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Abstract—Efforts to combat the ‘von Neumann bottleneck’
have been strengthened by Resistive RAMs (RRAMs), which
enable computation in the memory array. Majority logic can
accelerate computation when compared to NAND/NOR/IMPLY
logic due to it’s expressive power. In this work, we propose a
method to compute majority while reading from a transistor-
accessed RRAM array. The proposed gate was verified by sim-
ulations using a physics-based model (for RRAM) and industry
standard model (for CMOS sense amplifier) and, found to tolerate
reasonable variations in the RRAMS’ resistive states. Together
with NOT gate, which is also implemented in-memory, the pro-
posed gate forms a functionally complete Boolean logic, capable
of implementing any digital logic. Computing is simplified to a
sequence of READ and WRITE operations and does not require
any major modifications to the peripheral circuitry of the array.
The parallel-friendly nature of the proposed gate is exploited to
implement an eight-bit parallel-prefix adder in memory array.
The proposed in-memory adder could achieve a latency reduction
of 70% and 50% when compared to IMPLY and NAND/NOR
logic-based adders, respectively.

Index Terms—Resistive RAM (RRAM), majority logic, major-
ity gate, memristor, 1 Transistor-1 Resistor(1T-1R), von Neu-
mann bottleneck, in-memory computing, compute-in-memory,
processing-in-memory, parallel-prefix adder

I. INTRODUCTION

HE movement of data between processing and memory

units in present day computing systems is their main
performance and energy-efficiency bottleneck, often referred
to as the ‘von Neumann bottleneck’ or ‘memory wall’. The
emergence of non-volatile memory technologies like Resistive
RAM (RRAM) has created opportunities to overcome the
memory wall by enabling computing at the residence of data.
RRAMs are two terminal devices (usually a Metal-Insulator-
Metal structure) capable of storing data as resistance. The
change of resistance is due to the formation or rupture of a
conductive filament, depending on the direction of the current
flow through the structure. The word ‘memristor’ is also used
by researchers to denote such a device, because it is essentially
a resistor with memory. Connecting such RRAM devices in
a certain manner, or by applying certain voltage patterns,
or by modifying the sensing circuitry, basic Boolean gates
(NOR, NAND, XOR, IMPLY logic) have been demonstrated
in RRAM arrays [1]-[6]. The motivation for such efforts is
to perform Boolean operations on data stored in the memory
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array, without moving them out to a separate processing
circuit, thus mitigating the von Neumann bottleneck. Reviews
of such in-memory computing approaches are presented in
[7], [8]. To construct a memory array using such devices, two
configurations are common: 1Transistor—1Resistor (1T-1R)
and 1Selector-1Resistor (1S—-1R). The 1T-1R configuration
uses a transistor as an access device for each cell, isolating
the accessed cell from its neighbours in the array. The 1S—-1R
configuration uses a two-terminal device called a ‘selector’
which is fabricated in series with the memristive device.
The 1S—1R is area-efficient, but suffers from current leakage
(sneak—path problem) due to the inability to access a particular
cell without interfering with its neighbours [9].

Majority logic, a type of Boolean logic, is defined to be
true if more than half of the n inputs are true, where n is
odd. Hence, a majority gate is a democratic gate and can be
expressed in terms of Boolean AND/OR as M AJ(a,b,c) =
a.b+b.c+ a.c, where a, b, c are Boolean variables. Although
majority logic was known since 1960, there has been a
revival in using it for computation in many emerging nan-
otechnologies (spin waves, magnetic Quantum-Dot cellular
automata, nano magnetic logic, Single Electron Tunneling).
Recent research [10]-[12] has confirmed that majority logic is
to be preferred not only because a particular nanotechnology
can realize it, but also because of its ability to implement
arithmetic-intensive circuits with less gates. It must be em-
phasized that majority logic did not become the dominant
logic to compute because it was more efficient to implement
NAND/NOR gate than a majority gate, in CMOS technology.
However, with many emerging nanotechnologies, this is not
the case anymore, therefore, majority logic needs to be re-
evaluated for its computing efficiency. In [13]-[15], majority
logic is implemented in RRAM by applying the two inputs of
the majority gate as voltages across its terminals, and the initial
state of the RRAM (which is also the third input) switches to
evaluate majority. Such an approach complicates the peripheral
circuitry and is also not parallel-friendly, because two of the
three inputs of a majority gate need to be applied as voltages
at wordline/bitline (see Fig.1(a)).

