
Architecture Support for FPGA Multi-tenancy in
the Cloud

Joel Mandebi Mbongue, Alex Shuping, Pankaj Bhowmik, Christophe Bobda
ECE Department, University of Florida, Gainesville FL, USA

Email: (jmandebimbongue, alexandershuping, pankajbhowmik)@ufl.edu, cbobda@ece.ufl.edu

Abstract—Cloud deployments now increasingly provision
FPGA accelerators as part of virtual instances. While FPGAs are
still essentially single-tenant, the growing demand for hardware
acceleration will inevitably lead to the need for methods and
architectures supporting FPGA multi-tenancy. In this paper, we
propose an architecture supporting space-sharing of FPGA de-
vices among multiple tenants in the cloud. The proposed architec-
ture implements a network-on-chip (NoC) designed for fast data
movement and low hardware footprint. Prototyping the proposed
architecture on a Xilinx Virtex Ultrascale+ demonstrated near
specification maximum frequency for on-chip data movement
and high throughput in virtual instance access to hardware
accelerators. We demonstrate similar performance compared to
single-tenant deployment while increasing FPGA utilization (we
achieved 6× higher FPGA utilization with our case study), which
is one of the major goals of virtualization. Overall, our NoC
interconnect achieved about 2× higher maximum frequency than
the state-of-the-art and a bandwidth of 25.6 Gbps.

Index Terms—Cloud, Field-Programmable Gate Array,
Network-on-chip, Multi-tenancy, Elasticity

I. INTRODUCTION

In recent years, Field-Programmable Gate Arrays (FPGAs)
have increasingly been deployed in public cloud infrastructures
provided by several technology companies such as Amazon
and Alibaba [1], [2]. Developers can now take advantage of
a rich library of pre-built hardware accelerators or implement
custom features without purchasing FPGA boards, managing
expensive licenses, setting up the operational infrastructure,
and being obliged to work from a specific location. Though
FPGAs in the cloud opens to a broader access to reconfigurable
hardware, current commercial cloud systems have highlighted
the lack of primitives and support allowing multiple workloads
to space-share a single device. This could result in expensive
utilization cost. An instance without FPGA can be about
8.5× cheaper than an equivalent with FPGA [3], [4]. Another
issue is the waste of resource. In fact, FPGA devices most
often gather more elements than what user workloads would
typically need when considering the millions of components
present in high-end FPGAs. As example, the Xilinx Virtex
UltraScale+ FPGA deployed within Amazon F1 instances
contains approximately 2.5 millions logic elements, 6800 DSP
slices, and 75MB of BRAM [5].

Because the capacity of integration in FPGA technology
continuously increases as some devices now achieve 9 millions
of logic cells [6], we believe that single-tenant FPGA use in the
cloud may soon be unsuited. It then becomes necessary to ex-
plore approaches to enable FPGA multi-tenancy. The National

Institute of Standards and Technology (NIST) proposed several
characteristics of cloud infrastructure among which is resource
pooling and rapid elasticity [7]. The resource pooling refers to
the consolidation of resources (storage, processing, memory,
etc) to serve users in a multi-tenant model. On the other
hand, the rapid elasticity consists in allowing the provision
and release of resources. It also encompasses scaling services
with the demand. Extending these concepts to cloud FPGAs
could summarize in being able to run multiple accelerators on
a single device simultaneously, and enable the allocation of
additional FPGA resources at run-time.

In this paper, we propose an approach for FPGA virtual-
ization in cloud infrastructure that addresses resource pooling
and rapid elasticity. Since the elasticity assumes that resources
can be acquired and ultimately released, we focus our study
on FPGA sharing in the space domain. In order to allow
logically isolated workloads to share a single device, we start
by dividing FPGAs into disjoint regions. The regions are
then interfaced to a network-on-chip (NoC) interconnect that
allows extending the hardware domain of a task. Basically, a
hardware task that is deployed over multiple FPGA regions
can be seen as an application with several sub-functions that
can communicate through the NoC, each one deployed in a
separate location. Our contribution therefore includes:

1) Concept of elastic and multi-tenant FPGAs in the cloud.
2) A soft NoC for efficient on-chip communication between

hardware accelerators. We optimize the NoC architecture
considering the cloud needs, and provide a solution that
can move data at about 1GHz for data width between 64
and 256 bits.

3) A case study on FPGA multi-tenancy and elasticity.
It shows through a practical example the necessity of
space-sharing, and illustrates the advantage of on-chip
communication support for efficient elasticity.

In the rest of the paper, section II reviews recent research.
Then, section III provides some background definitions. Next,
section IV describes the components of the proposed soft NoC.
Finally, section V shows some experimental results and section
VI concludes the paper.

II. RELATED WORK

A. FPGAs in the cloud

FPGA virtualization in the cloud has been discussed re-
cently in several studies. Some contributions present solutions

ar
X

iv
:2

00
6.

