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Abstract— Memristive technologies are attractive candidates 

to replace conventional memory technologies and can also be used 
to perform logic and arithmetic operations. In this paper, we show 
how memristors are used to combine data storage and 
computation in the memory, thus enabling a novel non-von 
Neumann architecture called the 'memristive memory processing 
unit' (mMPU). The mMPU relies on a memristive logic technique 
called 'memristor aided logic' (MAGIC) that requires no 
modification to the memory array structure. By greatly reducing 
the data transfer between the CPU and the memory, the mMPU 
alleviates the primary restriction on performance and energy 
efficiency in modern computing systems. This paper describes 
basic principles and design considerations of MAGIC and the 
mMPU and presents a case study of digital image processing to 
demonstrate the benefits. 

Keywords— memristor, memristive device, RRAM, mMPU, 
MAGIC 

I. INTRODUCTION 
General purpose computing systems are typically designed 

in von Neumann architecture, or an ameliorated version of it, 
which separates the memory and processing space. In these 
systems, programs are executed by moving data between the 
processing unit and memory using specific operations 
(load/store). While this programming model is simple, the 
performance of the system is limited by the memory access 
time, which is substantially higher than the computing time 
itself. This performance bottleneck has become even more 
severe over the years because CPU speed has improved much 
more than memory speed and bandwidth [1]. Moreover, many 
modern workloads have high and unstructured data volumes 
with limited locality, reducing the effectiveness of data caching. 

With the demise of Dennard scaling [2], energy efficiency in 
computer systems has also become a daunting concern, and most 
modern computers are power limited [3]. A significant 
contributor to the power consumption of the system is the high 
energy cost of data movement, and especially of memory 
accesses [4]. For example, performing an add operation on 16-
bit numbers in 45nm CMOS technology requires 0.18 pJ, while 

moving the same data on-chip requires about 11 pJ per mm 
(60X). Sending the same data to an off-chip DRAM consumes 
640 pJ, 3600X more energy than the computation itself [5]. 

This separation of the processing and memory space – and 
thus the required transfer of data between them – constitute two 
main bottlenecks in current computing systems: speed ('memory 
wall') and energy efficiency ('power wall'). A promising 
approach to overcome these challenges is to push the 
computation closer to the memory. Both DRAM and emerging 
non-volatile memory have ample intrinsic parallelism, which 
goes unutilized today because of the pin-limited integrated 
circuit interface. Processing-In-Memory (PIM) can tap this 
intrinsic parallelism, avoiding the need for high-latency and 
high-energy chip-to-chip transfers, thus yielding massively 
parallel, high-performance, energy-efficient processing [6]. 

Early research into PIM dates back to the '90s, but four major 
challenges prevented its widespread adoption [7]. The first 
challenge was inadequate implementation technology. Although 
attempts were made to integrate the memory and CPU on the 
same die, the incompatibility of DRAM and CPU fabrication 
technologies made it difficult to incorporate these approaches in 
practical computing systems. The second was the lack of a 
processor architecture that could use the high bandwidth enabled 
by proximity to memory. Early PIM research required custom 
architectures, involving huge design and development efforts. 
The third challenge was to develop interfaces that allowed both 
the PIM computing units and the external processing units to 
access memory. Early efforts required the design and adoption 
of custom memory interfaces. The fourth challenge was the 
programming models. The early approaches had to develop the 
programming abstractions from the bottom up.  