In this paper, we propose a majority gate whose structure
is conducive for parallel-processing in the memory array.
By activating three rows of the array simultaneously, the
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Fig. 1: (a) In-memory majority gate of previous works [13]-[15]
(b) Proposed parallel-friendly gate (c¢) When multiple gates have
to be executed in parallel, the majority gates of previous works
[13]-[15] have to be mapped diagonally because two gates cannot
be executed in the same row/column. This manner of computation
complicates both the peripheral circuitry and memory controller
(inputs of the gates influence row/column decoding). In the proposed
method, multiple gates can be mapped to the same set of rows,
thereby simplifying the peripheral and the memory controller (inputs
of the gates are resistance of memory cells and row/column decoders
retain their functionality as in a conventional memory).

resistance of the RRAM cells in a column are in parallel
during the READ operation. A Sense Amplifier (SA) which
can accurately sense the effective resistance implements a ‘in-
memory’ majority gate. This manner of computing majority
enables parallelism and is energy-efficient (both reading and
writing is energy-efficient in 1T-1R when compared to 1S-
IR arrays due to the absence of sneak paths). To demonstrate
the potential of this method to accelerate computation, we
consider a parallel-prefix adder and formulate the steps to
perform eight-bit addition in a 1T-1R array. The remainder
of the paper is organized as follows. Section II-A presents the
principle of reading majority from a 1T-1R array. Since the
read operation is the crucial aspect of the proposed majority
gate, we present the detailed sensing methodology in Section
II-B. Further, we study tolerance to variations in resistive
states by performing Monte Carlo simulations. In Section
IIT we present the framework to compute in the memory
array, using the proposed majority gate. Section IV-A briefly
presents parallel-prefix technique and the structure of an eight-
bit parallel-prefix adder in terms of majority gates. The adder
is then mapped to a 1T-1R array using the proposed in-
memory computing technique, in Section IV-B. We compare
the proposed eight-bit adder with the state-of-the-art, followed
by conclusions in Section V.

II. MAJORITY GATE IN 1T-1R ARRAY
A. Majority gate: Operating principle

Consider an array of RRAM cells arranged in a 1T-1R
configuration, as depicted in Fig. 2. Each cell can be in-
dividually read/written into by activating the corresponding
wordline (W L) and applying appropriate voltage across the
cell (BL and SL). To read from a cell, the corresponding
WL is activated, a small current is injected into the cell and
the voltage across the cell is sensed in a voltage-mode SA i.e.
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Fig. 2: When three rows are activated (W Lq_3) simultaneously
in a 1T-1R array, the resistances of the three RRAM devices are
in parallel. An ‘in-memory’ majority gate can be implemented by
accurately sensing the effective resistance Ry y.

the BL voltage is sensed while the SL is grounded. Now, if
three rows are activated simultaneously during read operation
(Rows 1 to 3 in Fig. 2), the resistances in column 1 are in
parallel (neglecting the parasitic resistance of BL and SL).
During read, the access transistor will be in linear region, and
hence the transistor’s resistance will be

