
Real Processing-in-Memory with Memristive
Memory Processing Unit (mMPU)

(Invited Paper)

Shahar Kvatinsky
Viterbi Faculty of Electrical Engineering
Technion – Israel Institute of Technology

Haifa, Israel 3200003
shahar@ee.technion.ac.il

Abstract— Memristive technologies are attractive candidates

to replace conventional memory technologies and can also be used
to perform logic and arithmetic operations. In this paper, we show
how memristors are used to combine data storage and
computation in the memory, thus enabling a novel non-von
Neumann architecture called the 'memristive memory processing
unit' (mMPU). The mMPU relies on a memristive logic technique
called 'memristor aided logic' (MAGIC) that requires no
modification to the memory array structure. By greatly reducing
the data transfer between the CPU and the memory, the mMPU
alleviates the primary restriction on performance and energy
efficiency in modern computing systems. This paper describes
basic principles and design considerations of MAGIC and the
mMPU and presents a case study of digital image processing to
demonstrate the benefits.

Keywords— memristor, memristive device, RRAM, mMPU,
MAGIC

I. INTRODUCTION
General purpose computing systems are typically designed

in von Neumann architecture, or an ameliorated version of it,
which separates the memory and processing space. In these
systems, programs are executed by moving data between the
processing unit and memory using specific operations
(load/store). While this programming model is simple, the
performance of the system is limited by the memory access
time, which is substantially higher than the computing time
itself. This performance bottleneck has become even more
severe over the years because CPU speed has improved much
more than memory speed and bandwidth [1]. Moreover, many
modern workloads have high and unstructured data volumes
with limited locality, reducing the effectiveness of data caching.

With the demise of Dennard scaling [2], energy efficiency in
computer systems has also become a daunting concern, and most
modern computers are power limited [3]. A significant
contributor to the power consumption of the system is the high
energy cost of data movement, and especially of memory
accesses [4]. For example, performing an add operation on 16-
bit numbers in 45nm CMOS technology requires 0.18 pJ, while

moving the same data on-chip requires about 11 pJ per mm
(60X). Sending the same data to an off-chip DRAM consumes
640 pJ, 3600X more energy than the computation itself [5].

This separation of the processing and memory space – and
thus the required transfer of data between them – constitute two
main bottlenecks in current computing systems: speed ('memory
wall') and energy efficiency ('power wall'). A promising
approach to overcome these challenges is to push the
computation closer to the memory. Both DRAM and emerging
non-volatile memory have ample intrinsic parallelism, which
goes unutilized today because of the pin-limited integrated
circuit interface. Processing-In-Memory (PIM) can tap this
intrinsic parallelism, avoiding the need for high-latency and
high-energy chip-to-chip transfers, thus yielding massively
parallel, high-performance, energy-efficient processing [6].

Early research into PIM dates back to the '90s, but four major
challenges prevented its widespread adoption [7]. The first
challenge was inadequate implementation technology. Although
attempts were made to integrate the memory and CPU on the
same die, the incompatibility of DRAM and CPU fabrication
technologies made it difficult to incorporate these approaches in
practical computing systems. The second was the lack of a
processor architecture that could use the high bandwidth enabled
by proximity to memory. Early PIM research required custom
architectures, involving huge design and development efforts.
The third challenge was to develop interfaces that allowed both
the PIM computing units and the external processing units to
access memory. Early efforts required the design and adoption
of custom memory interfaces. The fourth challenge was the
programming models. The early approaches had to develop the
programming abstractions from the bottom up.

In the modern age, advancements in the technologies and
methodology of building computer systems have made it easier
to address these challenges. For example, the first challenge –
adequate implementation technology – has been addressed by
the emergence of 3D die stacking, which enables heterogeneous
integration of logic and memory, and by emerging memory
technologies, which enable 3D fabrication of memory arrays on
top of CMOS substrates [8]. Evolution of various other
processing platforms, such as GPGPUs and custom
accelerators, have solved the second problem by efficiently This research is partially supported by the European Research Council

under the European Union’s Horizon 2020 Research and Innovation
Programme (grant agreement no. 757259) and by the Israel Science
Foundation grant no. 1514/17.

IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained from all other uses,
in any current or other future media, including reprinting/republishing this material for advertising or promotional
purposes, creative new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works

utilizing the high memory bandwidth within the thermal
constraints of the memory modules [9]. Recent die-stacked
memory interface standards (such as High Bandwidth Memory
[10]) and off-chip memory interfaces that expose load-store
semantics (such as Hybrid Memory Cube [11]) meet nearly all
the memory interface requirements of PIM, thus overcoming
the third challenge. Recent frameworks such as Heterogeneous
System Architecture and the associated software tools for
accelerators have addressed the fourth challenge. However, a
whole new set of problems has arisen in the wake of these
advancements. For example, workload heterogeneity can be
difficult to maintain when different algorithms result in
different memory layouts and access patterns, and the
computations they execute have varying degrees of parallelism
and complexity. Viable methods for fabricating embedded non-
volatile memory (eNVM) are another critical issue.