08
02

6v
1

 [
cs

.A
R

]
 1

4
Ju

n
20

20

to the temporal allocation of FPGA kernels [8]–[11]. They
essentially explore techniques to successively allocate full or
partial FPGAs to tenants over time. Other research illustrated
architectures implementing spatial FPGA sharing by exposing
FPGA regions labeled ”virtual FPGAs” to cloud tenants. For
instance, some architectures divide each physical FPGA into
several locations that can be allocated to virtual instances (VI)
[12]–[14]. Partial reconfiguration is then used for runtime up-
date of VI’s hardware kernels. Yet, the FPGA access remains
mostly limited either by not allowing user custom designs
but pre-built hardware functions, and/or not supporting direct
on-chip communication. This restriction imposes middleware
copy for data movement between accelerators. To minimize
the data movement overhead, an on-chip interconnect can be
used between virtualized hardware regions [15], [16]. Vaishnav
et al. implement elasticity on cloud workloads by scheduling
user jobs as they arrive [17]. Based on a list of waiting jobs
and their needs, they use partial reconfiguration to repurpose
the FPGA. Other work discuss security challenges of FPGA
deployment in the cloud [18]. This aspect is out of the scope
of this work.

B. Network-on-Chip

Network-on-chips have emerged as a solution to the lack of
scalability of point-to-point links and buses. Several soft-NoCs
implemented on FPGA have been proposed in the literature. In
the FLexiTASK NoC, high-radix routers reduce the network
diameter [19]. Schelle et al. explore NoC performance when
modifying parameters such as the size of the network and the
presence or not of virtual channels (VC) [20]. They showed
for instance that VCs can lead to about 5× increase in resource
utilization, but allow higher throughput. They concluded that
more logic should be spent on the NoC if the applications are
more communication-oriented than compute. CONNECT is a
flexible NoC generator for FPGA-based systems that allows
the creation of arbitrary topologies [21]. Its flexibility however
results in low Fmax and high area overhead. Hoplite proposes
a lightweight and bufferless router architecture that is capable
of achieving high bandwidth for single-flit-oriented FPGA
designs with low area overhead [22]. Our proposed NoC is
inspired from Hoplite as we seek to minimize the hardware
footprint of the NoC to make more resources available to user
designs in the cloud. Maidee et al. present a topology that
leverages under-utilized FPGA long wires at the edge of the
device for fast data movement [23]. Our proposed topology
similarly leverages long wires on FPGA devices. Discussions
on hard-NoCs are out of the scope of this work.

III. FPGA MULTI-TENANCY AND ELASTICITY

A. Background Concepts

The virtualization of computing components such as CPUs
is well investigated and basically consists in running virtual
CPU instructions on a physical processor. While instructions
on a CPU can execute independently, FPGAs implement
circuits that depend on the physical architecture of the under-
lying hardware. This therefore requires reserving some FPGA

regions to place run-time workloads as opposed to scheduling
instructions as in the case of CPUs. In the context of this
work, we define FPGA Multi-tenancy as the capability of
space-sharing the physical area of a device between hardware
accelerators from different cloud users. The placement of
several hardware kernels consequently imposes splitting the
FPGA into non-overlapping areas that we call ”virtual region”
(VR). VRs represent the unit of virtualized FPGA resource
in the cloud. We consider the FPGA Elasticity as a feature
that enables assigning additional unit of FPGA virtualization
to already deployed tasks run-time with support for on-chip
sub-function communication.

B. Cloud Virtualization Model

In this work, we consider the virtual resource access flow
illustrated in Figure 1. It starts with a user request to the cloud
provider for setting up a virtual instance (VI). The user selects
the resources to attach to the desired VI and can start running
applications. Tasks can run as long as they do not violate the

Requests
the creation

of a VI

Selects the
type of

resource
Start the VI Run

applications

Number of CPUs, CPU
operation frequency, size

of the memory, etc
Applications run in the

limits of the SLA

1 2 3 4

Fig. 1. Regular Virtual Instance Creation Flow

Service-Level Agreement (SLA). For instance, if a VI is set
up with a disk of 1TB, it will not be possible to store more
data until requesting additional storage. This flow is generally
adopted in cloud infrastructures delivering VI. Our work seeks
to enable selecting FPGA unit of virtualization as part of VIs.
The size and shape of each VR is left to the cloud provider’s
choice just as they decide what unit of memory, storage, and
processing they offer in their VI flavors. Since the amount of
logic in an FPGA is finite, the same goes for the area of each
VR. In consequence, the designs that are larger than a VR will
be divided into modules by the user just as it would be the case
if a design was bigger than an entire device. Next, the user
will place a request for additional FPGA unit of virtualization.
Because the two user regions will eventually exchange data,
we propose to provide an efficient NoC interconnect as part
of the Shell on FPGA. The NoC will also enable extending
deployed workloads with additional functions at different VR.
Our concept of elasticity differs from that of Vaishnav et al.
[17], as we consider a model in which users fully control
(run-time programming through partial reconfiguration) units
of FPGA assigned to their domains by the cloud infrastructure.

IV. PROPOSED NETWORK-ON-CHIP ARCHITECTURE

In order to efficiently implement the resource pooling, we
seek to maximize the number of concurrent workloads that can
be deployed on a single device. In other words, we attempt to
minimize the amount of resources consumed by the shell (NoC
and IO controllers). We will however focus on optimizing the

Allocators

(a) Buffered Bidirectional Router

USER
REGION

VR_ID
REG

VI_ID
REG

ROUTER_ID
REG

Wrapper
Data

A
cc

es
 M

on
ito

r

Data

Allocators

AXI
Streaming
Interface

WR_EN

DATA_IN ...

!EMPTY

DATA_OUT

RD_EN Interface

VR Router

(b) Bufferless Bidirectional Router and VR Architecture
Fig. 2. Router optimization for Fmax improvement and area reduction.