1 _ .
DS tnCon () (Vas—Vi) 544 Q [16]. The effective

resistance between BL and SL will therefore be R.sy =
(Ra + rps)||(Re + rps)||(Rc + rps) ~ (Ral|Rpl[Rc),
if the drain-to-source resistance of transistor (rpg) is small
compared to LRS. Table I lists the truth table of 3-input major-
ity gate (M3(A, B, C)) and the effective resistance for all the
eight possibilities. To verify the proposed gate on a real RRAM
device, we choose the 1T-1R cell from IHP!. The 1T-1R
structure consists of a NMOS transistor manufactured in [HP’s
130 nm CMOS technology, whose drain is connected in series
to the RRAM. The RRAM is a TiN/H f1_,Al,O,/Ti/TiN
stack integrated between Metal2 and Metal3 in the BEOL of
the CMOS process. IHP’s 1T-1R cells were modeled using
the Stanford-PKU RRAM model following the methodology
presented in [16]. The cells have a mean LRS and HRS
of 10 KQ and 133.3 K, respectively. Therefore, the R.f¢
is > 8.7 K2 when two or more cells are in HRS (shaded
grey in Table I) and < 4.8 K2 when two or more cells are
in LRS. Consequently, a majority gate can be implemented
during a READ operation by precisely sensing R.f¢. As can
be deciphered from Table I, the crucial aspect of the proposed
gate is to be able to differentiate between R} (two LRS and
one HRS) and Rl}} (two HRS and one LRS). Let’s denote
the resistance to be differentiated as sensing window,

Sensing window for majority = 8.7 K2 — 4.8 K2 = 3.9 K}

Innovations for High Performance Microelectronics— Leibniz-Institut fiir
innovative Mikroelektronik, Germany



for IHP’s cell (resistance window = 13.3).

TABLE I: Precisely sensing R.y; results in majority: Logic
‘0’ is LRS (10 K€?2) and logic ‘1’ is HRS (133.3 K2)

A B C  Ms3(AB,C) Rey Reyy

0 0 0 0 LES 33 KQ
0 0 1 0 T L. 48KQ
0 1 0 0 T L. 48KQ
0 1 1 1 RS LRS- 8TKQ
1 0 0 0 TS L. 48KQ
1 0 1 1 Fhsres  87KQ
1 1 0 1 s res  87KQ
1 1 1 1 HES 44.4 KQ

3

B. Sensing methodology

As stated, the methodology to reliably translate .y into
a CMOS-compatible voltage is the crucial aspect of the
proposed majority gate. Rg% is 4.8 K and Ré}% is 8.7 KQ,
and differentiating such a resistance window (= 3.9K ) needs
a robust SA. It must be noted that this will be exacerbated by
the variability exhibited by the RRAM devices. To meet this
requirement, a time-based SA recently proposed in [17] was
chosen. Different from conventional sensing schemes (voltage-
mode and current-mode), the time-based sensing scheme con-
verts the BL voltage (to be sensed) into a time delay and dis-
criminates in time-domain. This sensing scheme was originally
proposed to read data from STT-MRAM [17], which have a
resistance window of a few K. Therefore, it is ideal for the
proposed majority gate. Furthermore, this time-based sensing
achieves two to three orders of magnitude improvement in
sensing (BER) compared to conventional schemes, in addition
to being reference-less [17].

The time-based sensing circuit is essentially a voltage-to-
time converter followed by a time-domain comparator (D-flip
flop). Voltage-to-time conversion is achieved by the current-
starved inverter (transistors M;_5) followed by transistor Mg
and an inverter (Fig. 3). During READ, a current Irgap is
injected into the 1T-1R cell (corresponding three W Ls are
activated and SL is grounded). Depending on the effective
resistance [%.yy, the BL reaches an appropriate voltage. In
the conceptual waveforms of Fig.3, it is assumed that BL
gets charged to 300 mV if Ry is a high resistance (8.7 K(2)
and 200 mV if R.ys is a low resistance (4.8 K), for the
purpose of illustration. Such a Vg, (few hundred mV) limits
the current flow through the inverter (transistor M;_3), hence
the name current-starved inverter. When E'N goes high, the
current-starved inverter introduces a delay proportional to Vg,
i.e. a higher Vg incurs less delay. A Vg, of 300 mV incurs
less delay and low-to-high transition of E'N reaches the input
of the Flip-flop (IrF) faster i.e. at Tprg. For a lower Vg,
of 200 mV, the delay is greater and the low-to-high transition
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Fig. 3: A small current Irpap injected into the cell converts the
resistance to a voltage which is fed to the time-based SA. A current-
starved inverter transforms this voltage into a proportional delay
which is sensed as a CMOS-compatible voltage by the D-FF [17].