Current state-of-the-art efforts in PIM using standard
technology include computation in the periphery of SRAM [12]
and DRAM [13, 14] and required modifications in the
peripheral circuits to allow computation in the sensing circuitry,
as well as in specific memory cells. While these efforts more
tightly integrate processing and storage, data still moves
between the memory cells and the periphery. Furthermore,
DRAM and especially SRAM are relatively small memories
and therefore cannot provide a platform for computing massive
amounts of data (tens or hundreds of GBs).

Emerging memristive technologies, such as Resistive
Random Access Memory (RRAM or ReRAM) [15-17], might
serve to enable high capacity non-volatile memory that can also
compute. Memristive accelerators have been proposed for
enhancing artificial neural networks by using the analog
computation capabilities of memristors [18-21]. Other
memristive accelerators have been based on performing content
addressable searches [21] and associative computing [22-23].

In this paper, we present a fundamentally different approach
that tackles the data movement problem directly by computing
logical functions in the memory cells themselves, without any
need to instantiate additional CMOS blocks for processing. We
propose to solve the von Neumann bottleneck by giving
computational capabilities directly to the memristive memory
cells, as illustrated in Figure 1.

The memristive memory cells can both store data and be
used to construct a logic gate using the same circuit and
different control signals. Several memristive logic techniques
have been proposed in the literature. The focus of this paper is
Memristor Aided Logic (MAGIC) [24]. One advantage of

MAGIC is its ability to efficiently perform logic operations in
parallel on sets of data. We exploit the processing capabilities
that MAGIC adds to memristive memories to design a novel
non-von Neumann architecture that significantly reduces data
transfer. The basic element in this architecture is the memristive
Memory Processing Unit (mMPU) [25], which has both storage
and processing capabilities. The mMPU consists of a
memristive memory and CMOS control, exactly the same
structure as a standard memristive memory, where the primary
circuit modifications are made in the controller. Hence, the
advantages of a memristive crossbar array, such as density and
nonvolatility, are maintained. Furthermore, the mMPU is
completely compatible with von Neumann architecture, and can
operate either as a hybrid memory-processing unit or as a
standard memory. The structure of a conventional von
Neumann architecture and that of the proposed architecture
with an mMPU as the memory are illustrated in Figure 2.

The proposed architecture dramatically reduces data
movement and has enormous parallelism. Nevertheless, its
design requires that we take a fresh look at computer architecture
and reconsider various aspects such as the memory controller,
programming model, memory hierarchy and so forth. In this
paper, we provide background on memristive logic (Section II)
and specifically on MAGIC (Section III). Then, we present the
mMPU architecture (Section IV) and discuss different aspects
of the controller design. Finally, we illustrate the benefits of the
mMPU using an image processing application example and
show that processing images within the mMPU can provide two
orders of magnitude speedup versus state-of-the-art accelerators
(Section VII).

II. MEMRISTIVE LOGIC APPROACHES
Emerging memristive technologies store data as the

resistance of the memory cell, a two-terminal passive circuit
element with varying resistance called a memristor. High and
low resistances are considered, respectively, as logic '0' and '1'.
Since the resistance value is usually continuous, it is possible to
consider the data as multi-level (i.e., store more than a single
bit per cell). The resistance of the memristor can be changed by
applying a voltage across it, where the exact mechanism differs
in each memristive technology (e.g., movement of oxygen
vacancies in Valence Change Memory). Memristors are usually
fabricated using dielectric material between two metal
electrodes. Hence, they can be used in a crossbar array as a
crosspoint of two metal wires, enabling an extremely dense
memory [15], [26-27]. The memory cell can consist solely of a
memristor, or it can include a selector to eliminate undesired

Figure 1. Architectural evolution of eliminating the von Neumann bottleneck by moving processing into the memory. Moving from von
Neumann machines with separate computation and storage to near data processing, and finally to the proposed architecture that
eliminates a significant amount of data transfer using the same cells that store the data to perform logical operations within the mMPU.

sneak path currents [28-33]. The symmetry of the crossbar
structure enables a transpose memory structure [34] with added
flexibility by applying voltages from both horizontal and
vertical directions.