NoC architecture. Further, for fast data movement between
VRs, the NoC should achieve device specification Fmax,
which is related to decreasing the number of LUTs on the
datapaths.

A. Proposed Topology

While there are several topologies such as ring, star, hy-
percube, etc; we consider a 2D Mesh style for our NoC
architecture. Mesh topologies usually feature processing el-
ements (PE) with a network interface attached to a router.
Architectures implementing a 2D mesh typically have routers
with 5 interfaces (4 interfaces to communicate with adjacent
routers and 1 interface attached to a PE). Figure 3a illustrates
a general view of a 3×3 2D mesh. Mesh topologies have
two defects in term of the FPGA logic needed for each
router and the overall communication latency. (1) A smaller
network diameter is tightly coupled to a larger router radix
(number of IO ports of the router). This allows reaching
destinations in a few hops from any source and possibly reduce
communication overhead. However, crossbars and allocators
are well known to grow quadratically in logic with the radix
of the routers, resulting in substantial routing delays, lower
operating frequency, and higher area and power consumption.
(2) In a mesh, each router serves a single PE. This means
that any communication between PEs requires a minimum of
2 hops, each router introducing potential delays depending
on the traffic. Because we target lower resource utilization,
high frequency of operation and low communication latency,
we propose the topology illustrated in Figure 3b. It is a 3×3
mesh in which routers are connected to VRs. It implements a
topology in which routers have at most 4 ports. As opposed
to a regular mesh, each router is connected to 2 VRs, which
decreases the hops. In order to keep the radix of routers to
4 with 2 VRs connected, we reduce the dimension of the
routing. Packets are either pushed up/down or injected into
the VRs. We also enable direct communication links between
VRs, which allows offloading routers and streaming data every
clock cycle between adjacent workloads.

Depending on the width of a device and the size of the VRs,
the topology can be deployed in three different flavors: (1)
Single-Column: in which the routers are lined up vertically
on a few columns of configurable logic blocks (CLB). (2)
Double-Column: it uses two columns of routers as in Figure
3b. In this mode, underutilized wires at the edge of the device
are used to connect the two columns of routers. In fact, unless
specified placement constraints, vendor tools tend to place and

(a)

VR
VR

VR
VR

VR VR

VR
VR

VR

(b)
Fig. 3. (a) Traditional 2D Bidirectional Mesh Architecture. (b) Our proposed
NoC topology. It reduces the radix of routers and enables direct inter-VR
communication.

route designs closer to the center of the chip. By using wires
at the edge, we take advantage of commonly wasted FPGA
resources to provision additional VRs. (3) Multi-Column: it
extends the previous mode with additional columns of routers
and is suitable for wider devices.

We leverage architecture optimization in high-end FPGAs
to maximize the NoC operating frequency while reducing the
area and power consumption. For instance, UltraScale devices
are arranged in a column-and-grid layout of clock regions that
are 60 CLBs height. A CLB contains eight 6-LUTs and 16
flip-flops. This high capacity of integration allows packing the
NoC routers over a few CLBs (<%1 of the chip). In addition,
rapid signal transmission is made possible by the abundance of
switches and long wires spanning 16 CLBs [24]. With fabric
switches connecting large datapaths, the NoC can implement
high frequency wide buses. We use placement constraints
to force NoC into specific areas of the chip and prevent
CAD tools from using more CLBs than necessary. Next, we
constrain routing within the boundaries of the NoC allocated
areas, freeing up more resources for user designs. Our NoC
implementation uses the AXI4 interfaces for standardization.

Though our topology may lead to higher hops compared
to a traditional mesh in some cases, its higher connectivity
between VRs offers more flexible placement options.

B. Router Component

1) Architecture: In this section, we discuss design choices
and optimization on the router’s internal architecture.

We start with the typical bidirectional router architecture
that is presented in Figure 2a. The Input Buffers serve two pur-
poses: (1) enabling minimized event of metastability between
VR and router clock domains. (2) Temporary data storage
when the destination is not ready. In order to forward traffic to
the destination, each router implements a Crossbar Matrix that
connects input and output channels, and allows parallel data
streaming. We optimize the size of the crossbar by removing
unnecessary muxes. In fact, if we consider that we have n

0

1

S0

=

IN 1

Output Channel

IN 2 IN 3Counter
Reg.

Step
Reg.

0

Position
Reg.

Encoder

Control Lines

Reset

Data Lines

∑

Fig. 4. Mutual Exclusion Logic

INPUT 0

+
step

INPUT 1

0 0
0 1
1 0

1 1

SELECT

Z
1
0
0
1

STEP

Z
0

0
1

Fig. 5. 2-Input Encoder

inputs and m outputs, each of the output lines only needs
n−1 switches since it is not the case that a VR will send data
to itself. Each router therefore has (n − 1) × m switches in
the crossbar instead of n×m. With 4-port routers, each line
in the crossbar thus multiplexes three entries. In our topology,
the first and last routers only need three interfaces (see Figure
3b). This is simply a consequence of the absence of a fourth
component to attach. Because one of the goals is to keep a
low hardware footprint, we implement a 3-port version of the
router. This reduces the number of switches to 2 on each line
of the crossbar. It also gives cloud providers the flexibility to
assemble the topology that meets their needs by combining
routers with 3 and 4 interfaces.