occurs at T rs. tgeiay 1S a chain of inverters programmed
to introduce a delay between T rs and Trrs. ENgejay, the
EN signal delayed by tgeiqy acts as the edge trigger for the
D-FF. When ENgeqy goes high at Thys (Decision Moment),
it latches the signal at Irr and hence the D, is high for
high resistance (Ré}?c = 8.7 KQ) and low for low resistance
(RY}} = 4.8 KQ). It must be noted that for Rl}} = 44.4 KQ,
Vpr will be much larger than 300 mV and will result in a
transition much before T rg. Similarly, for RS% = 3.3 KQ,
Vir, will be less than 200 mV and will result in a transition
much later than 77, rs. Once designed to differentiate between
R[S and R)Y}, the time-based SA will output M3(A, B, C)
correctly for all the eight cases. Furthermore, the same SA can
be used to read a single bit by using a smaller Ippap (and
activating a single W L during normal read operation). Hence
the proposed gate does not necessitate any modification to the
read-out circuit of the regular memory array.

The time-based sensing circuit of Fig. 3 was designed in
IHP’s 130 nm CMOS process, and simulated to verify the
functioning of the majority gate. Irgap of 35 nA was injected
into the 1T-IR cell to sense the BL voltage. For R} and
R;}(}, Vpr was 282 mV and 410 mV, respectively. Since
the current-starved transistors M;_3 are the crucial factor in
deciding the delay, they were made large (% = 015)9%”;1) to
make the circuit less sensitive to CMOS process variations.
tdelay Was set to 3 ns using a chain of inverters with MOS
capacitive loads between them. RRAM cells exhibit variability
in their programmed resistive states cycle-to-cycle and device-
to-device [18]. Therefore the majority gate was evaluated by
taking RRAM variations into account. Since majority is com-
puted while reading (memory cell is not switched), the RRAM
was replaced with a resistor and variability was incorporated as
a Gaussian distribution in that resistor. The impact of process
variations was analysed using the statistical model files for
the CMOS transistors provided by the foundry. 2000 Monte
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Fig. 4: Sample output of the time-based SA. At 13.5 ns, the E Ngeiqy
goes high deciding the output. Only 100 MC simulations are plotted
(shaded light) with single typical case highlighted dark.

Carlo simulations were performed where the resistance of the
RRAM was Gaussian distributed with a standard deviation, o
= 10% of mean RRAM resistance i.e o, rs = 1 K2 and oy rs
= 13.33 K. With combined effects of RRAM variability and
process variability (in transistors of SA), the Bit Error Rate
(BER) was found to be 5.4%. Sample wave-forms are plotted
in Fig. 4. Further failure analysis of the majority gate (incorrect
sensing of RY}} and R!}}) revealed that it occurred only when
RRAM variability was more than 20 from mean LRS/HRS (It
must be noted that 95% of resistances fall within 20 from the
mean, in a Gaussian distribution).

III. FRAMEWORK TO COMPUTE IN 1T-1R ARRAY
A. Functional completeness and memory controller

As shown in Fig. 5-(a), NOT operation can be implemented
in a 1T-1R array by simply latching @) from the output of the
time-based SA during READ (D-Flip flop of Fig.3 outputs
Q and Q). This is accomplished by using a control signal
INV which is low during READ and majority operation ()
is latched) and goes high only during NOT operation (Q is
latched). Majority together with NOT is functionally complete
i.e any Boolean logic can be expressed in terms of majority
and NOT gates [19]. In [19], the authors present Majority-
Inverter Graph (MIG), a new logic manipulation structure
consisting of three-input majority nodes and regular/inverted
edges. Fig.5-(b) is the MIG of a 1-bit full adder obtained by
MIGhty (MIG synthesis tool) and, any Boolean logic can be
synthesised in terms of majority and NOT gates in a similar
manner. Since both majority and NOT gates are implemented
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Fig. 5: (a) NOT operation implemented with a 2:1 Mux at the
output of the time-based SA; all logic operations are essentially
READ operations (b) 1-bit full adder expressed as Majority-Inverter-
Graph using MIGhty synthesis tool [19], where M3 represents 3-
input majority operation (c) With majority/NOT gate computed as
READ, multiple levels of logic can be executed by writing the data
back to the memory, simplifying computing to READ and WRITE
operations.

