soft Dual-Processor System with a Partially Run-Time Reconfigurable
Shared 128-Bit SIMD Engine. In The 29th IEEE International Conference on Application-specific Systems,
Architectures and Processors 2018 https://doi.org/10.1109/asap.2018.8445115

Published in:
The 29th IEEE International Conference on Application-specific Systems, Architectures and Processors 2018

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:16. Apr. 2024

https://doi.org/10.1109/asap.2018.8445115
https://research.manchester.ac.uk/en/publications/13fc2c45-424d-47b3-98d5-3a5999fd9685
https://doi.org/10.1109/asap.2018.8445115


A Soft Dual-Processor System with a Partially
Run-Time Reconfigurable Shared 128-Bit SIMD

Engine

Jose Raul Garcia Ordaz and Dirk Koch
School of Computer Science

The University of Manchester, United Kingdom

{raul.garcia, dirk.koch}@manchester.ac.uk

Abstract—In this work, we present a soft dual-processor system
that, as a distinctive feature, seamlessly integrates a partially
run-time reconfigurable 128-bit SIMD engine. Importantly, the
SIMD engine is tightly coupled to both scalar CPUs and it is
shared amongst them with the purpose of drastically improving
overall area utilization. We show that the proposed SIMD
engine increases performance-per-area and that it can be used
to substantially accelerate time consuming kernels for a set of
media applications.

I. INTRODUCTION

Embedded systems are often required to deliver high per-
formance for a wide range of applications, to operate with
relatively small energy budgets, and to be very cost efficient.
In order to meet these stringent requirements, three types of
architectures are commonly used to build embedded systems:
(1) Multi-processor architectures, which have been proven
to boost performance by exploiting program-level parallelism
or task-level parallelism. (2) Vector architectures, which ex-
ploit data-level parallelism in applications to deliver better
performance-per-area. (3) Adaptive architectures, which are
based on reconfigurable devices and which can be tuned at
run-time to enhance the performance of a running application.

Commonly, existing embedded systems only use one or two
of the approaches described above. In contrast, in this article
we present a novel system, targeting the embedded domain,
that integrates (1) the multi-processor, (2) the SIMD, and
(3) the adaptive approach to achieve high performance and
increased performance-per-area efficiency.

The architecture proposed in this article consists of a soft
dual-processor system augmented with a partially run-time
reconfigurable (PRR) 128-bit SIMD engine. This PPR 128-bit

SIMD engine can be split into 2, 4, 8, or 16 lanes according to
the requirements at hand. The SIMD engine is integrated into
the dual-processor system in such a way that programmability
overhead is kept at a minimum as the PRR-related mechanism
would be hidden to the software developer. Moreover, only a
small set of special instructions would be required to invoke
SIMD operations at run-time (see Section III).

Instead of implementing a costly SIMD engine per each
system CPU, the proposed system implements a SIMD engine
which is shared amongst both CPUs. This is achieved by
putting in place a resource sharing infrastructure that allows
the CPUs to time-share the reconfigurable SIMD unit. With
this, the overlap of compute and I/O bursts in time can be
leveraged. While standard operations such as arithmetic or
boolean operations can be executed by the SIMD engine,
custom SIMD instructions can also be integrated at run-time
to accelerate time-consuming kernels for media applications
(see Section V).

The contributions of this article are as follows: we reveal
in detail the microarchitecture of an adaptable soft multi-
processor system featuring a partially run-time reconfigurable
shared 128-bit SIMD engine. Furthermore, we describe the
design flow used to implement the static and the dynamic
subsystems comprising our design. Moreover, we demonstrate
that our system is more performance and area-efficient than a
baseline soft dual-processor system.

The remainder of this article is organized as follows: in
Section II we present related work, in Section III, we describe
the architecture of our proposed design. In Section IV, we
elaborate on the implementation details of the system, includ-



ing the PRR shared SIMD engine. In Section V we present a
case study to showcase the benefits of the proposed system.
Finally, in Section VI we present our conclusions.