In the modern age, advancements in the technologies and 
methodology of building computer systems have made it easier 
to address these challenges. For example, the first challenge – 
adequate implementation technology – has been addressed by 
the emergence of 3D die stacking, which enables heterogeneous 
integration of logic and memory, and by emerging memory 
technologies, which enable 3D fabrication of memory arrays on 
top of CMOS substrates [8]. Evolution of various other 
processing platforms, such as GPGPUs and custom 
accelerators, have solved the second problem by efficiently This research is partially supported by the European Research Council 
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utilizing the high memory bandwidth within the thermal 
constraints of the memory modules [9]. Recent die-stacked 
memory interface standards (such as High Bandwidth Memory 
[10]) and off-chip memory interfaces that expose load-store 
semantics (such as Hybrid Memory Cube [11]) meet nearly all 
the memory interface requirements of PIM, thus overcoming 
the third challenge. Recent frameworks such as Heterogeneous 
System Architecture and the associated software tools for 
accelerators have addressed the fourth challenge. However, a 
whole new set of problems has arisen in the wake of these 
advancements. For example, workload heterogeneity can be 
difficult to maintain when different algorithms result in 
different memory layouts and access patterns, and the 
computations they execute have varying degrees of parallelism 
and complexity. Viable methods for fabricating embedded non-
volatile memory (eNVM) are another critical issue. 

Current state-of-the-art efforts in PIM using standard 
technology include computation in the periphery of SRAM [12] 
and DRAM [13, 14] and required modifications in the 
peripheral circuits to allow computation in the sensing circuitry, 
as well as in specific memory cells. While these efforts more 
tightly integrate processing and storage, data still moves 
between the memory cells and the periphery. Furthermore, 
DRAM and especially SRAM are relatively small memories 
and therefore cannot provide a platform for computing massive 
amounts of data (tens or hundreds of GBs).  

Emerging memristive technologies, such as Resistive 
Random Access Memory (RRAM or ReRAM) [15-17], might 
serve to enable high capacity non-volatile memory that can also 
compute. Memristive accelerators have been proposed for 
enhancing artificial neural networks by using the analog 
computation capabilities of memristors [18-21]. Other 
memristive accelerators have been based on performing content 
addressable searches [21] and associative computing [22-23].  

In this paper, we present a fundamentally different approach 
that tackles the data movement problem directly by computing 
logical functions in the memory cells themselves, without any 
need to instantiate additional CMOS blocks for processing. We 
propose to solve the von Neumann bottleneck by giving 
computational capabilities directly to the memristive memory 
cells, as illustrated in Figure 1. 

The memristive memory cells can both store data and be 
used to construct a logic gate using the same circuit and 
different control signals. Several memristive logic techniques 
have been proposed in the literature. The focus of this paper is 
Memristor Aided Logic (MAGIC) [24]. One advantage of 

MAGIC is its ability to efficiently perform logic operations in 
parallel on sets of data. We exploit the processing capabilities 
that MAGIC adds to memristive memories to design a novel 
non-von Neumann architecture that significantly reduces data 
transfer. The basic element in this architecture is the memristive 
Memory Processing Unit (mMPU) [25], which has both storage 
and processing capabilities. The mMPU consists of a 
memristive memory and CMOS control, exactly the same 
structure as a standard memristive memory, where the primary 
circuit modifications are made in the controller. Hence, the 
advantages of a memristive crossbar array, such as density and 
nonvolatility, are maintained. Furthermore, the mMPU is 
completely compatible with von Neumann architecture, and can 
operate either as a hybrid memory-processing unit or as a 
standard memory. The structure of a conventional von 
Neumann architecture and that of the proposed architecture 
with an mMPU as the memory are illustrated in Figure 2. 

The proposed architecture dramatically reduces data 
movement and has enormous parallelism. Nevertheless, its 
design requires that we take a fresh look at computer architecture 
and reconsider various aspects such as the memory controller, 
programming model, memory hierarchy and so forth. In this 
paper, we provide background on memristive logic (Section II) 
and specifically on MAGIC (Section III). Then, we present the 
mMPU architecture (Section IV) and discuss different aspects 
of the controller design. Finally, we illustrate the benefits of the 
mMPU using an image processing application example and 
show that processing images within the mMPU can provide two 
orders of magnitude speedup versus state-of-the-art accelerators 
(Section VII). 