Due to their high switching speed, low operating power,
scalability, and high endurance [35], memristors are considered
as attractive candidates to replace conventional memory and
storage technologies (e.g., DRAM and Flash). Memristive
technologies have also been explored for additional
applications such as analog and radiofrequency circuits [36-42],
neuromorphic circuits [43-48], and logic circuits, which are the
focus of this paper. Different methods for using memristors to
perform logical operations have been proposed. Several
techniques have been proposed to perform processing near the
memory, similar to CMOS-based PIM, where memristors are
used only as memory cells, exploiting their density and tight
integration with CMOS periphery circuits [18-24], [49-52]. In
some other logic families, memristors are integrated with
CMOS logic structures as configurable switches or as logic
gates [53-57]. In these logic families, the logical values are
represented by voltage levels, and therefore these techniques
cannot be used to perform computation within the memory cells
unless the data is read explicitly and transformed from
resistance to voltage.

Several logic families use the structure of a memristive
memory to perform logical operations to overcome the memory
wall [58-63], and we have defined a classification for
memristive logic in that context [64]. This classification has
three categories:

 Statefulness – A memristive logic family is said to be
stateful if the Boolean variable is represented only as the
state of the memristor (i.e., resistance) and computation is
performed by manipulating this state. In other words,
inputs are represented as resistance, and the output(s) after
computation is (are) also stored as the resistance of the
memristor. Statefulness is a fundamental classification
because it has far–reaching effects on the compatibility of
the logic family with other units, such as CMOS-based
circuits and memristive memory cells. If the circuits are
incompatible, state conversion (from resistance to voltage
or vice versa) of consecutive logic operations will be
required, influencing performance, power, and area.
Consequently, statefulness is a desired characteristic for

computation within memristive memory since
computation is performed using the same logic state
variables as represented in the memory cells. On the other
hand, non-stateful families benefit from better integration
with CMOS.

 Proximity of computation – We redefine PIM and near-
memory computing with respect to the proximity of the
data to the memory array during computation and call this
the proximity of computation. We define the memory
array as a regular array of memory cells to store data,
replicated in two dimensions, the wordline (WL) and the
bitline (BL), and not including its auxiliary circuit. We
redefine processing-in-memory as ‘in-memory
computing’ and define it as the computing model in which
the data resides within the memory array during the entire
computation. We redefine ‘near-memory computing’ as
the computing model that requires data movement to the
auxiliary circuit (e.g., for state conversion) during the
computation, even if some (or most) of the computation is
carried out by the memory cells. Hence, the memory array
is the point of reference in our definition. In out-of-
memory computing, computation may even be performed
in another die (e.g., a logic die beneath a DRAM die as in
the hybrid memory cube) or in another chip (as in
conventional von Neumann machines).

 Flexibility - A memristive logic family is said to be
flexible if a variety of operations can be executed using
the same computing elements. To achieve flexibility, a
logic family must provide a basic operation (or a set
thereof) that is functionally complete, and allow different
control signal sequences to result in different outcomes.
Some logic families are similar to ASIC, where the
functionality of each computing element is determined
prior to the fabrication process. Hence, they can perform
a fixed function (or a set of functions). Other logic
techniques can be executed using the same computing
units at different execution times, and therefore the
functionality can be dynamically chosen during runtime.
Flexible families require a controller that conducts the
execution of the desired program using the adjustable
computing elements and synchronizes the sequence of
basic logic operations supported by the family. Some sort
of compiler or logic synthesis tool is necessary to generate

Figure 2. Structure of a (a) von-Neumann architecture and (b) the proposed architecture with an mMPU as the memory. In addition to
standard memory operations, the mMPU can get a computing instruction to be performed in-memory.

an efficient sequence of basic logic operations to realize a
desired function. Using an inadequate synthesis tool can
lead to an inefficient logic implementation in terms of
performance and/or power, while the proper use of it can
result in a cost-effective design. Non-flexible families can
become programmable in a similar manner to a general
purpose CPU, where the designed fixed-functions are
sufficient to perform any required task and construct a
desired datapath. Programmable non-flexible families can
compute any desired operation but cannot be used in or
near memory since they cannot be made compatible with
the memory array.