as READ, multiple levels of gates can be cascaded by writing
the read data back to the array. In essence, ‘computing’ is
simplified to a sequence of READ and WRITE operations,
orchestrated by the memory controller, as depicted in Fig.5-
(©).

The memory controller of a regular memory (be it DRAM-
based or NVM-based) is responsible for orchestrating the
READ and WRITE operation by issuing the control signals to
the peripheral circuitry of the array. In addition, the memory
controller must be augmented with additional capability to
execute majority and NOT operation. Since both majority and
NOT operations are READ operations in this logic family, the
controller does not require any major alterations. To execute a
majority operation, an additional control signal called M AJ
is needed, which is set to logic ‘1’ during majority operation’
and, the address of the first row (out of three rows in which
majority is to be performed) is placed on the row decoder.
It must be noted that majority operation is executed on three
contiguous bits of data in a column and the triple row decoder
of section III-B will not only select the row corresponding
to the address placed on the row decoder, but also the next
two rows if M AJ is ‘1’. The column address is placed on
the column decoder to select the particular column in which
majority is executed and the SA is activated to get the output.
The NOT operation is the same as the READ operation with
the only exception being the controller issues the control signal
INV, which goes high to invert the read data at the output of

2this signal acts as an additional input to the row decoder, Fig. 6



the SA (Fig. 5-(a)). The control signals activated during logic
operations are summarized in Table II.

TABLE II: Control signals for memory and logic operations

Operation WL BL SL EN(SA) INV MAJ

READ single row to read grounded 1 0 0
activated ckt.

NOT single row to read grounded 1 1 0
activated ckt.

Majority ~ three rows to read grounded 1 0 1
activated ckt.

WRITE single row  Vgpr grounded 0 0 0

‘0 activated

WRITE single row  grounded Vgiypspr O 0 0

‘T activated

B. Triple-row decoder design
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Fig. 6: Triple-row decoding is achieved by interleaving mul-
tiple single-row decoders. When control signal MAJ is logic
‘0’ (READ/WRITE/NOT), W L; corresponding to row address
A3A2A1Ap is selected. When MAJ is logic ‘1’ (majority),
WLi,WL;t1,WL,;i2 are selected.

A conventional decoder for a 1T-1R array can select one
row at a time, while the proposed majority gate needs three
rows to be selected simultaneously. Moreover, the row-decoder
must be versatile to switch between single-row activation and
triple-row activation seamlessly. This is because, as stated
in the previous section, one must be able to read/write a
single bit of the array (READ/WRITE/NOT) as well as read
three bits in a column (majority). To this end, we propose a
robust row decoder which is designed by interleaving multiple
single-row decoders. As depicted in Fig.6, a 4:16 triple-row
decoder can be designed by interleaving four 2:4 dynamic
NAND decoders’. Since single-row decoding must co-exist
with triple-row decoding, an address translator circuit is used
to switch between the two modes using M AJ as a control