II. MEMRISTIVE LOGIC APPROACHES 
Emerging memristive technologies store data as the 

resistance of the memory cell, a two-terminal passive circuit 
element with varying resistance called a memristor. High and 
low resistances are considered, respectively, as logic '0' and '1'. 
Since the resistance value is usually continuous, it is possible to 
consider the data as multi-level (i.e., store more than a single 
bit per cell). The resistance of the memristor can be changed by 
applying a voltage across it, where the exact mechanism differs 
in each memristive technology (e.g., movement of oxygen 
vacancies in Valence Change Memory). Memristors are usually 
fabricated using dielectric material between two metal 
electrodes. Hence, they can be used in a crossbar array as a 
crosspoint of two metal wires, enabling an extremely dense 
memory [15], [26-27]. The memory cell can consist solely of a 
memristor, or it can include a selector to eliminate undesired 

 

Figure 1. Architectural evolution of eliminating the von Neumann bottleneck by moving processing into the memory. Moving from von 
Neumann machines with separate computation and storage to near data processing, and finally to the proposed architecture that 
eliminates a significant amount of data transfer using the same cells that store the data to perform logical operations within the mMPU. 



sneak path currents [28-33]. The symmetry of the crossbar 
structure enables a transpose memory structure [34] with added 
flexibility by applying voltages from both horizontal and 
vertical directions. 

Due to their high switching speed, low operating power, 
scalability, and high endurance [35], memristors are considered 
as attractive candidates to replace conventional memory and 
storage technologies (e.g., DRAM and Flash). Memristive 
technologies have also been explored for additional 
applications such as analog and radiofrequency circuits [36-42], 
neuromorphic circuits [43-48], and logic circuits, which are the 
focus of this paper. Different methods for using memristors to 
perform logical operations have been proposed. Several 
techniques have been proposed to perform processing near the 
memory, similar to CMOS-based PIM, where memristors are 
used only as memory cells, exploiting their density and tight 
integration with CMOS periphery circuits [18-24], [49-52]. In 
some other logic families, memristors are integrated with 
CMOS logic structures as configurable switches or as logic 
gates [53-57]. In these logic families, the logical values are 
represented by voltage levels, and therefore these techniques 
cannot be used to perform computation within the memory cells 
unless the data is read explicitly and transformed from 
resistance to voltage.  

Several logic families use the structure of a memristive 
memory to perform logical operations to overcome the memory 
wall [58-63], and we have defined a classification for 
memristive logic in that context [64]. This classification has 
three categories: 

 Statefulness – A memristive logic family is said to be 
stateful if the Boolean variable is represented only as the 
state of the memristor (i.e., resistance) and computation is 
performed by manipulating this state. In other words, 
inputs are represented as resistance, and the output(s) after 
computation is (are) also stored as the resistance of the 
memristor. Statefulness is a fundamental classification 
because it has far–reaching effects on the compatibility of 
the logic family with other units, such as CMOS-based 
circuits and memristive memory cells. If the circuits are 
incompatible, state conversion (from resistance to voltage 
or vice versa) of consecutive logic operations will be 
required, influencing performance, power, and area. 
Consequently, statefulness is a desired characteristic for 

computation within memristive memory since 
computation is performed using the same logic state 
variables as represented in the memory cells. On the other 
hand, non-stateful families benefit from better integration 
with CMOS.  

 Proximity of computation – We redefine PIM and near-
memory computing with respect to the proximity of the 
data to the memory array during computation and call this 
the proximity of computation. We define the memory 
array as a regular array of memory cells to store data, 
replicated in two dimensions, the wordline (WL) and the 
bitline (BL), and not including its auxiliary circuit. We 
redefine processing-in-memory as ‘in-memory 
computing’ and define it as the computing model in which 
the data resides within the memory array during the entire 
computation. We redefine ‘near-memory computing’ as 
the computing model that requires data movement to the 
auxiliary circuit (e.g., for state conversion) during the 
computation, even if some (or most) of the computation is 
carried out by the memory cells. Hence, the memory array 
is the point of reference in our definition. In out-of-
memory computing, computation may even be performed 
in another die (e.g., a logic die beneath a DRAM die as in 
the hybrid memory cube) or in another chip (as in 
conventional von Neumann machines). 