Kapre et al. observed that buffers can increase router
resources by 20% − 40%, which comes at the cost of area,
delay, and power [22]. As in Hoplite, we therefore implement
bufferless routers as illustrated in Figure 2b. We remove the
buffers from the routers and keep data within VRs until the
routers is ready process the packets. The Allocators are re-
sponsible for loading the data into the crossbar. Each allocator
monitors a specific channel of the crossbar and implements a
3-way handshake protocol that works as follows: (1) The VR
lets the allocator know that data is available through the buffer
”EMPTY” signal. (2) When the crossbar is ready, the allocator
pulls the data by asserting the ”RD EN” signal. (3) The data
is loaded in the crossbar. Each allocator is also responsible for
mutual exclusion between packets that pass through the same
crossbar output channels. The purpose is to make sure that
only one packet crosses an output channel at a time. Figure 4
summarizes the mutual exclusion logic. Based on the control
lines asserted that signals the presence of incoming packets,
an encoder determines the packet that is read in. If there are
multiple packets from different sources, one packet is pulled
from input interface at a time to establish fairness. Figure 5
shows the logic of the encoder.

To illustrate the management of mutual exclusion, consider
a 4-port router with traffic coming from ports 1, 2 and 3 to port
4. Figure 6 summarizes how the allocator loads the packets.
In cycle 1, there are incoming traffic from the 3 ports. The
packets are routed one at a time. In cycle 4, when new data
arrives at the 3 input ports, the data is loaded in the same way.
From the third cycle, data will simply keep flowing out of the
router because the inputs are pipelined.

2) Routing Procedure: In this section, we discuss the
routing algorithm implemented in our NoC topology.

Although we opted for bufferless routers like Hoplite does,
we do not implement deflection for two reasons. First, it may
lead to unpredictable number of hops. Second, the routers

1

PORT 1
PORT 2
PORT 3

2 3 4 5 6 7 8 9 Cycles

So
ur
ce Packet

waiting
Packet being

routed

Fig. 6. Illustration of the mutual exclusion when packets at destination of
Port4 of arrive simultaneously from Port1, Port2 and Port3 in a 4-port router.

of our topology only route in one dimension. As a result,
packets are either injected into one of the VRs connected to
the router, or pushed up or down to the next router depending
on the destination address. The routing decision is based on
the content of each packet header. The packet structure is
presented in Figure 7. The header has a fixed width of 16 bits
and the payload as a configurable size. The header defines
the destination of the packets. It is a combination of the
VR ID and ROUTER ID. The VR ID is represented on 1

VR_ID ROUTER_ID DATA
5bits Configurable size1bit

VI_ID
10bits

Header Payload

Fig. 7. Communication Packet Structure

bit. It identifies the VR that is the destination of the packet.
Since each router is connected to at most 2 VRs (west and
east sides), a VR ID that is equal to 0 corresponds to the
west VR, and a VR ID that is 1 refers to the east VR. The
ROUTER ID labels the router to which the destination VR is
connected. The VI ID uniquely identifies the VI to which the
packet belongs. It is not actually used in the routing process,
but at the VR interface to prevent sending packets to a VR
belonging to a different VI. The ROUTER ID occupies 5 bits
and labels routers with integer values. The VI ID occupies
10 bits, which allows handling up to 1024 VIs. Algorithm 1
summarizes the routing procedure.

Algorithm 1 Packet Routing
1: Input: incomingPacket, routerId
2:
3: for each incomingPacket do
4: if (getRouterID(incomingPacket) > routerId) then
5: forwardToNorth(incomingPacket);
6: goto Next;
7: end if
8: if (getRouterID(incomingPacket) < routerId) then
9: forwardToSouth(incomingPacket);

10: goto Next;
11: end if
12: if (getVRID(incomingPacket) == 0) then
13: forwardToWest(incomingPacket);
14: else
15: forwardToEast(incomingPacket);
16: end if
17: Next:
18: end for

The algorithm first checks the ROUTER ID. If the current
ROUTER ID is greater (resp. smaller) than that of the packet
being transmitted, the packet is pushed up (resp. pushed
down). If the packet has reached the destination router, the
VR ID field is checked to determine the VR into which the
packet will be injected.

In the next section, we discuss the structure of the VRs.

C. Virtual FPGA Region Architecture

The architecture of FPGA provisioned regions is illustrated
in Figure 2b. The major component of the VRs is the USER
REGION. It hosts the cloud user’s custom designs and im-
plements the partial reconfiguration paradigm. The VRs also
feature an Access Monitor which only accepts packets from a
specific VI. It removes the packet header and only forwards
the payload to the USER REGION. The user designs only
receive the payloads to prevent malicious application from
trying to access resources out of a their domain. Developers
are simply provided well-defined interfaces to implement in
their design. Next, the cloud infrastructure selects the suitable
VR that will host the hardware accelerator. Finally, it programs
the design into the USER REGION inside the selected VR. At
configuration time, the hypervisor edits the content of the VR
registers. If the VR communicates with other FPGA regions,
the router and VR identifiers of the destination are stored in
the ROUTER ID and VR ID registers. The VI identifier is also
written into the VI ID register. Whenever a VR is sending a
packet out, the USER REGION produces the payload that is
appended to the header generated in the Wrapper module to
form a valid packet. Details on algorithms implemented in the
hypervisor to efficiently select the VRs to allocate to the VIs
are out of the scope of this work.