III. MEMRISTOR AIDED LOGIC (MAGIC)
Recently, we have proposed Memristor-Aided loGIC

(MAGIC) [24], a stateful, in-memory, flexible logic family. In
MAGIC, only a single voltage VG is used to perform a NOR
logic operation and there are separate input and output
memristors, as shown in Figure 3. Additionally, MAGIC gates
do not require additional devices to perform the operation
(unlike some families that require an additional resistor for each
wordline). Since NOR is a complete logic function, a MAGIC
NOR operation is sufficient to execute any Boolean operation.
Hence, MAGIC NOR can be the basis for performing all
desired processing within memory by dividing the desired
function into a sequence of MAGIC NOR operations. These
basic NOR operations are executed one after the other using the
memory cells as computation elements. MAGIC can also be
used to perform logic operations in parallel on sets of data. The
crossbar array is structured such that applying the operating
voltage VG on any two selected rows and grounding a third row
will will result in NOR operations being performed on all

columns that were not isolated by applying an isolation voltage
VISO. The schematic of a MAGIC gate operation, performed
over row vectors within a memristive memory, is shown in
Figure 4. Note that due to the symmetry of memristive crossbar
arrays (i.e., transpose memory), performing NOR operations on
column vectors is similarly feasible.

IV. MEMRISTIVE MEMORY PROCESSING UNIT ARCHITECTURE
The mMPU [25], [65] is a standard RRAM memory with a

few modifications that enable the support of MAGIC-based
PIM instructions. In other words, the mMPU functions as a
standard memory that supports memory operations (i.e., read
and write) with additional PIM capabilities, and thus it is
backward compatible with the von Neumann computing
scheme. The mMPU architecture is shown in Figure 2b.

To support PIM instructions, the memory controller [66],
the memory protocol [67], and the peripheral circuits (i.e.,
voltage drivers and row/column decoders) must be modified to
support MAGIC instructions [68-69]. The mapping of data is
also modified to maintain persistency and coherence. Note,
however, that the memory crossbar array structure itself is not
modified.

V. MMPU CONTROLLER DESIGN
The mMPU CMOS controller is a finite state machine that

supports standard and PIM memory instructions by generating
the necessary control signals. The controller receives the
commands from the CPU and performs the decoded instruction.
The PIM instructions are translated to a pre-synthesized and
optimized sequence of MAGIC NOR gates. To execute
different applications in-memory using MAGIC, algorithms
that translate these applications to an optimized sequence of

Figure 3. Schematic of (a) MAGIC NOR gate and (b) MAGIC NOR gate within a memristive memory array. IN1 and IN2 are the input
memristors and OUT is the output memristor. A single voltage VG is applied to perform the NOR operation [24].

VISO

VG

VG

A NOR B

A

B

VISO

VISO

Figure 4. A MAGIC NOR operation between two row vectors A and B is performed within the memristive memory array by applying
VG to the wordlines of the input memristors, ground to the wordline of the output memristor, and VISO to isolate unselected bitlines and
wordlines. The operation takes a single clock cycle regardless of the vector size of A and B [34].

MAGIC NOR/NOT gates must be developed [64]. These can
be generated manually or automatically.

We have proposed optimized, manual algorithms for
performing Fixed-Point (FiP) addition [34] and multiplication
[70] using MAGIC. For automatically generated algorithms, we
proposed SIMPLE [71]: an automatic synthesis tool that
receives any Boolean function and automatically generates the
equivalent, optimal sequence of MAGIC NOR operations. The
operation is converted to a NOR CMOS based netlist which is
mapped to a sequence of MAGIC NOR gates by solving an
optimization problem. Such a tool will serve as the basis for the
mMPU controller design, with the manual mapping left for
specific tasks.

Due to the parallel nature of MAGIC, the tasks that benefit
most from execution in the mMPU consist of simple SIMD
operations. Each operation will be performed in a single row.
For example, to add two vectors of 512 elements, each in a
MAT of size 512X512, each row in the MAT will store two
elements, one from each vector, and all the elements from each
vector will share the same columns so that all the elements will
be added simultaneously. This execution scheme substantially
improves the throughput (number of executions per cycle). We
further extended the synthesis tool to SIMPLER [72].
SIMPLER maximizes the throughput by performing the
computation on a single row and concurrently executes
numerous MAGIC NOR operations on multiple rows.

VI. IMAGE PROCESSING CASE STUDY
We have demonstrated the benefits from an mMPU for

image processing [65], [73], where numerous pixels are
processed simultaneously and the same instruction is executed
in parallel on multiple data. Image manipulation therefore
requires data-intensive computations, often in real time, and the
necessity for data movement only intensifies as image
resolution becomes higher.

We evaluated different bit-wise operations and image
processing kernels such as image convolution and Hadamard
product. To execute the image processing kernels, we extended
the manual algorithm for fixed-point multiplication
[IMAGING]. For the image-processing tasks, we use the
CIFAR-10 image classification benchmark dataset, a test set of
10,000 images, where instances are 32×32 color (RGB) images
representing airplanes, automobiles, birds, cats, deer, dogs,

frogs, horses, ships, and trucks. For image convolution, we run
a layer of 3×3 filters used for sharpening and edge detection on
the dataset. The filters are slid over the images, and their values
are multiplied by the corresponding pixel values. For the
Hadamard product, we perform elementwise multiplications
between the images and 32×32 matrices used for pattern
recognition and lossy compression algorithms such as JPEG.
The full evaluation methodology is detailed in [65].

