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Abstract—Skeleton-based Graph Convolutional Networks
(GCNs) models for action recognition have achieved excellent
prediction accuracy in the field. However, limited by large model
and computation complexity, GCNs for action recognition like 2s-
AGCN have insufficient power-efficiency and throughput on GPU.
Thus, the demand of model reduction and hardware acceleration
for low-power GCNs action recognition application becomes
continuously higher.

To address challenges above, this paper proposes a run-
time sparse feature compress accelerator with hybrid pruning
method: RFC-HyPGCN. First, this method skips both graph
and spatial convolution workloads by reorganizing the multi-
plication order. Following spatial convolutions channel-pruning
dataflow, a coarse-grained pruning method on temporal filters
is designed, together with sampling-like fine-grained pruning on
time dimension. Later, we come up with an architecture where
all convolutional layers are mapped on chip to pursue high
throughput. To further reduce storage resource utilization, online
sparse feature compress format is put forward. Features are
divided and encoded into several banks according to presented
format, then bank storage is split into depth-variable mini-banks.
Furthermore, this work applies quantization, input-skipping and
intra-PE dynamic data scheduling to accelerate the model. In ex-
periments, proposed pruning method is conducted on 2s-AGCN,
acquiring 3.0x-8.4x model compression ratio and 73.20% graph-
skipping efficiency with balancing weight pruning. Implemented
on Xilinx XCKU-115 FPGA, the proposed architecture has the
peak performance of 1142 GOP/s and achieves up to 9.19x and
3.91x speedup over high-end GPU NVIDIA 2080Ti and NVIDIA
V100, respectively. Compared with latest accelerator for action
recognition GCNs models, our design reaches 22.9x speedup and
28.93% improvement on DSP efficiency.

Index Terms—Graph Neural Network, Action Recognition,
Hybrid Pruning, Sparse Data Compress, Hardware Accelerator,
Field-programmable Gate Array (FPGA)

I. INTRODUCTION

Action recognition based on deep learning has great po-
tential to be applied in kindergartens and hospitals to prevent
danger motions. Skeleton-based graph convolutional networks
(GCNs) methods have achieved state-of-the-art (SOTA) pre-
diction accuracy in the field [1] [2] [3]. Mature pose estimation
algorithms extract human skeletons from video stream with
real-time speed, for example, OpenPose [4] and Alphapose [5].
GCNs action recognition models and pose estimation models
thus can be combined into an end-to-end system.

Despite skeleton-based GCNs having great advantages, sev-
eral problems limit their applications in expected scenarios.

Firstly, intensive computation and large network architectures
are embedded in skeleton-based GCNs, causing great com-
puting cost on GPUs. MobilePose [6] can produce human
skeletons on mobile platform Snapdragon 845 with 60 fps
and 44.4 fps/Watt, while 2s-AGCN model merely has a
performance of 28 fps and 0.11fps/Watt on NVIDIA 2080Ti
GPU. The computing speed and power-consumption’s gap
indicates a great importance on accelerating GCNs action
recognition algorithms. Secondly, the expected application
environment of action recognition models poses stringent
constraints on power-consumption and throughput. However,
the high-performance GPU cannot meet the power-efficiency
demand.

Network pruning and graph sparsification [7] [8] are two
effective methods to relieve model complexity. However, these
methods are unsuitable for skeleton-based GCNs. There are
two reasons. (i) Dataflow is transformed: Graph computation
changes the convolution dataflow. When being conducted on
different dataflows, traditional pruning methods for CNNs
only skip useless computing in convolution but may not work
on graph task. (ii) Skeleton-relationship graph is unchange-
able and sensitive. Some works use pooling [7] or graph
sparsification [8] to drop unimportant edges and points in
graph. However, the human skeleton graph cannot be modified
for bones connection being unchangeable. Particularly, there
are learnable hidden information graph [1] [9] which lacks
sparsity in some GCNs models . The subtle elements in such
graph are proved to be positively associated with prediction
performance. For instance, in 2s-AGCN model, the prediction
accuracy decreases by 2.3% without learnable matrix [9].
Although Ding et al. [10] present a FPGA-based work on
accelerating ST-GCN, a smaller action recognition GCNs, their
work falls short on more complex models for (i) They do
not prune the target model. (ii) They choose to compress
sparse static skeleton graph, while skeleton relationship matrix
in some models can be dense. (iii) Only sparsity graph
is optimized for computation, while feature sparsity is not
utilized. (iv) Their single-PE design cannot meet performance
requirement of application scenarios. To summarize, such
GCN models with dense matrixes bring new challenges for
architecture.