3a dynamic decoder uses a precharge signal ¢, which when low, all WL
are driven to ‘0’. When ¢ goes high, W L; corresponding to D1 Dg goes
high, provided EN is ‘1’

signal. For example, to select a single row W L5, the address
is A3AsA1 Ay = ‘0101 and M AJ = ‘0’. For these inputs,
the address translator outputs EN3ENsEN1ENy = ‘0010°
and D7 DgDsDyD3 Do D1 Dg = ‘XXXX01XX’ (green decoder
in Fig. 6 is enabled and it’s second row is selected, thereby
activating W Ls). But, for the same row address AsA3A; Ay
= ‘0101” and MAJ = ‘1’, the address translator outputs
ENgENQENlENO = ‘1110’ and D7D6D5D4D3D2D1DQ =
‘010101XX’ (blue, red and green decoders are enabled and
second row of each of them is selected, thereby activating
W Ls, WLg and W L7). The address translator inputs M AJ
and A3AsA1Ap and generates Dy DgDsD4D3 Do Dy Dy and
EN3sENsEN,ENy to achieve this desired functionality for
all the 16 cases. With the address translator logic (88 tran-
sistors), the triple-row decoder requires 200 transistors, while
a regular 4:16 dynamic decoder (only single row activation)
requires 136 transistors, a 47% increase in the row-decoder
area. The address translator does not add any significant
latency to the decoding process. The decoder was designed
in 130 nm IHP process and its functionality was verified and
decoding latency was found to be 496 ps.

C. Area of time-based Sense Amplifier
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== 2 £
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Fig. 7: Layout of time-based SA.

In this work, the primary motivation for pioneering a
parallel-friendly gate was to exploit it to accelerate addition, by
executing gates in parallel. It must be emphasized that the main
drawback of RRAM based in-memory adders is their latency
— numerous cycles of Boolean operations (NAND, NOR,
IMPLY) are needed to perform addition, when compared to
CMOS. To evaluate the number of gates that can be executed
in parallel, we evaluated the area of the time-based SA. The
time-based SA of [17] could sense the BL voltage without an
op-amp, and, this was an important reason for adopting it for
our majority gate (conventional SAs use operational amplifier,
which consume huge silicon area). The layout of the time-
based SA of Fig.3 is drawn in Fig.7 and occupies an area of
20 x 3 = 60 um?. It must be noted that this area estimate does
not include the area of the delay element since it is shared by
all the SA in the array. (fge1qy in Fig.3 is implemented as series
of inverters with MOS capacitive load between them). From
[20], the layout of a single 1T-1R cell occupies 450 nm x
450 nm = 0.2 pm? in 130 nm (12.4 F?). If the SA is stacked
along its height of 3 pm, eight columns can share a SA. This
means that the number of majority gates that can be executed
in parallel in an array is the number of columns divided by a
factor of 8 i.e. 32 gates can be executed simultaneously in a
256256 array, 8 gates in a 64x64 array etc.



D. Energy for in-memory operations

To assess the energy required for computation, we first
calculate the energy required for each logic operation. We
calculate the energy for a single majority operation, as

tREAD tREAD
Eyag = VDD/ Irpap - dt + VDD/ Isa - dt
0 0 o

where Irpap is the current injected into the 1T-1R cell (see
Fig. 3), Isa is the current consumed by the time-based SA
and tppap is the READ cycle duration. It must be noted that
in Eq. 1, trpap was 20 ns and Irpap was 35 pA in our
simulations in IHP’s 130 nm CMOS process. The energy for
a single majority operation, Ejs 47 = 1.98 pJ. The energy for
the NOT operation is the same as the energy to read a single
bit, and it was calculated to be Enxor = 1.24 pJ. Enor 18
smaller than E; 47 because, [rpap was smaller (22 pA) for
NOT and READ, where a single bit is read. The energy to
write a bit, Fywrire = Vet X fgWRITE Iw rrTE-dt, where
twrrre was 100 ns in our simulation (although switching
time is < 10 ns for these devices, ty gy Was set to 100 ns
to account for worst-case scenarios). Fyy rrr g was calculated
to be 11 pl.