Figure 5 compares the mMPU to Pinatubo [74], a state-of-
the-art memristive accelerator. Our results demonstrate 20X to
120X speedup for bit-wise operations, and more than 30X
speedup for Hadamard product and image convolution with a
more modest 2X to 9X improvement in energy efficiency.

VII. CONCLUSIONS
The memristive memory processing unit (mMPU) is a true

processing-in-memory approach, where the same cells are used
both for data storage and computation. Its massive parallel
processing capabilities, together with the elimination of data
movement, make the mMPU a great contender to replace the
standard memory unit, while maintaining backward
compatibility with von Neumann machines.

To make the mMPU feasible, further research is required.
For instance, the mMPU/CPU interface must be specified by
defining an instruction set architecture (ISA) and an associated
programming model. Additionally, memristive logic families
such as MAGIC must be demonstrated in large scale memory
arrays. Finally, the superiority of the mMPU over the GPU, CPU
and other types of processing units must be demonstrated for
additional applications.

REFERENCES
[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, 6th ed. Morgan Kauffman, 2017.
[2] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and

A. R. Leblanc, “Design of Ion-Implanted MOSFET’s With Very Small
Physical Dimensions,” IEEE Journal of Solid-State Circuits, Vol. 9, No.
5, pp. 256–268, Oct. 1974.

[3] S. W. Keckler, “GPU Computing and the Road to Extreme-Scale Parallel
Systems,” Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), p. 1, Nov. 2011.

[4] M. Horowitz, “Computing’s Energy Problem (and what we can do about
it),” Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), pp. 10–14, Feb. 2014.

[5] A. Pedram, S. Richardson, S. Galal, S. Kvatinsky, and M. Horowitz,
“Dark Memory and Accelerator-Rich System Optimization in the Dark
Silicon Era,” IEEE Design and Test, Vol, 34, No. 2, pp. 39-50, April 2017.

[6] R. Balasubramonian and B. Grot, “Near-Data Processing,” IEEE Micro,
Vol. 36, No. 1, pp. 4–5, Jan. 2016.

[7] N. Jayasena, “Overcoming Challenges to Near-Data Processing,” IEEE
Micro, Vol. 36, No. 1, pp. 8–9, Feb. 2016.

[8] HSA Foundation, “Harmonizing the Industry around Heterogeneous
Computing.” [Online]. Available: http://www.hsafoundation.com/.

[9] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal Feasibility of Die-
Stacked Processing in Memory,” Proceedings of the 2nd Workshop Near-
Data Processing, Dec. 2014.

[10] JEDEC Solid State Technology Association, “High Bandwidth Memory
(HBM) DRAM,” JESD235A, 2015. [Online]. Available:
http://www.jedec.org/standards-documents/results/jesd235.

[11] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification
1.0.” 2013.

Figure 5. Speedup (left) and normalized energy efficiency (right) of
mMPU as compared to Pinatubo [74].

[12] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D.
Blaauw, and R. Das, "Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks," Proceedings of the Annual International
Symposium on Computer Architecture, pp. 383-396, June 2018.

[13] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M.
A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, "Ambit: In-
Memory Accelerator for Bulk Bitwise Operations using Commodity
DRAM Technology," Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 273-287,
October 2017.

[14] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, "DRISA:
a DRAM-based Reconfigurable In-Situ Accelerator, Proceedings of the
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 288-301, October 2017.

[15] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee,
F. T. Chen, and M. J. Tsai, “Metal-oxide RRAM,” Proceedings of the
IEEE, Vol. 100, No. 6, pp. 1951–1970, Jun. 2012.

[16] W. Woods, M. M. A. Taha, S. J. Dat Tran, J. Burger, and C. Teuscher,
“Memristor Panic - A Survey of Different Device Models in Crossbar
Architectures,” Proceedings of the IEEE/ACM International Symposium
on Nanoscale Architectures (NANOARCH), pp. 106–111, Jul. 2015.

[17] J. Lee, M. Jo, D. Seong, J. Shin, and H. Hwang, “Materials and Process
Aspect of Cross-Point RRAM,” Microelectronic Engineering, Vol. 88,
No. 7, pp. 1113–1118, Jul. 2011.

[18] M. N. Bojnordi and E. Ipek, “Memristive Boltzmann Machine: A
Hardware Accelerator for Combinatorial Optimization and Deep
Learning,” Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 1–13, Mar. 2016.