V. EXPERIMENTAL EVALUATION

A. Evaluation Platform

We prototype the proposed architecture in a cloud con-
figuration comprising two nodes. The first node runs the
VIs on OpenStack Stein. It is an all-in-one deployment on
a Dell R7415l EMC server running on a 2.09GHz AMD
Epyc 7251 CPU with 64GB of memory. The second node
hosts the FPGA. It is a Supermicro X10DAx servers with a
3.50GHz Intel Core i7-5930K CPU with 64GB of memory.
Both nodes run CentOS-7 with a kernel of version 3.10.0.
The servers are connected to a XR700 Nighthawk router
operating at a bandwidth of 100Mbps. We use a Xilinx Virtex
UltraScale+ FPGA or simply VU9P (xcvu9p-flgb2104-2-i) as
testing device. Vivado 2018.2 is used to synthesize, place and
route the designs.

B. Evaluation Methodolody

We will proceed in two steps. First, we evaluate the perfor-
mance benefits of the optimizations discussed in section IV.
We assess the performance of our NoC against some metrics
such as area, power, maximum frequency, latency, and waiting
time. We will also compare our proposed NoC to previous
research. Next, we study an example case. We consider a cloud
deployment in which multiple VIs are allocated some regions
of the FPGA. We do not discuss the VR allocation flow as it
is out of the scope of the work, but we analyze the outcome
of sharing a device between several tenants by discussing
FPGA access time and throughput. We want to demonstrate
that sharing the FPGA outcomes in higher FPGA utilization
and minimal loss in quality of service (QoS) compared to
allocating a whole device to a single tenant. Next, we will

(a) Our 3-Port Router (b) 3-Port Buffered Router

(c) Our 4-Port Router (d) 4-Port Buffered Router
Fig. 8. FPGA Resource Utilization of the Router

compare our results to recent research on FPGA virtualization
in the cloud.

C. NoC Evaluation

1) Resource and Power Consumption: In Figure 8, we
study the resource utilization of the routers. It first evaluates
the benefits of optimizing the number of interfaces of the
routers. Next, it presents the advantages of removing buffers
from the routers. Results are recorded for a data width ranging
from 32 bits to 256 bits. The first observation is that reducing
the number of port significantly reduces the hardware footprint
of the router. In fact, Figure 8a and 8c show that 3-port routers
uses about 40% less registers and save about 50% of LUT logic
compared to the implementation with 4 interfaces. The router
with buffers even show a more pronounced use of resources
with additional LUTs, registers, BRAMs and LUTRAMs (see
Figure 8b and 8d). The impact of router resources on power
consumption is shown in Figure 9.

(a) 32-bits Routers (b) 64-bits Routers

(c) 128-bits Routers (d) 256-bits Routers
Fig. 9. Power Consumption Study of the Routers

First, the 4-port routers that are bufferless can consume up to
2.7× more power than their 3-port counterparts. Next, buffered
routers consume up to 3.11× more power than bufferless
implementations, the highest percentage being recorded from

0 32 64 128 256

Data Width (bits)

600

800

1000

1200

1400

1600

1800

M
a

x
. F

re
q

u
e

n
c

y
(M

H
z)

LinkBlaze Flex LinkBlaze Fast
3-Port Buff. Router 4-Port Buff. Router
Our 3-Port Router Our 4-Port Router

Fig. 10. Router Scalability Considering the Data Width

logic. These results demonstrate the benefits in area and power
of optimizing the router architecture.

2) Maximun Frequency and Latency : In addition to the
area and power benefits, the optimization of the router archi-
tecture also results in a higher operating frequency. In Figure
10, we compare the maximum frequency of various routers
for data width between 32 and 256 bits. We compare our
routers to the corresponding buffered implementations, as well
as to LinkBlaze Flex and LinkBlaze Fast [23]. The maximum
frequency tends to decrease when the data width increases.
This is because larger data widths introduce more logic into
the design, which results in additional delays on the data
paths. We observe that our routers perform better than the
buffered routers and the routers of LinkBlaze Fast/Flex. From
the results reported in [23], CONNECT and Hoplite achieved
313MHz and 638MHz on a Virtex UltraScale+ FPGA. This is
far from the 1.5GHz and 1GHz that is achieved respectively by
our 3-port and 4-port routers on a similar device. Further, we
compare bandwidth results for 32-bit routers to previous work
(see Figure 11). Our 3-port router has 6.3× better bandwidth

Fig. 11. Bandwidth Comparison to Previous Work

per wire than CONNECT, 2.57× better than Hoplite and
LinkBlaze Flex; and 1.65× better than LinkBlaze Fast. Similar
observations can be made for the 4-port router. The bandwidth
per LUT nevertheless draws a different picture. Hoplite and
LinkBlaze Fast perform better than our routers as they use
about 5× less LUTs than our routers. This is due to the fact
that they are less flexible. Hoplite implements a lightweight
deflection and is unidirectional, which drastically reduces the
size of the routing logic [22]. LinkBlaze Fast routers only have
3 ports (2 inputs and 1 output), resulting in lower LUT count
[23].