II. BACKGROUND

In order to deliver the high performance demanded by
applications from compute-intensive domains such as the
media domain, hardened general-purpose processors have been
augmented with vector extensions. For example, ARM in-
corporated this by introducing the NEON engine, a 128-bit
SIMD execution unit mainly targeted to accelerate media
applications [1]. The NEON engine has its own register file
and can move data to/from the scalar ARM CPU. The NEON
engine is often found in ARM multi-processor systems such
as the Cortex-A9 MPCore [2] system. A similar system is
presented by Lee et al. in [3]. It is a dual-processor RISC-V
system with a vector accelerator targeted for ASIC implemen-
tation called Hwacha. That vector accelerator is organized in
execution banks. Hwacha breaks each vector instruction into
micro-ops which are executed on its corresponding bank.

In both of the previously described systems, an instance

of the vector engine is implemented per scalar CPU in the
system. Note that implementing each individual vector engine
has a substantial area cost (and an associated energy cost).
Consequently, the overall multi-processor system featuring
vector accelerators has a considerable area and energy over-
head compared to a system comprised only of scalar CPUs.

Furthermore, as the vector instructions provided by each
accelerator are hardwired, it is not possible to reconfigure
NEON or Hwacha at run-time, for instance, to adapt to an
application with requirements not considered at design time.
In this case, more specialized functionalities, exposed to the
programmer as vector instruction set extensions (ISE), would
have to be added at design-time. However, while this approach
can lead to enhanced performance, it would have substantial
area and energy costs.

In terms of soft-processor based systems, Yu et al. presented
in [4] a vector accelerator that can be efficiently implemented
in FPGAs. This FPGA-specific vector accelerator is coupled
to a scalar soft-processor in order to accelerate compute-
intensive kernels by exploiting existing data-level parallelism.
According to that work, vector accelerators are comparable in
performance to HLS-generated custom accelerators. Moreover,
both vector accelerators and HLS-generated custom hardware,

offer a high degree of configurability and a straightforward
programmability.

Similarly, Anjam et al. presented in [5] a VLIW-based
dual-processor system that shares a single execution unit
amongst the two CPUs. That system implements a resource
controller that time-shares the VLIW execution unit. The
rationale behind the described approach is that by having a
shared execution unit, less resources and energy are required.
However, that system [5] is completely static as it cannot be
modified at run-time.

In contrast, our proposed architecture is comprised of a
static subsystem that implements most of the multi-processor
system, and a dynamic subsystem which implements the SIMD
engine. In detail, we are reconfiguring the ALU datapath
of a SIMD engine. In this case, the PRR SIMD unit can
be reconfigured at run-time to integrate different customized
SIMD instructions.

While soft multi-processor systems deliver a substantial
level of performance, it would be highly desirable that they had
the ability to adapt to the requirements of a certain application
at run-time to achieve higher performance. To get this degree
of flexibility, partial run-time reconfiguration has been used.

For example, Cazzaniaga et al. demonstrated in [6] that
by using partial reconfiguration it is possible to change the
number of processors available in a system to provide high
performance and flexibility. Similarly, Nguyen et al. presented
in [7] a MicroBlaze-based multi-processor system where one
CPU remains static at run-time while the others can be par-
tially reconfigured. Moreover, the authors discuss how to meet
challenges such as task migration, bitstream relocation, and
processor debug in the context of adaptable multi-processor
systems.

Furthermore, Janßen et at. presented in [8] a heterogeneous
multi-processor system based on the Zynq chip from the
vendor Xilinx that leverages the concept of a Pynq overlay
to provide partially configurable overlays. In that system, the
hardened ARM multi-processor system is loosely coupled to
reconfigurable overlay accelerators through a standard AXI
bus. In contrast, our proposed PRR SIMD engine is very
tightly coupled to the main pipelines of both system CPUs
as described in Section III.