For these reasons, efficient pruning methods together with
specific accelerator designs are urgently required to accelerate
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GCNs action recognition workloads. To this end, we present
RFC-HyPGCN: a runtime sparse feature compress accelerator
for skeleton-based GCNs action recognition model with hybrid
pruning in this paper.

A hybrid GCNs’ pruning method is proposed, which re-
duces network parameters and skips graph computation effi-
ciently. We reorganize dataflow by changing the multiplica-
tion order of graph workloads and spatial convolution. With
new dataflow, graph computation and spatial convolution are
skipped if the corresponding parameter is pruned as zero. As
to the temporal convolution, mixed-grained pruning method
is elaborately designed. Fine-grained pruning operation can
be dealt as sampling in time series, while coarse-grained
pruning is decided by spatial convolution’s pruned dataflow.
Experiments demonstrate that in most cases, better prediction
accuracy and more balanced pruning can be possessed by
our model compared with conventional methods. Addition-
ally, quantization and input-skipping are applied, which are
common means to accelerate neural networks.

We also design an application-specific architecture. Ten con-
volution blocks are mapped on FPGA, which is the platform
widely used for speeding up deep neural networks. Differ-
ent from previous works, in our layer-pipelined architecture,
challenges are not only reflected on different kinds of sparse
tasks, but also on how to efficiently store sparse intermediate
results on chip. Common compact formats like compressed
sparse column format (CSC) is not the optimal resolution due
its irregular memory access and extra encoding/decoding cost.
To address these challenges, our sparse-degree-based runtime
sparse feature compress method is proposed, which splits
data encoding/decoding and corresponding storage into fine-
grained bank and mini-bank. Finally, dynamic data scheduling
is applied for intra process elements (PE) to decrease the
utilization of DSPs.

In summary, the contributions in this paper are:

• We propose a hybrid pruning method on 2s-AGCN
model, which contains dataflow reorganization and mix-
grained pruning method. The experiments show that
our method is better than conventional pruning on
computation-skipping and prediction accuracy.

• A co-designed architecture is implemented, including
runtime sparse vector compress storage and dynamic data
scheduling. The proposed online data compact format re-
duces the utilization of BRAM blocks as well as keeping
regularity of data-access. Dynamic data scheduling saves
DSPs and raises DSPs working efficiency with tiny delay.

• Our design is implemented on Xilinx XCKU-115 FPGA
platforms with 172 MHz. It achieves 2.61x-9.19x accel-
erating ratio compared with NVIDIA 2080Ti and 1.36x-
3.91x with NVIDIA V100. On contrast to similar work
[10], ours exceeds on both peak performance and DSPs
efficiency. It has the potential to apply in end-to-end and
low-power real time environments.

Similarity Graph ConvS BN&ReLU ConvT BN&ReLU
B1, B2, B3, B4

300, 25, 64
B5, B6, B7

150, 25, 128
B8, B9, B10

75, 25, 256

FC

60, 256

Fig. 1. Left: Structure of the basic convolutional block. ConvS stands
for spatial convolution and ConvT stands for temporal convolution. Right:
Variance of the feature dimension. There are 25 key joints in human skeleton
and 300 skeleton vectors in the original input feature.

II. BACKGROUND ON 2S-AGCN MODEL

The skeleton-based action recognition GCN models regard
human skeleton features as input and predict human action
, like waving and drinking. Several human skeleton datasets
have been proposed, for example NTU-RGB+D [11] and
Kinetics [12]. Our experiments on 2s-AGCN are trained and
tested on NTU-RGB+D. There are ten convolutional blocks
and one fully-connected (FC) layer in 2s-AGCN model. As
shown in the left picture in Fig. 1, the computation in each
block can be divided into five phases: graph computation, self-
similarity computation, spatial convolution, temporal convolu-
tion and shortcut connection. Batch-normalization and ReLU
activation follow behind each convolution operations. With
network going deeper, more channels are stacked on feature.
The right picture of Fig. 1 illustrates this tendency in data
dimension.

In each layer, three different graphs are involved in com-
putation: Ak, Bk and Ck, k is explained in (2). The first
part Ak is the static human skeleton graph, the second part
Bk is a learnable skeleton connection graph and Ck is a
data-dependent graph generated from self-similarity process.
Elements in Bk are trained to indicate hidden relationships
between joints and bones. Unlike static graph Ak, Bk is
dense and sensitive to numerical changes. In [9], Ck is pro-
duced via (1), where high-dimension tensor transposition and
multiplication are conducted on input feature. Wθ represents
similarity coefficient. To sum up, the computation of graph
and spatial convolution can be described as (2).