We also evaluate our routers against various traffic patterns.
Overall, an incoming flit needs two clock cycles to traverse
a router. However, when the inputs are pipelined, only the
first one will take two cycles. The following packets will be

0 0.2 0.4 0.6

Injection Rate (flit/cycle)

0

1

2

3

4

5

A
v

g
. L

a
te

n
cy

 (
cy

cl
e

)

No Collision With Collision

(a)

0 0.2 0.4 0.6

Injection Rate (flit/cycle)

0

1

2

3

4

5

A
v

g
. W

a
it

in
g

 (
cy

cl
e

)

No Collision With Collision

(b)
Fig. 12. (a) Average latency study per injection rate. (b) Average waiting
time study per injection rate.

available at the outputs of the router after each cycle (see
Figure 6). Figures 12a and 12b summarize the latency and
waiting time observed on our 3-port router in two different
configurations. First, we consider when flits arrive from all
the interfaces with no collision. In other words, each output
port of the router only receives traffic from one input port.
With an injection rate of 0.6, the average latency observed is
3 clock cycles and the average waiting is 1.66 clock cycles.
Next, we assess the latency and waiting time with collision. In
this testing configuration, traffic from two ports target the third
port of the router. We observe an increased latency compared
to when there is no collision. It is just a consequence of having
the packets waiting longer in the VR queues for their turn. In
fact, Figure 12b shows a linear progression of the the waiting
curve as the workload increases. The waiting time values
when considering collision are about 2× higher than without
collision, which reflects on the average latencies reported in
Figure 12a.

D. Case Study: FPGA Multi-tenancy

1) FPGA division between tenants: To evaluate the FPGA
multi-tenancy and elasticity when using our NoC, we consider
5 VIs (labeled VI1,...,VI5) deployed on the OpenStack cloud
that access 6 VRs (labeled VR1,...,VR6) on FPGA. The
assignment of VRs to VIs is as follows: VR1 is allocated
to VI1; VR2 is allocated to VI2; VR3 and VR4 are allocated
to VI3; VR5 is allocated to VI4; VR6 is allocated to VI5.
For testing purposes we select 6 hardware accelerators from
OpenCores [25]. The applications are: Huffman Decoder —
that is typically used in streaming applications; FFT—that
is heavily used in signal processing; FPU—it implements
a single precision floating point unit; AES—that is an en-
cryption/decryption core over a 128-bit key. Canny Edge—
implements an edge detection algorithm. FIR—is a commonly
used filter in signal processing. Table I summarizes the VR
allocation to VIs and the use of resources of test accelerators.
VI3 initially implemented the FPU unit and later requested
additional FPGA resource to implement encryption as the two
could not fit into the area of VR3. To show the benefits of elas-
ticity with on-chip communication, the FPU streams its output
results directly to the AES encryption module through the
NoC interconnect. The on-chip communication offers a band-
width of 25.6 Gbps. Without communication support on the
chip, moving data between two VRs will require middleware
intervention to copy the data. This could cost around 50µs
(Figure 14 reported a minimum of 28µs for directIO access),

which represents a significant performance loss compared to
the bandwidth of the NoC. On-chip communication support
is therefore of paramount importance to implement efficient
hardware elasticity. For experimental purposes, we implement

TABLE I
VR ALLOCATION AND RESOURCE UTILIZATION OF THE APPLICATIONS

LUT LUTRAM FF DSP BRAM

Huffman (VR1→VI1) 1288 408 391 0 1
FFT (VR2→VI2) 3533 92 4818 4 3
FPU (VR3→VI3) 4122 0 582 2 0
AES (VR4→VI3) 1272 0 500 0 0
Canny Edge (VR5→VI4) 2558 20 3825 0 18
FIR (VR6→VI5) 270 0 347 4 4

the single-column division of the FPGA (see section IV-A).
Since we have 6 VRs, we will only need 3 routers (two 3-
port routers and one 4-port router). The routers support 32-
bits datapaths. Figure 13 shows a screenshot of area occupied
by the NoC and each of the applications. For the sake of
brevity, we do not show the rest of the shell that controls IO
interfaces for off-chip communication. Because of the high
capacity of integration of high-end FPGA architectures such
as the UltraScale+ family, the size of each VR could easily
be close to that of an entire legacy FPGA. For instance, the
pblock defining VR5 occupies 1121 CLBs, or 8968 LUTs
(0.22% of the LUTs in VU9P) which represents about 20%
of some FPGAs from the 7-series [26]. This means that while
a device from the 7-series may only be able to host about 5
instances of size equal to VR5, a VU9P device could deploy
about 455 instances of those. This observation highlights the

3-Port Router

3-Port Router

4-Port Router

FPU

FFT

AES

Canny

Huffman

FIR

Fig. 13. Placement of the 6 Jobs from 5 VIs on a single device

need for spatial sharing support to increase device utilization.
The NoC and applications illustrated in Figure 13 only used
1.71% of the CLB area of the FPGA, leaving enough room for
additional workloads from cloud users. The 3-port and 4-port
routers respectively cover 305 LUTs (0.03 % of the FPGA)
and 491 LUTs (0.04% of the chip).

2) IO Trip and Throughput Study: first, we measure the
overhead introduced by the cloud management software on the
FPGA access time. We want to compare the IO performance
in multi-tenant and single-tenant deployments to show that
the spatial sharing of FPGAs does not significantly affect the
QoS. We then consider two modes: (1) Multi-tenant (Our
approach): all the 6 applications are deployed as illustrated
in Figure 13. The VIs continuously write, then read from the
accelerators and we record the IO trip times. (2) Single-tenant
(DirectIO): The entire FPGA is successively allocated to each
VI that runs write, then read operations and we record IO trip

times. Figure 14 summarizes the average IO trip recorded time.
It is observed that there is no significant difference in IO cost
between the two schemes as they both simply consist in ac-
cessing FPGA registers from the host/guest operating systems.