IV. EIGHT-BIT ADDER IN 1T-1R ARRAY
A. Parallel-prefix adder using majority logic

Parallel-prefix (PP) adders are a family of adders originally
proposed to overcome the latency incurred by the rippling
of carry in CMOS-based adders. The regular structure of the
memory array and the proposed parallel-friendly majority gate
can be combined to implement PP adders in the memory
array. PP adders have a ‘carry-generate block’ followed by
a ‘sum-generate block’ (Fig. 8). The ‘carry-generate block’
can generate the carry ‘ahead’ and is known to reduce the
latency to O(log n), for n-bit adders. Kogge-Stone, Ladner-
Fischer, Brent-Kung and the like, are examples of PP adders.
For this work, we choose Ladner-Fischer since it minimizes
logical depth at the cost of fan-out (fan-out of a gate translates
to WRITE, as will be elaborated in section IV-B). Since
majority gate is the basic building block for many emerging
nanotechnologies, prior works [11], [12] have formulated such
PP adders in terms of majority gates. The carry-generate and
sum-generate blocks for an eight-bit adder in majority logic
are derived from [11], [12] (Fig. 8). For an eight-bit adder, the
logical depth is six levels of majority gates and one level of
NOT gates, and at most eight gates are needed simultaneously
in each level.

B. Mapping of the eight-bit LF adder to 1T-IR array

In this section, we map the eight-bit Ladner-Fischer adder
structure of Fig. 8 to a 1T-1R array, using the proposed logic
family, and elaborate the sequence of operations. Since the
proposed gates are not stateful®, the output of the majority

4In memristive logic, a logic family is said to be stateful if both the
input and output of a computation are represented as resistance of the
RRAM/memristor [7]
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Fig. 8: Eight-bit PP adder (Ladner-Fischer)expressed as 7 levels of
majority and NOT gates [11], [12]. Majority gates 1-20 constitute
carry generate block and 21-36 constitute sum generate block.

gate (voltage) needs to be written into the array as inputs to
the next logic level. We assume a 5x65 processing area (to
store the intermediate results of the computation), which is
initialized to logic ‘0’, 7.e., all cells are in LRS. Further, we
assume that the two numbers to be added (ayagasasazasaiag,
b7bgbsbabsbabiby and CY,,) are arranged in the processing area
as depicted in Fig. 9. To minimize latency, we map the adder
in a way such that all the majority gates in a logic level (see
Fig. 8) are executed simultaneously in a READ operation (see
Fig. 9). In a 1T-1R array, HRS— LRS transition (SET process
when the conductive filament is created) is accomplished by
applying two pulses simultaneously to the WL and BL,
while SL is grounded. LRS— HRS transition (RESET process
when the filament is ruptured) is accomplished by applying
two pulses simultaneously to the WL and SL, while BL is
grounded. This is because a voltage of opposite polarity is
needed across the RRAM cell to break the filament. Hence,
SET and RESET cannot be performed on the same row
simultaneously. Therefore, writing multiple bits to a row is
usually done in two steps, i.e, to write ‘1010, first °_0_0’ is
written by SET process and then ‘1_1_’ is written by RESET
process. In our mapping, multiple bits can be written in a
single cycle since the 5x65 processing array is initialized
to ‘0’. The contents of the array during the seven levels
are depicted in Fig. 9. As enumerated in Fig.9, two eight-
bit numbers can be added by a sequence of read and write
operations, requiring a total of 19 steps (6 Majority, 2 NOT
and 11 write cycles). The proposed approach is one of the
fastest implementation of eight-bit adder in RRAM array, with
only one other work [2] reporting a lower latency (Table III).

The proposed method naturally enables parallel-prefix ad-
dition by ‘reading’ majority simultaneously from columns of
data. Therefore, the number of steps to compute eight-bit
addition, in a RRAM array is shortened, as summarized in
Table III. For our eight-bit adder, the energy consumption,
calculated from simulations, was 631 pJ (36 majority, § NOT
and 50 WRITE operations). In the Table III, we have not
compared the energy for computation since they are either
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1.Majority at
(1:1,9,17,25,33,41,49,57)
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2.write (m,m,m, m,) at (1:2,50,58,65)

3.write (m, m,m,m,) at (2:2,50,58,65)

O W N R

4.write (m,m,m,m,) at (3:34,42,50,58)