⊗
represents

convolution operation, Kν denotes the neighbour size of the
graph computation and is set to 3 in the 2s-AGCN model. The
kernel size of spatial convolutions weight Wk is set to 1.

Ck = softmax(fTinWθfin) (1)

fout =

kν∑
k

fin(Ak +Bk + Ck)
⊗

Wk (2)

Different from Ak and Bk which are determined before
inference, Ck relies on input feature, thus needs runtime
computing for each prediction. Table. I demonstrates the
computing cost of self-similarity. The running performance
of 2s-AGCN with and without Ck are tested on NVIDIA
V100. At the cost of computing complexity and longer time-
delay, Ck only elevates prediction accuracy by 0.3%. From
the view of software-hardware co-design, dropping Ck graph
is a reasonable trade-off for workload reduction. Following



TABLE I
MODEL PERFORMANCE WITH(W/) AND WITHOUT(W/O)Ck .

accuracy throughput power efficiency
2sAGCN(w/C) 93.70% 69.38 fps 0.28 fsp/watt

2sAGCN(w/oC) 93.40% 98.87 fps 0.40 fps/watt

Temporal Conv

Layer lInput feature

Graph
Spatial Conv 

layer l+1

Fig. 2. The neighbour connection between temporal convolutional output and
spatial convolutional input.

the spatial convolution, temporal convolutional layer is set
at the end of each convolutional block. With kernel size of
9 × 1, temporal convolution extracts information from nine
skeleton vectors in time order. Despite the insertion of the
graph computation, temporal convolution layer in block l can
still be seen as the leading neighbour of spatial convolution
layer in next block because graph computation does not change
temporal convolutional result along its output-channel dimen-
sion, and spatial convolution operates indirectly on temporal
convolution’s output in block l + 1 [13]. For above reasons,
the connection shown in Fig. 2 guides us to conduct coarse-
grained pruning on temporal convolutional filters.

III. RELATED WORK

CNNs Accelerators on FPGA. Works on FPGA-based
acceleration of sparse CNNs can be categorized by different
pruning granularity levels [13]: (i) for coarse-grained pruned
models, (ii) for fine-grained pruned models, (iii) for mixed-
grained pruned models. Zhu et al. [13] presented a zero-
skipping dataflow for feature. Although such method raised
computing efficiency, zero elements in intermediate result still
occupied storage resource. Lu et al. [14] proposed a weight-
oriented dataflow for fine-grained pruned CNNs with little
decoding cost. However, 2s-AGCN model differs from above
convolutional workloads in that feature first goes through
graph matrix multiplication. This weight-oriented design can-
not skip corresponding graph computation. Li et al. [15]
worked on PCONV pruning [16], a mixed-grained method.
With weight-stationary dataflow designed on FPGA, Li et al.
improved the computing efficiency by 14.7%-44%. However,
this work still occupied storage space for huge scale of zero
data like Lu et al., and its simple hardware structure could not
tackle complex workloads in our task.

GCN Accelerators on FPGA. Many works on acceler-
ating large graph’s GCNs based on FPGA are presented in
recent time. AWB-GCN [17] combined dynamic hardware
configuration and runtime hardware workloads balancing on
several large graph datasets. Zhang et al. [18] partitioned input
data into smaller segments, then perform graph sparsification
and node re-ordering for computation reduction and data
locality. To sum up, above works focus on: (i) Leveraging

and expanding graph adjacency matrixes sparsity, (ii) Avoiding
irregularity and randomness of data distribution in graph
computation, (iii) Keeping balanced workloads between PEs or
computing phases, via offline and online ways. Unfortunately,
graph in skeleton-based GCNs for action recognition models
is dense and unchangeable. The data sparsity is embedded in
temporal feature and pruned weights, not the graph. Moreover,
action recognition GCNs behave not only like CNNs, but
also like graph processing, leading to graph-specific design
requirements. Therefore, current specialized architectures on
CNNs and GCNs cannot efficiently accelerate target models
since they just take one of the two sides.

IV. METHODOLOGY

This section introduces our hybrid pruning method for
action recognition GCNs. The dataflow reorganization, coarse-
grained and fine-grained pruning on temporal convolution are
described respectively.