Fig. 14. IO Trip Comparison

An IO access time
penalty is however
recorded when re-
quests arrive simul-
taneously from dif-
ferent tenants at the
entry point of the
shared device. Such
requests are queued
in the cloud management software and the IO access delays
observed are only in the order of a few microseconds. As
example, an IO round trip to the AES core takes in average
31µs in the multi-tenant deployment while using about 29µs
in the single-tenant FPGA allocation. On the other hand,
accessing the FIR IP took in both cases an average of 31µs.
There are also cases where the IO requests performed better
in the multi-tenant configuration. This means that we have
achieved a 6× higher FPGA utilization rate as a single device
is transparently running 6 different workloads. It is worth to
note that these results were recorded in a configuration in
which the FPGA was connected to the same physical server
running the VIs (the FPGA node was purposely merged with
the all-in-one OpenStack node for fair comparison with the
directIO scheme). As we will discuss later, remotely accessing
the FPGA incurs network transmission overhead.

We also study the throughput achieved on the multi-tenant
cloud FPGAs. We continuously stream packets of size ranging
from 100KB to 400KB between the VIs and hardware acceler-
ators on FPGA, and record the average of throughput observed.
Throughput data is collected over an hour of operation after
6 random time windows with all the VIs deployed on the
server hosting the FPGA (Figure 15a) and with VIs remotely
accessing the FPGA node over the Ethernet (Figure 15b).

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

100KB
200KB
300KB
400KB

(a)

1 2 3 4 5 6
1

1.5

2

2.5

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

100KB
200KB
300KB
400KB

(b)
Fig. 15. (a) Throughput Study when the Virtual Instances are deployed on
the physical Server hosting the FPGA devices. (b) Throughput Study when
the Virtual Instances access FPGAs remotely.

When VIs access FPGA accelerators hosted on the same
physical server, we observe a throughput reaching 7Gbps for
400KB payloads, which is about 2× higher than the software
to hardware and hardware to software throughput reported in
[27]. Up to 3× performance lost is however observed in distant
FPGA access as the throughput is limited by the bandwidth
of the Ethernet router (see section V-A).

3) Comparison with previous work: Table II puts into per-
spective our proposed architecture compared to other reported
FPGA enabled cloud schemes. As the table shows, DirectIO
provides better performance compared to our approach but
does not offer actual virtualization benefits such as resource re-
allocation at runtime. Our approach appears as the best trade-
off as it enables runtime re-allocation, hardware elasticity,
local communication between VRs hosted on the same device.
The work presented in [15] has a lower IO trip time, but is
technology-specific as it only works for KVM clouds.

TABLE II
CLOUD FPGA ARCHITECTURE COMPARISON

Works
Runtime

Re-allocation
Support

Hardware
Elasticity
Support

On-Chip
Com.

Support

IO Trip
Cost

(in µs)

DirectIO No Yes Yes 28
Our Work Yes Yes Yes 30

[12] Yes No No 15
[13] Yes No No 600
[15] Yes Yes Yes 26
[17] Yes Yes No –
[28] Yes No No 8000
[29] Yes No No 16000

VI. CONCLUSION

This work proposed an approach to enable spatial sharing
of FPGA resource between multiple tenants in the cloud.
We leverage a NoC architecture to implement elasticity. In
the context of this work, we considered the elasticity as the
ability to assign additional FPGA components to users at run-
time. The proposed NoC makes it possible assign multiple
FPGA regions to users and implement fast data movement to
support on-chip communication between running workloads.
Experiments demonstrated the low resource utilization and
high frequency of operation of our architecture, as well as
an increased FPGA utilization.

ACKNOWLEDGEMENT

This work was partially supported by the ONR under the
Grant CCN 0402-17643-21-0000, and the Air Force Research
Lab AFRL/RIGA Cyber Assurance Branch, Rome NY.

REFERENCES

[1] D. Pellerin, “Amazon ec2 f1 instances,” https://aws.amazon.com/ec2/
instance-types/f1/, 2016.

[2] A. C. ECS, “Deep dive into alibaba cloud f3 fpga as
a service instances,” https://www.alibabacloud.com/blog/
deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances 594057,
2018.

[3] Amazon, “Amazon ec2 f1 instances,”
https://aws.amazon.com/ec2/instance-types/f1/, 2019.

[4] ——, “Amazon ec2 pricing,” https://aws.amazon.com/ec2/pricing/on-
demand/, 2019.

[5] Xilinx, “Ultrascale+ fpgas product tables and product selec-
tion guide,” https://www.xilinx.com/support/documentation/selection-
guides/ultrascale-plus-fpga-product-selection-guide.pdf, 2018.

[6] ——, “Reaching new heights with the worlds largest fpga,”
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-
plus-vu19p.html, 2019.

[7] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011.
[8] N. Tarafdar, T. Lin, D. Ly-Ma, D. Rozhko, A. Leon-Garcia, and

P. Chow, “Building the infrastructure for deploying fpgas in the cloud,”
in Hardware Accelerators in Data Centers. Springer, 2019, pp. 9–33.