III. PROPOSED ARCHITECTURE

As a starting point, we built a dual-processor system based
on the Taiga soft single-processor [9]. Taiga implements a



subset of the 32-bit ISA of the RISC-V architecture [10]. In
particular, Taiga implements integer (I), multiply/divide (M),
and atomic (A) instructions. It was decided to leverage a
RISC-V CPU because it is currently becoming a dominating
open source solution providing well-maintained documenta-
tion, tool-chain, and a growing ecosystem.

Each scalar CPU features independent non-coherent instruc-
tion and data caches. Moreover, the CPUs are augmented with
a 128-bit SIMD engine which is shared by both CPUs. In
order to integrate the SIMD engine into the scalar CPUs,
some modifications were performed to each processor: First,
(1) the decode unit was extended to enable SIMD instruction
encoding. Then, (2) a 16-entry 128-bit wide register file
is implemented to hold vector operands/results. Finally, (3)
the load/store unit was modified to enable SIMD load/store
operations. This is achieved by loading/storing the four 32-
bit elements that comprise the SIMD vector in a sequential
fashion.

In our design, the SIMD engine is logically placed inline
with the scalar execution units and the reconfigurable region
hosting SIMD instructions is tiled in three slots as presented
in Figure 1. As that figure shows, each slot can be seen as
a blackbox that can implement SIMD instructions (note that
additional slots can be allocated at design-time to enable larger
instructions if needed).

We partitioned our baseline design into (1) a static subsys-

tem, comprising the CPUs and the memory subsystem, and
(2) a dynamic subsystem, comprising the PRR shared SIMD
engine.

The static subsystem is allocated to a static region on
an FPGA and it is physically placed to the right and left
sides of the dynamic subsystem. Correspondingly, the dynamic
subsystem is implemented on top of a partially run-time

reconfigurable (PRR) region in the FPGA, as described in
Section IV.

A. Resource Sharing Components

To enable sharing of the SIMD engine, our proposed system
implements the following components: (1) a slot-based infras-

tructure which propagates input operands and output results
to and from both processors. (2) A configuration controller

for the SIMD unit which is implemented as part of the static
subsystem. (3) A programmable instruction decoder that is
used to allow a user to retarget the system according to current
requirements.

Fig. 1: A high-level block diagram of the proposed architecture. A dual-
processor system provides a shared 128-bit SIMD engine that is placed
logically inline with the two scalar execution units. The SIMD engine is tiled
in three slots where each slot produces its own 128-bit result.

1) Slot-based Resource Sharing Infrastructure: The slots
that comprise the SIMD unit are interconnected in the follow-
ing fashion: operands coming from the decode unit of Core 0
enter the shared SIMD engine from its left-hand side. Then,
these operands (A0, B0) are propagated through connection
macros from Slot 0 to the next one until the operands reach
the last slot (i.e. Slot 2). Similarly, operands coming from
the decode unit of Core 1 enter the SIMD engine from the
opposite side. Then, these operands (A1, B1) are propagated
from the last slot (Slot 2) to the previous one until the operands
reach the fist slot (i.e. Slot 0). Note that the connection macros
are only used at design-time in order to constrain routing
and connection points for vector custom instructions. The
previously described wiring arrangement is shown in Figure 2.

With this arrangement, SIMD instructions implemented in
any slot get access to the two 128-bit input operands coming
from each CPU. Note that each SIMD instruction produces
its own 128-bit result. Consequently, the SIMD engine will
produce three different results for Core 0 (R0-0, R0-1, R0-2)
and three different results for Core 1 (R1-0, R1-1, R1-2).

2) SIMD Engine Configuration Controller: The configu-
ration controller is used (1) to time-share the SIMD engine
amongst the CPUs and (2) to integrate vector instructions at
run-time as required. The controller will exploit compute and
I/O bursts that are commonly observed in CPUs in order to
assign the SIMD engine to the processor that currently re-



Fig. 2: High-level view of the static/dynamic interconnection in our proposed
system. (a) Shows possible connection points for a reconfigurable SIMD
instruction for CPU 0 (A0, B0, R0), and (b) Shows possible connection points
for a reconfigurable SIMD instruction for CPU 1 (A1, B1, R1).

quires executing a vector instruction during a particular SIMD
processing burst. In this way, a CPU executing a compute-
intensive kernel at a certain point in time will make use of the
SIMD engine while the other CPU could be performing an
I/O task. In case of a conflict, one CPU is stalled. The stalling
CPUs are changed after each collision in order to guarantee
fairness.