 Flexibility - A memristive logic family is said to be 
flexible if a variety of operations can be executed using 
the same computing elements. To achieve flexibility, a 
logic family must provide a basic operation (or a set 
thereof) that is functionally complete, and allow different 
control signal sequences to result in different outcomes. 
Some logic families are similar to ASIC, where the 
functionality of each computing element is determined 
prior to the fabrication process. Hence, they can perform 
a fixed function (or a set of functions). Other logic 
techniques can be executed using the same computing 
units at different execution times, and therefore the 
functionality can be dynamically chosen during runtime. 
Flexible families require a controller that conducts the 
execution of the desired program using the adjustable 
computing elements and synchronizes the sequence of 
basic logic operations supported by the family. Some sort 
of compiler or logic synthesis tool is necessary to generate 

 
Figure 2. Structure of a (a) von-Neumann architecture and (b) the proposed architecture with an mMPU as the memory. In addition to 
standard memory operations, the mMPU can get a computing instruction to be performed in-memory. 



an efficient sequence of basic logic operations to realize a 
desired function. Using an inadequate synthesis tool can 
lead to an inefficient logic implementation in terms of 
performance and/or power, while the proper use of it can 
result in a cost-effective design. Non-flexible families can 
become programmable in a similar manner to a general 
purpose CPU, where the designed fixed-functions are 
sufficient to perform any required task and construct a 
desired datapath. Programmable non-flexible families can 
compute any desired operation but cannot be used in or 
near memory since they cannot be made compatible with 
the memory array. 

III. MEMRISTOR AIDED LOGIC (MAGIC) 
Recently, we have proposed Memristor-Aided loGIC 

(MAGIC) [24], a stateful, in-memory, flexible logic family. In 
MAGIC, only a single voltage VG is used to perform a NOR 
logic operation and there are separate input and output 
memristors, as shown in Figure 3. Additionally, MAGIC gates 
do not require additional devices to perform the operation 
(unlike some families that require an additional resistor for each 
wordline). Since NOR is a complete logic function, a MAGIC 
NOR operation is sufficient to execute any Boolean operation. 
Hence, MAGIC NOR can be the basis for performing all 
desired processing within memory by dividing the desired 
function into a sequence of MAGIC NOR operations. These 
basic NOR operations are executed one after the other using the 
memory cells as computation elements. MAGIC can also be 
used to perform logic operations in parallel on sets of data. The 
crossbar array is structured such that applying the operating 
voltage VG on any two selected rows and grounding a third row 
will will result in NOR operations being performed on all 

columns that were not isolated by applying an isolation voltage 
VISO. The schematic of a MAGIC gate operation, performed 
over row vectors within a memristive memory, is shown in 
Figure 4. Note that due to the symmetry of memristive crossbar 
arrays (i.e., transpose memory), performing NOR operations on 
column vectors is similarly feasible. 

IV. MEMRISTIVE MEMORY PROCESSING UNIT ARCHITECTURE 
The mMPU [25], [65] is a standard RRAM memory with a 

few modifications that enable the support of MAGIC-based 
PIM instructions. In other words, the mMPU functions as a 
standard memory that supports memory operations (i.e., read 
and write) with additional PIM capabilities, and thus it is 
backward compatible with the von Neumann computing 
scheme. The mMPU architecture is shown in Figure 2b. 

To support PIM instructions, the memory controller [66], 
the memory protocol [67], and the peripheral circuits (i.e., 
voltage drivers and row/column decoders) must be modified to 
support MAGIC instructions [68-69]. The mapping of data is 
also modified to maintain persistency and coherence. Note, 
however, that the memory crossbar array structure itself is not 
modified. 

V. MMPU CONTROLLER DESIGN 
The mMPU CMOS controller is a finite state machine that 

supports standard and PIM memory instructions by generating 
the necessary control signals. The controller receives the 
commands from the CPU and performs the decoded instruction. 
The PIM instructions are translated to a pre-synthesized and 
optimized sequence of MAGIC NOR gates. To execute 
different applications in-memory using MAGIC, algorithms 
that translate these applications to an optimized sequence of 

 
Figure 3. Schematic of (a) MAGIC NOR gate and (b) MAGIC NOR gate within a memristive memory array. IN1 and IN2 are the input 
memristors and OUT is the output memristor. A single voltage VG is applied to perform the NOR operation [24]. 
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Figure 4. A MAGIC NOR operation between two row vectors A and B is performed within the memristive memory array by applying 
VG to the wordlines of the input memristors, ground to the wordline of the output memristor, and VISO to isolate unselected bitlines and 
wordlines. The operation takes a single clock cycle regardless of the vector size of A and B [34]. 