5.Majority at (1:2,10)

6.Write (c,c,c,) at (3:1,18,65)

:+ 7.Majority
at (1:18,34,42,50,58,65)

8.write (c,c,c.c.c,)

at (3:3,11,19,26,34)

QLR W N R

OO N B
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9.write (m,, m_,m,) at (1:3,11,19)

10.write (m,,m,, m,) at (2:3,11,19)

11.Majority at (1:3,11,19,26)

12.write (c,c,c,c.c,c.c,C )

at (4:1,18,26,34,41,51,57,65)

13.NOT at (3:1,11,18,34)

14.write (¢ c, c, c)
at (3:10,18,41,57)

15.NOT at (4:1,34,51,65)

16.write (C_, c, c, )
at (3:1,26,34,51)

17.Majority
at (1:1,10,18,26,34,41,51,57)

18'wrlte (m21m28m25m24m22m25m23m27)

at (5:1,10,18 ,26,34,41,51,57)

19.Majority
at (3:1,10,18,26,34,41,51,57)

Fig. 9: Mapping of the logic levels 1 to 7 of Fig.8 to 1T-1R array. All the majority gates in a level are executed in parallel (shaded yellow).
m, represent the output of the ¢*" majority gate and ¢; is the carry generated during parallel-prefix addition (denoted green since it is read

as a ‘voltage’ and then written into the array).

not reported [2] or reported for another RRAM technology
[22]. Depending on the RRAM technology in which the adder
is implemented/simulated, the energy will differ (switching
energy depends on HRS, LRS and switching times which
varies from few ns to even 1 us). Therefore, it would be unfair
to compare the energy of computation across different RRAM
technologies. However, the latency can be a good measure of

energy comparison since, for each logic primitive, we mention
what is the operation performed in each step. It is reasonable to
expect the proposed adder to require a large array area (5x65)
since it executes multiple gates in parallel. However, it must
be emphasized that for a holistic area comparison between
adders, both the array area (memory cells) and the increased
peripheral circuit area must be considered [7].



TABLE III: Comparison of eight-bit adders in RRAM array

Primitive Array Latency Area Comment/Ref

IMPLY 1S-1IR 58 72 Each step is IMPLY opera-
steps cells tion [21]

NOR 1S-1IR 38 19%x22  Each step has one or more
steps NOR operations [22]

Majority 1S-IR  48* 8x3 Each step is majority (Fig.1
steps (a)) or READ [22]

OR/AND 1S-1IR 37 64 Each step has one or more
steps  cells OR/AND operation [23]

ORNOR 1S-1IR 31 54 Each step has one or more
steps  cells ORNOR/IMPLY [24]

Majority+NOT 1T-1R 19 5x65  Each step is majority/NOT or
steps WRITE (this work)

XOR** 1T-1R 16 three Each step is XOR/READ [2]
steps 1x8

* Latency is calculated as 24 RM3 (Resistive Majority) instructions in [22],
where each RM3 consists of a READ followed by majority of Fig.1 (a)

** XOR gate of [2] is not parallel-friendly and consequently multiple gates
cannot be executed in parallel in the array (to circumvent this, [2] has used
multiple arrays). Furthermore, XOR is not functionally complete and has
to be used in conjunction with other gates to implement other arithmetic
circuits. In contrast, majority+NOT is functionally complete and can be
implemented with minimal peripheral overhead in the proposed method.

V. CONCLUSION

A memristive logic family formulates a functionally
complete Boolean logic with a memristive device
(RRAM/PCM/STT-MRAM) as the primary switching
device. The proposed method of implementing a majority and
NOT gate in a 1T-1R array forms a new memristive logic
family. The majority gate can be implemented in a 1T-1R
array without necessitating any major change in the peripheral
circuit (except the row decoder which needs to be modified
to activate three rows simultaneously). Majority logic can
be combined with parallel-prefix techniques to design fast
adders, and the proposed gate can be used to implement them
in memory arrays, with minimum latency.
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