We are using sharing of functional units for achieving
overall better performance-per-area. Moreover, we anticipate
that collisions of the two CPUs caused by simultaneous access
requests to a SIMD instruction will likely be seldom as
exclusive access to a particular SIMD slot is only needed
for one issue cycle. In cases where sharing of resources is
not desired, a second instance of the SIMD instruction may
be considered. Furthermore, two separate instances of the
same instruction (one for CPU 0 and one for CPU 1) may
be implemented into the same slot provided that the SIMD
instructions in question are lightweight enough to fit into the
same slot.

Note that the controller will also handle the
(re)configuration of SIMD instructions. We imagine an
scenario where application-specific SIMD instructions are
identified offline through program profiling. The selected
application-specific SIMD instructions are synthesized as
partial bitstreams to be integrated at run-time. Note that a
SIMD instruction is selected only if it provides substantial
speedups over scalar instructions for a given kernel. The
kernel speedup Sk provided by a specific SIMD instruction
is expressed as: Sk = tkISA/tkSIMD, where the execution

time of the kernel using instructions from the existing
RISC-V ISA (tkISA) is divided by the execution time of the
same kernel using that specific SIMD instruction (tkSIMD).
Moreover, each individual SIMD instruction has to be invoked
a substantial number of times to amortize the configuration
overhead.

This is expressed as: tSIMD ∗ n > tRCFG, where tSIMD

is the execution time of each individual SIMD instruction, n
represents the number of times that the SIMD instruction is
invoked, and tRCFG is the reconfiguration time corresponding
to that SIMD instruction.

TABLE I: Example settings of the programmable instruction decoder.

CPU 0 CPU 1
SIMD Inst. Inst. SIMD Inst. Inst.
Encoding Settings Encoding Settings

0 Trap 0 Slot 0, 2 Cycles, λ=1×
1 Slot 1, 1 Cycle, λ=4× 1 Trap
2 Slot 3, 2 Cycles, λ=2× 3 Slot 3, 2 Cycles, λ=2×
3 Trap 4 Trap

3) Programmable Instruction Decoder: A programmable
instruction decoder (PID) is used to provide the ability to
retarget the system at run-time without having to perform
a costly reconfiguration of the static subsystem. The PID is
an extension to the existing decode unit. The PID decodes
SIMD instruction information including: (1) the slot (i.e. S0-
S2) from which the result has to be retrieved, (2) the number
of execution cycles corresponding to that particular vector
instruction, and (3) the operation folding factor [11] (λ =
1×, 2×, 4×), which indicates that the vector operation will
be fractioned into N sub-operations of a smaller size and
executed sequentially for allowing cheaper implementation
cost and enhanced flexibility. Note that these settings can
be overwritten at run-time, for instance, to retarget vector
instructions to a different slot result or alternatively, to modify
vector instruction latency.

For example, consider the PID settings presented in Table I.
SIMD Instruction 0 is currently used only by CPU 1 and it is
executed in two CPU cycles. Note that this SIMD instruction
has a folding factor of 1, which indicates that it gets executed
on a 128-bit execution unit. Similarly, SIMD Instruction 1 is
used by CPU 0 only and has a folding factor of 4, which
indicates that the 128-bit operation is split into 4 32-bit sub-
operations where each one takes 1 CPU cycle to be issued to
the execution stage (i.e. 4 CPU cycles are required in total to
execute this SIMD instruction). In contrast, SIMD Instruction



2 is shared by the two processors and it has a folding factor
of λ = 2×.

Note that a trap mechanism is triggered by the decode unit
in case an issued SIMD instruction is not present in any of
the available engine slots. Here we decided for a software-
based approach where a trap handler performs either software
emulation or reconfiguration.