MAGIC NOR/NOT gates must be developed [64]. These can 
be generated manually or automatically. 

We have proposed optimized, manual algorithms for 
performing Fixed-Point (FiP) addition [34] and multiplication 
[70] using MAGIC. For automatically generated algorithms, we 
proposed SIMPLE [71]: an automatic synthesis tool that 
receives any Boolean function and automatically generates the 
equivalent, optimal sequence of MAGIC NOR operations. The 
operation is converted to a NOR CMOS based netlist which is 
mapped to a sequence of MAGIC NOR gates by solving an 
optimization problem. Such a tool will serve as the basis for the 
mMPU controller design, with the manual mapping left for 
specific tasks. 

Due to the parallel nature of MAGIC, the tasks that benefit 
most from execution in the mMPU consist of simple SIMD 
operations. Each operation will be performed in a single row. 
For example, to add two vectors of 512 elements, each in a 
MAT of size 512X512, each row in the MAT will store two 
elements, one from each vector, and all the elements from each 
vector will share the same columns so that all the elements will 
be added simultaneously. This execution scheme substantially 
improves the throughput (number of executions per cycle). We 
further extended the synthesis tool to SIMPLER [72]. 
SIMPLER maximizes the throughput by performing the 
computation on a single row and concurrently executes 
numerous MAGIC NOR operations on multiple rows. 

VI. IMAGE PROCESSING CASE STUDY 
We have demonstrated the benefits from an mMPU for 

image processing [65], [73], where numerous pixels are 
processed simultaneously and the same instruction is executed 
in parallel on multiple data. Image manipulation therefore 
requires data-intensive computations, often in real time, and the 
necessity for data movement only intensifies as image 
resolution becomes higher. 

We evaluated different bit-wise operations and image 
processing kernels such as image convolution and Hadamard 
product. To execute the image processing kernels, we extended 
the manual algorithm for fixed-point multiplication 
[IMAGING]. For the image-processing tasks, we use the 
CIFAR-10 image classification benchmark dataset, a test set of 
10,000 images, where instances are 32×32 color (RGB) images 
representing airplanes, automobiles, birds, cats, deer, dogs, 

frogs, horses, ships, and trucks. For image convolution, we run 
a layer of 3×3 filters used for sharpening and edge detection on 
the dataset. The filters are slid over the images, and their values 
are multiplied by the corresponding pixel values. For the 
Hadamard product, we perform elementwise multiplications 
between the images and 32×32 matrices used for pattern 
recognition and lossy compression algorithms such as JPEG. 
The full evaluation methodology is detailed in [65]. 

Figure 5 compares the mMPU to Pinatubo [74], a state-of-
the-art memristive accelerator. Our results demonstrate 20X to 
120X speedup for bit-wise operations, and more than 30X 
speedup for Hadamard product and image convolution with a 
more modest 2X to 9X improvement in energy efficiency. 

VII. CONCLUSIONS 
The memristive memory processing unit (mMPU) is a true 

processing-in-memory approach, where the same cells are used 
both for data storage and computation. Its massive parallel 
processing capabilities, together with the elimination of data 
movement, make the mMPU a great contender to replace the 
standard memory unit, while maintaining backward 
compatibility with von Neumann machines. 

To make the mMPU feasible, further research is required. 
For instance, the mMPU/CPU interface must be specified by 
defining an instruction set architecture (ISA) and an associated 
programming model. Additionally, memristive logic families 
such as MAGIC must be demonstrated in large scale memory 
arrays. Finally, the superiority of the mMPU over the GPU, CPU 
and other types of processing units must be demonstrated for 
additional applications. 
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