[9] G. Dai, Y. Shan, F. Chen, Y. Wang, K. Wang, and H. Yang, “Online
scheduling for fpga computation in the cloud,” in 2014 International
Conference on Field-Programmable Technology (FPT). IEEE, 2014,
pp. 330–333.

[10] K. Zhang, Y. Chang, M. Chen, Y. Bao, and Z. Xu, “Computer organi-
zation and design course with fpga cloud,” in Proceedings of the 50th
ACM Technical Symposium on Computer Science Education. ACM,
2019, pp. 927–933.

[11] A. A. Al-Aghbari and M. E. Elrabaa, “Cloud-based fpga custom
computing machines for streaming applications,” IEEE Access, vol. 7,
pp. 38 009–38 019, 2019.

[12] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and
K. Wang, “Enabling fpgas in the cloud,” in Proceedings of the 11th
ACM Conference on Computing Frontiers. ACM, 2014, p. 3.

[13] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“Fpgas in the cloud: Booting virtualized hardware accelerators with
openstack,” in 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines. IEEE, 2014, pp.
109–116.

[14] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
fpgas in hyperscale data centers,” in 2015 IEEE 12th Intl Conf on
Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf
on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on
Scalable Computing and Communications and Its Associated Workshops
(UIC-ATC-ScalCom). IEEE, 2015, pp. 1078–1086.

[15] J. M. Mbongue, F. Hategekimana, D. T. Kwadjo, and C. Bobda, “Fpga
virtualization in cloud-based infrastructures over virtio,” in 2018 IEEE
36th International Conference on Computer Design (ICCD). IEEE,
2018, pp. 242–245.

[16] J. Mbongue, F. Hategekimana, D. T. Kwadjo, D. Andrews, and C. Bobda,
“Fpgavirt: A novel virtualization framework for fpgas in the cloud,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 862–865.

[17] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside, “Resource elastic
virtualization for fpgas using opencl,” in 2018 28th International Con-
ference on Field Programmable Logic and Applications (FPL). IEEE,
2018, pp. 111–1117.

[18] F. Hategekimana, J. M. Mbongue, M. J. H. Pantho, and C. Bobda,
“Secure hardware kernels execution in cpu+ fpga heterogeneous cloud,”
in 2018 International Conference on Field-Programmable Technology
(FPT). IEEE, 2018, pp. 182–189.

[19] J. Mandebi Mbongue, D. Tchuinkou Kwadjo, and C. Bobda, “Flexitask:
A flexible fpga overlay for efficient multitasking,” in Proceedings of the
2018 on Great Lakes Symposium on VLSI. ACM, 2018, pp. 483–486.

[20] G. Schelle and D. Grunwald, “Exploring fpga network on chip imple-
mentations across various application and network loads,” in 2008 In-
ternational Conference on Field Programmable Logic and Applications.
IEEE, 2008, pp. 41–46.

[21] M. K. Papamichael and J. C. Hoe, “Connect: re-examining conventional
wisdom for designing nocs in the context of fpgas,” in Proceedings of
the ACM/SIGDA international symposium on Field Programmable Gate
Arrays, 2012, pp. 37–46.

[22] N. Kapre and J. Gray, “Hoplite: Building austere overlay nocs for fpgas,”
in 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), Sep. 2015, pp. 1–8.

[23] P. Maidee, A. Kaviani, and K. Zeng, “Linkblaze: Efficient global data
movement for fpgas,” in 2017 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig). IEEE, 2017, pp. 1–8.

[24] Xilinx, “Ultrascale architecture and product data sheet:
Overview,” https://www.xilinx.com/support/documentation/data
sheets/ds890-ultrascale-overview.pdf, 2019.

[25] OpenCores, https://opencores.org/projects, 2020.
[26] Xilinx, “All programmable 7 series product selection guide,”

https://www.xilinx.com/support/documentation/selection-guides/
7-series-product-selection-guide.pdf, 2018.

[27] N. Eskandari, N. Tarafdar, D. Ly-Ma, and P. Chow, “A modular
heterogeneous stack for deploying fpgas and cpus in the data center,”
in Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2019, pp. 262–271.

[28] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, “Virtualized
execution runtime for fpga accelerators in the cloud,” Ieee Access, vol. 5,
pp. 1900–1910, 2017.

[29] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators
for efficient cloud computing,” in 2015 IEEE 7th International Confer-
ence on Cloud Computing Technology and Science (CloudCom). IEEE,
2015, pp. 430–435.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://opencores.org/projects
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf

	I Introduction
	II Related Work
	II-A FPGAs in the cloud
	II-B Network-on-Chip

	III FPGA Multi-tenancy and Elasticity
	III-A Background Concepts
	III-B Cloud Virtualization Model

	IV Proposed Network-On-Chip Architecture
	IV-A Proposed Topology
	IV-B Router Component
	IV-B1 Architecture
	IV-B2 Routing Procedure

	IV-C Virtual FPGA Region Architecture

	V Experimental Evaluation
	V-A Evaluation Platform
	V-B Evaluation Methodolody
	V-C NoC Evaluation
	V-C1 Resource and Power Consumption
	V-C2 Maximun Frequency and Latency

	V-D Case Study: FPGA Multi-tenancy
	V-D1 FPGA division between tenants
	V-D2 IO Trip and Throughput Study
	V-D3 Comparison with previous work

	VI Conclusion
	References