IV. SYSTEM IMPLEMENTATION

Our proposed system is implemented on Digilent’s Zed-
board, which features a Zynq device (Z-7020) from the vendor
Xilinx. Implementation details of both, the static (scalar)
subsystem and the partially run-time reconfigurable (SIMD)
subsystem are described next.

A. Static (Scalar) Subsystem Implementation

The static subsystem is comprised of two scalar RISC-V
CPUs and a common supporting infrastructure which is used
to interconnect the CPUs with the DDR memory. Note that we
are not using the ARM CPUs for processing in our design,
however the ARM subsystem is used as a link to the DDR
memory as direct communication between the FPGA fabric
and DDR memory in this device is not available [12]). The
operating frequency of the resulting static subsystem is 96
MHz and the corresponding resource utilization is presented
in Table II.

Fig. 3: Partial reconfiguration design flow for the proposed system.

While the Vivado tool from the vendor Xilinx provides
a flow for partial reconfiguration (PR) [13], it is not well
suited for implementing our design as it has some important
limitations: (1) in the Vivado PR flow the routing to the
anchor points from the PR region to the static region generally

Fig. 4: A detailed diagram of the wiring implemented to support resource
sharing for the SIMD engine. Please note that each signal in the interface is
heavily constrained to use a specific wiring resource in the FPGA fabric.

TABLE II: Static subsystem resource utilization.

System Component FPGA Primitive
LUT DSP BRAM

Soft Dual-Processor RISC-V System 6917 8 36
RISC-V CPU 0 2728 4 10
RISC-V CPU 1 2728 4 10

Common Infrastructure 1461 0 16

changes when the static subsystem is resynthesized. Moreover,
(2) a PR region cannot be shared by multiple modules at the
same time. Finally, (3) modules cannot be easily relocated to
a different slot position.

It is worth mentioning that our system is quite challenging to
route as just the operands and results take over 2×(2+3)×128
= 1280 individual interfacing wires that cross between the
static subsystem region and the reconfigurable region which is
located in a relatively small area with strict requirements on
the interfacing wires.

To overcome those issues, we used the GoAhead tool [14]
to build the static and the dynamic subsystems. GoAhead
leverages the concept of hard connection macros and blocker
macros to produce physical implementation constraints that
produce a predefined structured routing for interfacing with
reconfigurable modules.

GoAhead is used to generate TCL scripts that are used by
the Vivado flow to implement an interface that is vertically

aligned, has low communication overhead, and remains con-

sistent even if the static system is resynthesized.
The GoAhead tool also generates a VHDL template that

contains the corresponding module interface. This VHDL
entity is integrated into the system source code at design time



and it is synthesized along the rest of the static subsystem.

The static/dynamic interface is physically implemented
through connection primitives using the wire resources avail-
able in the FPGA fabric as illustrated in Figure 4. The connec-
tion primitives can be seen as placeholders for reconfigurable
SIMD instruction modules. Figure 3 illustrates our PR design
flow.

Figure 5 shows the floorplan of the implemented dual-
processor system. As this figure shows, the system is divided
into a static region and a PR region. Note that CPU 0 is placed
at the left-hand side of the PR region. Similarly, CPU 1 is
placed at the right-hand side of the PR region.

The static/dynamic interface is implemented in such a way
that the operands and results are connected botton-up (when
considering LSB to MSB direction). This incorporates the fact
that arithmetic operators are physically implemented botom-
up (i.e. the carry chain runs botom-up on the used Xilinx
Zynq FPGA). Consequently, four operand/result bit vectors
are connected per CLB row of the FPGA. Note that the
reconfigurable slots do not span the full height of a clock
region (which is not necessary in our implementation), as
required by the Xilinx PR design flow [13].

The smallest atomic unit that can be written to the FPGA
is a frame which provides configuration information of all
primitives and routing resources within the height of a clock
region. Sub-column reconfiguration is possible by generating
a configuration bitstream that keeps the information of the
static subsystem and only updates the configuration data of
the individual slot to be configured.