[19] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A Novel Processing-in-memory Architecture for Neural
Network Computation in ReRAM-based Main Memory,” Proceedings of
the International Symposium on Computer Architecture (ISCA), pp. 27-
39, Jun. 2016.

[20] A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars," Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), pp. 14-26,
June 2016.

[21] Q. Guo, X. Guo, Y. Bai, and E. İpek, “A Resistive TCAM Accelerator for
Data-Intensive Computing Categories and Subject Descriptors,”
Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 339–350, 2011.

[22] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-DIMM:
Associative Computing with STT-MRAM,” Proceedings of the Annual
International Symposium on Computer Architecture (ISCA), pp. 189-200,
June 2013.

[23] L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar, “Resistive Associative
Processor,” IEEE Computer Architecture Letters, Vol. 14, No. 2, pp. 148–
151, Jul. 2015.

[24] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC - Memristor-Aided Logic,”
IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61,
No. 11, pp. 895–899, Nov. 2014.

[25] R. Ben Hur and S. Kvatinsky, “Memory Processing Unit for In-Memory
Processing,” Proceedings of the IEEE International Symposium on
Nanoscale Architectures, pp. 171-172, July 2016.

[26] Z. Jiang, P. Huang, L. Zhao, S. Kvatinsky, S. Yu, X. Liu, J. Kang, Y.
Nishi, and H.-S. P. Wong, “Analysis and Predication on Resistive
Random Access Memory (RRAM) 1S1R Array,” Proceedings of the
International Memory Workshop, pp. 1–4, May 2015.

[27] R. Waser, R. Dittmann, C. Staikov, and K. Szot, “Redox-Based Resistive
Switching Memories Nanoionic Mechanisms, Prospects, and
Challenges,” Advanced Materials, Vol. 21, No. 25–26, pp. 2632–2663,
July 2009.

[28] S.-S. Sheu, P.-C. Chiang, W.-P. Lin, H.-Y. Lee, P.-S. Chen, Y.-S. Chen,
T.-Y. Wu, F. T. Chen, K.-L. Su, M.-J. Kao, K.-H. Cheng, and M.-J. Tsai,
“A 5ns Fast Write Multi-Level Non-Volatile 1 K Bits RRAM Memory
with Advance Write Scheme,” IEEE Symposium on VLSI Circuits, pp.
82–83, June 2009.

[29] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
“Memristor-Based Memory: The Sneak Paths Problem and Solutions,”
Microelectronics Journal, Vol. 44, No. 2, pp. 176–183, 2013.

[30] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-Path Constraints in
Memristor Crossbar Arrays,” Proceedings of the IEEE International
Symposium on Information Theory, pp. 156–160, JulY 2013.

[31] A. Doz, I. Goldstein, and S. Kvatinsky, "Analysis of the Row Grounding
Method in a Memristor-Based Crossbar Array," International Journal of
Circuit Theory and Applications, Vol. 46, No. 1, pp. 122-137, January
2018.

[32] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, "Information-Theoretic Sneak
Path Mitigation in Memristor Crossbar Arrays," IEEE Transactions on
Information Theory, Vol. 62, No. 9, pp. 4801-4814, September 2016.

[33] F. Pan, C. Chen, Z. Wang, Y. Yang, J. Yang, and F. Zeng, “Nonvolatile
Resistive Switching Memories-Characteristics, Mechanisms and
Challenges,” Progress in Natural Science: Materials International, Vol.
20, pp. 1–15, Nov. 2010.

[34] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic Design Within
Memristive Memories Using Memristor-Aided loGIC (MAGIC),” IEEE
Transactions on Nanotechnology, Vol. 15, No. 4, pp. 635–650, Jul. 2016.

[35] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “The
Desired Memristor for Circuit Designers,” IEEE Circuits and Systems,
Vol. 13, No. 2, pp. 17–22, Jun. 2013.

[36] Y. V. Pershin and M. Di Ventra, “Practical Approach to Programmable
Analog Circuits with Memristors,” IEEE Transactions on Circuits and
Systems I: Regular Papers, Vol. 57, No. 8, pp. 1857–1864, Aug. 2010.

[37] D. Mahalanabis, V. Bharadwaj, H. J. Barnaby, S. Vrudhula, and M. N.
Kozicki, “A Nonvolatile Sense Amplifier Flip-Flop Using Programmable
Metallization Cells,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, Vol. 5, No. 2, pp. 205–213, Jun. 2015.

[38] M. Itoh and L. O. Chua, “Memristor Oscillators,” International Journal
of Bifurcation and Chaos, Vol. 18, No. 11, pp. 3183–3206, Nov. 2008.