A. Dataflow Reorganization

After clipping self-similarity graph, the computing flow
between graph and spatial convolution can be further sum-
marized as (3), where Gk denotes Ak + Bk from (2). The
computing order is first high-dimensional matrix multiplica-
tion with Gk, then the spatial convolution of Wk and finally
the result merging of three loops. In this dataflow, common
pruning methods only functions in second phase but cannot
optimize the graph computation, which occupies 49.83% of
total workloads in (3).

fout =

kν∑
k

finGk
⊗

Wk (3)

To better analyse the dataflow, we extract first two phases
and its output X. A pixel can be described as X(h,w, oc),
where h, w, oc represent height, width and output-channel
coordinates respectively. Then (4) can be deduced from (3)
and ic is the acronym of input channel. Under the commutative
law of multiplication, therefore (4) is transformed into (5). By
reorganizing the computing order between graph phase and
convolution phase, an opportunity for graph-skipping pruning
is offered here. If the parameter element W (1, 1, i, oc) is
pruned to zero, the graph matrix multiplication in current
output channel can be ignored. Further, if we set all convo-
lutional parameters in i input channel as zero, then all graph
computation can be skipped in current loops. The dataflow
reorganization is then proposed when we apply above method
to three loops in (3). Unlike conventional structure pruning
method which drops different channels on filters, weights in
specific input channels are all set as zero on every spatial
filter in current convolutional blocks. In this way, not only
the convolution workload is reduced, but also the graph
computation is skipped.

X(h,w, oc) =

ic∑
i=1

(

25∑
p=1

fin(h, p, i)×G(p, w))×W (1, 1, i, oc) (4)



Coarse-grained pruning

Sampling 

Fine-grained pruning 

schemesPruned weights

Fig. 3. The illustration of fine-grained pruning on temporal convolution. White
elements are pruned while blue ones are kept. Every 9×1 kernel performs on
time series of skeleton vectors, and the blue vectors are sampled by first
pruning scheme.

X(h,w, oc) =

ic∑
i=1

(

25∑
p=1

G(p, w)×fin(h, p, i)×W (1, 1, i, oc)) (5)

Since the graph-skipping strategy has been determined by
dataflow reorganization, the next step is choosing the input
channel to be pruned. Like other deep neural networks (DNN),
features between convolutional layers are sparse and useful
elements are unevenly distributed. Based on the observation
that unstructured pruning method drops weight element with
relatively small absolute value, we cut off the input channels
which have least averaging absolute value. In this way, data
reorganization prunes spatial convolutional weight and skips
both graph and convolution computation.

B. Mixed-grained Pruning Method

In dataflow reorganization method, features in specific chan-
nels are not computed because such channels are pruned. The
coarse-grained method then prunes corresponding temporal
filters via connections in Fig. 2 with no extra accuracy loss.
Moreover, this neighbour connection is hardware-friendly for
that the number of pruned channels in spatial filters equals the
number of pruned filters in temporal convolution. This inherent
feature supports a balanced layer-pipelined architecture.

Coarse-grained pruning can provide 49.83%-88.96% com-
pression ratio on temporal filters, depending on the pruning
scheme in data organization phase. To further prune temporal
convolutional weights, fine-grained pruning is proposed. The
point of fine-grained method is that in temporal convolution,
zero weight means not sampling current vectors in time order.
Fig. 3 demonstrates details of sampling-like fine-grained prun-
ing method. Several pruning schemes with different intervals
and offsets are conducted on filters recurrently. By this means,
the design of pruning scheme is turned into a sampling
problem. We can simulate various sampling schemes on filters,
with different sampling frequencies and phases represented
by intervals and offsets. Experiments show that with proper
pruning scheme, our fine-grained method can keep accuracy
as well as discarding unimportant weight.
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Conventional unstructured pruning methods randomly drop
the weight elements with least absolute value, which are
expensive and unbalanced on hardware. However, with de-
termined cavity schemes, our fine-grained pruned model can
be indicated by structured weight together with masks. Fur-
thermore, we guarantee the balancing distribution of reserved
weight by controlling start-points of different sampling pat-
terns. Like Fig. 3 shows, in a loop of eight different pruning
modes, weight elements in every position of kernels are evenly
kept by two or three times. Compression ratio can be adjusted
via fine-grained pruning design.

V. ARCHITECTURE

This section introduces the detailed architecture of our
accelerator, where all pruned convolutional blocks are mapped
on chip.

Overview: Fig. 4 depicts the overall design of our layer-
pipelined architecture. Conv block module constitutes the
whole architecture, containing one spatial conv module (SCM)
and one temporal conv module (TCM). To be more detailed,
one conv block module processes on convolution block.
Due that proposed pruning method reduces model size, all
parameters and graph are stored in ROM storage on chip.
Mult-PE is the basic computing unit of SCM, while Dyn-
Mult-PE is the basic unit in TCM. Moreover, runtime sparse
feature compression module (RFC) functions at the junctions
of different layers to compact and store temporal results.