Corresponding bitstreams can be generated at the bitstream
level using the tool BitMan [15] at run-time. This method
uses the property that by overwriting a configuration multiple
times with the same content, this will not cause any glitches.
Alternatively, bitstreams can be generated offline using netlist
operations in GoAhead.

B. PRR (SIMD) Subsystem Implementation

The SIMD engine is implemented in the PRR region located
amongst the two system CPUs (see Figure 5). The size of the
PR region is set to 2082 LUTs. As described in Section III, the
SIMD engine implements a slot-based architecture where each
slot is 2 CLB columns wide. Therefore, each slot is comprised
of 694 LUTs.

The PRR region is reconfigured through the Internal Config-
uration Access Port (ICAP) supported by the Zynq device [13].

Fig. 5: Dual-Processor RISC-V system floorplan featuring a reconfigurable
shared 128-Bit SIMD engine. The static/dynamic interfacing wires are high-
lighted in red.

ICAP provides a maximum throughput of 400 MB/s. Conse-
quently, the theoretical best reconfiguration time for each PR
execution unit slot is 295 µs.

However, to hide SIMD module reconfiguration overhead
(which can negatively impact overall system performance), we
consider integrating SIMD module configuration prefetching
similarly as described by Hauck in [16]. With this technique,
prefetching calls can be inserted into the existing application
code so that SIMD module configurations are loaded in
advance to efficiently hide configuration latency.

V. CASE STUDY

In the following paragraphs we describe a case study, di-
vided in two parts, that showcases the benefits of our proposed
system.

1) Part 1: In this part, we consider the case where each
system CPU executes its own program, using its corresponding
memory space. As an example, we examine three application
kernels where vector instructions substantially reduce program
execution time as described in Section III: (1) a kernel for
mixing (MIX) N 16-bit PCM audio signals for a signal
processing program, (2) a kernel for computing the Sum of
Absolute Differences (SAD) for a motion estimation program,
and (3) a kernel for computing 8-bit Add-Compare-Select
(ACS) values for a Viterbi decoder algorithm. We obtained
speedup and resource utilization numbers for each kernel.



Speedup gains are obtained by using the RISC-V toolchain
and a cycle accurate simulator [17]. First, we compile each
program to obtain binaries. Then, those binaries are disassem-
bled to examine the generated assembly code. Additionally,
the binaries are simulated to extract program execution infor-
mation. Finally, based on the gathered information, speedup
gains are derived for using SIMD instructions instead of the
existing scalar RISC-V instructions.

Resource utilization is obtained from the Vivado tool after
implementing the selected SIMD instructions in RTL. These
SIMD instructions have been constrained to the area allocated
to a single 2 CLB-wide slot (i.e. 694 LUTs) as described in
Section IV.

Implementation results are summarized in Table III. The
studied kernel benchmarks are presented in the first column.
The second column shows the application-specific SIMD
instructions implemented for each kernel (note that we use
the prefix “V” to indicate a vector instruction and a postfix
“8/16” to indicate a byte or a halfword operation).

Column 3 shows SIMD instruction latency. Column 4 shows
the resource footprint corresponding to each SIMD instruction
in terms of LUTs. Finally, Column 5 shows the kernel speedup
gained by using the implemented SIMD instructions over
existing scalar operations.

Let us consider the VADD16 instruction, which was gen-
erated to accelerate the MIX kernel. It implements relatively
lightweight addition operations, and consequently, 2 instances
of this instruction can be simultaneously implemented in one
individual slot at a combined cost of 513 LUTs. This also
applies to the VADD8 and VSUB8 instructions implemented
for the ACS kernel. With this, each CPU can execute the same
instruction in a non mutually-exclusive manner.

In contrast, note that the VSAD8 instruction that is imple-
mented for the SAD kernel uses 1452 LUTs. In this case, to
implement the VSAD8 instruction, there could be two possible
solutions: (1) one would be to use other available slots.
Alternatively, (2) the design technique known as operation

folding [11] can be applied.