[39] L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, "Breaking Through
the Speed-Power-Accuracy Tradeoff in ADCs using a Memristive
Neuromorphic Architecture," IEEE Transactions on Emerging Topics in
Computational Intelligence, Vol. 2, No.5, pp. 396-409, October 2018.

[40] N. Wainstein and S. Kvatinsky, "A Lumped RF Model for Nanoscale
Memristive Devices and Non-Volatile Single-Pole Double-Throw
Switches," IEEE Transactions on Nanotechnology, Vol. 17, No. 5, pp.
873-883, September 2018.

[41] N. Wainstein and S. Kvatinsky, "TIME – Tunable Inductors using
MEmristors," IEEE Transactions on Circuits and Systems I: Regular
Papers, Vol. 65, No. 5, pp. 1505-1515, May 2018.

[42] L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, "DIDACTIC: A
Deeply Intelligent Digital-to-Analog Converter with a Trainable
Integrated Circuit using Memristors," IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, Vol. 8, No. 1, pp. 146-158,
March 2018.

[43] A. Afifi, A. Ayatollahi, and F. Raissi, “Implementation of Biologically
Plausible Spiking Neural Network Models on the Memristor Crossbar-
Based CMOS/Nano Circuits,” Proceedings of the European Conference
on Circuit Theory and Design, pp. 563–566, Aug. 2009.

[44] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
“Memristor-Based Multilayer Neural Networks With Online Gradient
Descent Training,” IEEE Transactions on Neural Networks and Learning
Systems, Vol. 26, No. 10, pp. 2408–2421, Oct. 2015.

[45] S. P. Adhikari, C. Yang, H. Kim, and L. O. Chua, “Memristor Bridge
Synapse-Based Neural Network and its Learning,” IEEE Transactions on
Neural Networks and Learning Systems, Vol. 23, No. 9, pp. 1426–1435,
Sep. 2012.

[46] X. Liu, Z. Zeng, S. Member, and S. Wen, “Implementation of Memristive
Neural Network With Full-function Pavlov Associative Memory,” IEEE
Transactions on Circuits and Systems I: Regular Papers, Vol. 63, No. 9,
pp. 1454–1463, Sep. 2016.

[47] T. Greenberg-Toledo, R. Mazor, A. Haj Ali, and S. Kvatinsky,
"Supporting the Momentum Algorithm Using a Memristor-Based
Synapse," IEEE Transactions on Circuits and Systems I: Regular Papers,
Vol. 66, No. 4, pp. 1571-1583, April 2019.

[48] E. Rosenthal, S. Greshnikov, D. Soudry, and S. Kvatinsky, “A Fully
Analog Memristor-Based Multilayer Neural Network with Online
Backpropagation Training,” Proceeding of the IEEE International
Symposium on Circuits and Systems, pp. 1394-1397, May 2016.

[49] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar, “Resistive GP-SIMD
Processing-In-Memory,” ACM Transactions on Architecture and Code
Optimization, Vol. 12, No. 4, pp. 1–22, Jan. 2016.

[50] K. Eshraghian, K. R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, and S.-M.
S. Kang, “Memristor MOS Content Addressable Memory (MCAM):
Hybrid Architecture for Future High Performance Search Engines,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 19,
No. 8, pp. 1407–1407, Aug. 2010.

[51] A. Rahimi, A. Ghofrani, K. Cheng, L. Benini, and R. K. Gupta,
“Approximate Associative Memristive Memory for Energy-Efficient
GPUs,” Proceedings of the Design, Automation, and Test in Europe
Conference & Exhibition (DATE), pp. 1497–1502, Mar. 2015.

[52] M. Imani and T. Rosing, "CAP: Configurable Resistive Associative
Processor for Near-Data Computing," Proceedings of the IEEE
International Symposium on Quality Electronic Design (ISQED), pp.
346-352, March 2017.

[53] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A Reconfigurable
Architecture for Hybrid Digital Circuits with Two-Terminal
Nanodevices,” Nanotechnology, Vol. 16, No. 6, pp. 888–900, Apr. 2005.

[54] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G.
Friedman, “MRL — Memristor Ratioed Logic,” Proceedings of the
International Workshop on Cellular Nanoscale Networks and their
Applications, pp. 1–6, Aug. 2012.

[55] A. K. Maan, D. S. Kumar, S. Sugathan, and A. P. James, “Memristive
Threshold Logic Circuit Design of Fast Moving Object Detection,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 23,
No. 10, pp. 2337–2341, Oct. 2014.

[56] P. E. Gaillardon, M. H. Ben-Jamaa, G. Betti Beneventi, F. Clermidy, and
L. Pemiola, “Emerging Memory Technologies for Reconfigurable
Routing in FPGA Architecture,” Proceedings of the IEEE International
Conference on Electronics, Circuits, and Systems (ICECS), pp. 62–65,
Dec. 2010.