With this technique, commonly used in the DSP domain,
a vector operation normally executed by a vector execution

unit in 1 CPU cycle, is split into N sub-operations which are
sequentially executed by a scalar execution unit in N CPU

cycles. In this case, the VSAD8 instruction can be split into
4 sub-operations and sequentially executed by a scalar SAD8

instruction which has a cost of 364 LUTs.

Note that the reported cost is for a single instance of the
scalar SAD8 instruction. Consequently, the system CPUs could
only use this instruction in a mutually-exclusive fashion (when
using a single slot). Note that while a latency penalty is paid
with this approach, it allows the remaining slots to be used to
implement other instructions.

TABLE III: Characteristics of the implemented SIMD instructions.

Kernel SIMD Instruction Resource Kernel
Benchmark Instruction Latency Footprint Speedup

MIX VADD16 5.7 ns 513 LUTs 8×
VADD8 5.7 ns 513 LUTs

ACS VSUB8 5.7 ns 513 LUTs 16×
VSEL8 4.5 ns 129 LUTs

SAD VSAD8 25.6 ns 1452 LUTs 4×
SORT VSORT8 5.3 ns 312 LUTs 452 ×

VMBOX 6.1 ns 128 LUTs

2) Part 2: In this part, we consider the case where an
application is partitioned into the two system CPUs. The first
half of the application’s data is assigned to the private data
memory space of CPU 0, and the second half is assigned to
the private data memory space of CPU 1. As an example,
consider a sorting kernel (SORT) where an array of pixels (8-
bit values) has to be sorted by hue. In this case, half of the
array data is loaded to the private data memory space of CPU
0, and the other half of the array is loaded to the private data
memory space of CPU 1.

Each processor sorts its corresponding array subset and
then both results are merged, similarly as described by Zurek
et al. in [18], and by Wakasugi et al. in [19]. Instead of
using existing scalar RISC-V instructions, a vector sorting
instruction is integrated into the SIMD engine so that each
processor can sort 16 8-bit values at a time. According to our
analysis, sorting 16 8-bit values in one CPU running at 100
MHz, using scalar instructions, takes 32 µs.

In contrast, by using our custom VSORT8 instruction, the
same 16 8-bit values can be sorted in just one CPU cycle. This
represents a theoretical kernel speedup of 452×. The area cost
of the VSORT8 instruction is low, for this reason, two instances
of the same instruction had been integrated in the same slot
at a cost of only 312 LUTs.

In this way, each CPU can execute the same sorting instruc-
tion in a non mutually-exclusive fashion. Table III summarizes
these numbers. Moreover, since each kernel is executed in
parallel by the two system CPUs, it is expected that the overall
sorting application performance is additionally boosted about
2×.



Additionally, note that the architecture of our proposed
system opens up the opportunity of putting in place a low-
overhead mechanism for core-to-core communication. We
implemented this mechanism as a special mailbox instruction
VMBOX. This instruction can be used to move 128-bits of data
from one processor to the other in one CPU cycle without
putting pressure to the memory subsystem. This is useful, for
example, on the case described above where the sorted data
array from one of the CPUs is moved to the other processor
using this instruction so that both sorted data arrays can be
finally merged. The characteristics of the VMOV instruction
are presented in Table III.

VI. CONCLUSIONS

In this paper we presented a RISC-V multi-processor system
that provides a partially run-time reconfigurable 128-bit SIMD
engine. Our design merges the multi-processor paradigm, and
the SIMD and partial run-time reconfiguration techniques to
build a system that delivers more performance, efficiency, and
flexibility than a comparable baseline static system.

Additionally, we described the architecture of the proposed
system which includes the design of the static and the dynamic
subsystems and their interfaces. In particular, for the dynamic
subsystem, we described a slot-based execution unit used to
dynamically integrate SIMD instructions at run-time to obtain
substantial performance boosts. Furthermore, we presented in
detail the PR design flow and the additional components used
to implement our system.

Finally, we presented a case study to showcase our proposed
design. We demonstrated that by exploiting the PRR shared
SIMD engine, custom SIMD instructions can deliver speedups
of 4-452× for 4 time-consuming kernels. All this was achieved
at low resource footprints of just 129-1452 LUTs.

As future work, we envision extending the existing SIMD
instruction set with additional custom vector instructions to
accelerate a wider range of applications. For example custom
vector instructions to process arbitrary-precision operands can
be designed to accelerate machine learning applications that
show high data-level parallelism.

Furthermore, future work could also include scaling the
existing dual-processor system. In this case, a number of
design aspects can be considered. For example, (1) allocating
more resources to the dynamic subsystem and expanding the
128-bit interface to a wider vector, (2) adding more CPUs

to the existing system, (3) increasing both the static/dynamic
interface as well as the number of CPUs in the system.

Optionally, we are considering extending the existing RISC-
V toolchain with auto-vectorization options as a way to
facilitate the development of applications that can exploit the
provided SIMD engine.

ACKNOWLEDGMENT

This work is kindly supported by the Mexican National
Council for Science and Technology (CONACyT) under grant
381920, and through the Defence Science and Technology
Laboratory (DSTL), UK, under grant DSTLX-10000092266.
Furthermore, we thank the Xilinx University Program for
providing us with tools and hardware.

REFERENCES

[1] “Introducing NEON. Development Article,” www.arm.com.
[2] “Cortex-A9 MPCore. Technical Reference Manual,” www.arm.com.
[3] Y. Lee et al., “A 45nm 1.3 GHz 16.7 Double-Precision GFLOPS/W

RISC-V Processor with Vector Accelerators,” in European Solid State
Circuits Conference. IEEE, 2014.

[4] J. Yu, G. Lemieux, and C. Eagleston, “Vector Processing as a Soft-Core
CPU Accelerator,” in FPGA. ACM, 2008.

[5] F. Anjam, S. Wong, and F. Nadeem, “A Shared Reconfigurable VLIW
Multiprocessor System,” in IPDPSW, 2010.

[6] A. Cazzaniga et al., “On the Development of a Runtime Reconfigurable
Multicore System-On-Chip,” in DSD, 2012.

[7] T. D. Nguyen and A. Kumar, “PR-HMPSoC: A Versatile Partially
Reconfigurable Heterogeneous Multiprocessor System-on-Chip for Dy-
namic FPGA-Based Embedded Systems,” in FPL, 2014, pp. 1–6.

[8] B. Janßen, P. Zimprich, and M. Hübner, “A Dynamic Partial Reconfig-
urable Overlay Concept for PYNQ,” in FPL, 2017.

[9] E. Matthews and L. Shannon, “TAIGA: A New RISC-V Soft-Processor
Framework Enabling High Performance CPU Architectural Features,” in
FPL, 2017.

[10] A. Waterman and K. Asanović, “The RISC-V Instruction Set Manual
Volume I: User-Level ISA,” www.riscv.org.

[11] K. K. Parhi et al., “Synthesis of Control Circuits in Folded Pipelined
DSP Architectures,” IEEE Journal of Solid-State Circuits, vol. 27, 1992.

[12] M. Santarini, “Zynq-7000 EPP Sets Stage for New Era of Innovations,”
Xcell Journal, vol. 75, 2011.

[13] “Vivado Design Suite User Guide. Partial Reconfiguration,”
www.xilinx.com.

[14] C. Beckhoff et al., “GoAhead: A Partial Reconfiguration Framework,”
in FCCM, 2012.

[15] K. D. Pham et al., “BITMAN: A Tool and API for FPGA Bitstream
Manipulations,” in DATE. IEEE, 2017.

[16] S. Hauck, “Configuration Prefetch for Single Context Reconfigurable
Coprocessors,” in FPGA. ACM, 1998.

[17] N. Binkert et al., “The Gem5 Simulator,” SIGARCH Computer Archi-
tecture News, vol. 39, 2011.

[18] D. Żurek et al., “The Comparison of Parallel Sorting Algorithms
Implemented on Different Hardware Platforms,” Computer Science,
2013.

[19] Y. Wakasugi et al., “MipsCoreDuo: A Multifunction Dual-Core Proces-
sor,” in ISPACS, 2009.