[57] W. Wei, T. T. Jing, and B. Butcher, “FPGA Based on Integration of
Memristors and CMOS Devices,” Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1963–1966, May 2010.

[58] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser,
“Beyond von Neumann—Logic Operations in Passive Crossbar Arrays
Alongside Memory Operations,” Nanotechnology, Vol. 23, No. 30, p.
305205, Jun. 2012.

[59] P. E. Gaillardon, L. Amaru, A. Siemon, E. Linn, R. Waser, A.
Chattopadhyay, and G. De Micheli, “The Programmable Logic-in-
Memory (PLiM) Computer,” Proceedings of the Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 427–432, Mar.
2016.

[60] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A Complementary
Resistive Switch-Based Crossbar Array Adder,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, Vol. 5, No. 1, pp.
64–74, Mar. 2015.

[61] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi,
and S. Kvatinsky, “Logic Operations in Memory Using a Memristive

Akers Array,” Microelectronics Journal, Vol. 45, No. 11, pp. 1429–1437,
Nov. 2014.

[62] L. Xie, H. A. Du Nguyen, M. Taouil, and K. Bertels Said Hamdioui, “Fast
Boolean Logic Mapped on Memristor Crossbar,” Proceedings of the
IEEE International Conference on Computer Design (ICCD), pp. 335–
342, Oct. 2015.

[63] G. Snider, “Computing with Hysteretic Resistor Crossbars,” Applied
Physics A: Materials Science and Processing, Vol. 80, No. 6, pp. 1165–
1172, Mar. 2005.

[64] J. Reuben, R. Ben Hur, N. Wald, N. Talati, A. Haj Ali, P.-E. Gaillardon,
and S. Kvatinsky, "Memristive Logic: A Framework for Evaluation and
Comparison," Proceeding of the IEEE International Symposium on
Power and Timing Modeling, Optimization and Simulation, pp. 1-8,
September 2017.

[65] A. Haj Ali, R. Ben Hur, N. Wald, R. Ronen, and S. Kvatinsky, "Not in
Name Alone: A Memristive Memory Processing Unit for Real In-
Memory Processing," IEEE Micro, Vol. 38, No. 5, pp. 13-21,
September/October 2018.

[66] R. Ben-Hur and S. Kvatinsky, "Memristive Memory Processing Unit
(MPU) Controller for In-Memory Processing", Proceedings of the IEEE
International Conference on Science of Electrical Engineering, pp. 1-5,
November 2016.

[67] N. Talati, H. Ha, B. Perach, R. Ronen, and S. Kvatinsky, "CONCEPT: A
Column Oriented Memory Controller for Efficient Memory and PIM
Operations in RRAM," IEEE Micro, Vol/ 39, No. 1, pp. 33-43,
January/February 2019.

[68] N. Wald and S. Kvatinsky, "Influence of Parameter Variations and
Environment for Real Processing-In-Memory using Memristor Aided
Logic (MAGIC)," Microelectronics Journal, Vol. 86, pp. 22-33, April
2019.

[69] N. Talati, A. Haj Ali, R. Ben Hur, N. Wald, R. Ronen, P.-E. Gaillardon,
and S. Kvatinsky, "Practical Challenges in Delivering the Promises of
Real Processing-in-Memory Machines," Proceedings of the Design
Automation and Test in Europe, pp. 1628-1633, March 2018.

[70] A. Haj Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, "Efficient Algorithms
for In-Memory Fixed Point Multiplication Using MAGIC," Proceeding
of the IEEE International Symposium on Circuits and Systems, pp. 1-5,
May 2018.

[71] R. Ben Hur, N. Wald, N. Talati, and S. Kvatinsky, "SIMPLE MAGIC:
Synthesis and Mapping of Boolean Functions for Memristor Aided Logic
(MAGIC)," Proceeding of the IEEE International Conference on
Computer Aided Design, pp. 225-232, November 2017.

[72] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, and S.
Kvatinsky, "SIMPLER MAGIC: Synthesis and Mapping of In-Memory
Logic Executed in a Single Row to Improve Throughput," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (to appear).

[73] A. Haj Ali, R. Ben-Hur, N. Wald, R. Ronen, and S. Kvatinsky,
"IMAGING - In-Memory AlGorithms for Image ProcessiNG," IEEE
Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 12,
pp. 4258-4271, December 2018.

[74] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie,. "Pinatubo: a Processing-
in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-
Volatile Memories," Proceedings of the Annual Design Automation
Conference (DAC), Article 173, June 2016.