A. Spatial Conv Module

The main task of SCM is performing graph computation and
pruned spatial convolution. Data-fetch controls the address of
data-loading and decodes compact feature into sparse form,
which is prepared for computing. Feature buffer receives and
stores decoded data in order. The decoding process will be
explained later. Sparse feature will first multiply with graph
vectors, then conduct convolution with non-zero weight in
Mult-PEs. Pruned channels are skipped and multiplication
results are summed up in accumulating buffer on output
channel. After batch-normalization operation, dataflow merges
with original input activation, which is stored in shortcut
feature buffer. ReLU function is combined with encoding
function parts.

In order to combine graph computation and pruned convo-
lution workloads, dataflow is organized as Fig. 5 shows. A
line in feature buffer caches 25 data and the depth equals the



Temporal conv layer l

Input feature

Graph

Spatial conv layer l+1

Similarity Graph ConvS BN&ReLU ConvT BN&ReLU
B1, B2, B3, B4

300, 25, 64
B5, B6, B7

150, 25, 128
B8, B9, B10

75, 25, 256

FC

60, 256

Coarse-grained pruning

Sampling 

Fine-grained 

pruning schemesPruned weights

BRAM

BRAM

BRAM

BRAM

2Bx4data

BRAM

BRAM

BRAM

2Bx4data

BRAM

BRAM

2Bx4data

BRAM

2Bx4data

Mini-bank

Bank

2Bx16data

Data-hot

Mini-bank-hot

Pt Pt Pt Pt

2Bx16data

Addr signal

Control/EN signal

Input data stream

Output data stream

One-hot stream

Bank

...

Nx2Bx16data

Sparse feature

BRAM

Feature buffer

GraphMx-

Vec

ROM for graph matrix

Mult-PE

Mult-PE

Mult-PE

Mult-PE

Weight ROM for 

current layer

Accumulating & buffer 

on channel

Batch-

normalization

Shortcut feature 

buffer

Shortcut 

ReLU

RFC 

.. ..

....

Bank & mini-bank

Data-hot

Mbank-hot
Pt-ctrler

Dyn-

MultPE

Dyn-

MultPE

Dyn-

MultPE

Dyn-

MultPE

Para weight for nine 

window-lines

Batch-

normalization

Shortcut feature 

buffer

Shortcut 

ReLU

Intra-kernel adding tree

Data-fetch

Feature buffer

....
....

RFC

Spatial conv module Temporal conv module

Data-fetch

Conv block module

for block 1

....
Input feature buffer

Conv block module

for block 10

DDR DDR

Layer-pipelined accelerator

ROM storage

BRAM/Reg storage

Graph computing unit

RFC structure

Convolutional computing unit

Controlling unit

DDR

Feature buffer

25
Input feature

9

in_c

01
01
00
0
01
1

Feature hot

11
00
00
1
00
1

Waiting queues

....

Temporal filters

....

....

....

....

Weight ROM

Valid weights in 

one sub-filter

Dyn-MultPE

Sub-filter

....

....

11 01

Sub-filters on one row 

share same mask

....

Weight mask

Weight ROM

Dyn-

MultPE

Dyn-

MultPE

Feature buffer

ROM for matrix A

ROM for different 

filters

Channel-accumulating buffer

25

N_oc

25

N_ocL
o

o
p

 1

…
…

…
…

Input feature

Feature X

Graph U

Loop 2

L
o

o
p

 3

DSP DSP DSP DSP Mult-PE

……

……

...

...

...

...

... ...

……

Fig. 5. Illustration of SCM dataflow organization.

number of kept channels in filter. When computing, buffer
offers one line of original feature data. After computation
with one column vector of graph, there generates one valid
element X(h,w, oc) in (4). Afterwards, feature buffer provides
next cache line, which continues to produce X(h,w, oc+ 1).
Following this mode, when all output elements on current
output channel are computed, feature buffer returns to the first
line and graph ROM switches to the vector in next column
to prepare for X(h,w + 1, 0 : Noc). When the workload of
one row feature tensor is finished, feature buffer receives next
row of tensor to start a new sub-loop. In this way, feature is
produced in a channel-first order. Our dataflow reorganization
method essentially abandons feature data on specific channels,
so we skip corresponding workloads by not sending them to
feature buffer.

Feature element is broadcast to all Mult-PEs. In the same
channel-first order, weight ROM sends different filters’ pa-
rameters into computing units. To match the pruned model,
only non-zero weights are stored. Each Mult-PEs includes four
DSPs, and by adjusting the number of Mult-PE, our design
can fit into different layers. Results from parallel Mult-PEs
are accumulated and buffered on channel direction as well.
When the sum counter reaches the number of valid channels,
current data will be transferred into post-processing modules.

B. Temporal Conv Module

TCM is designed to accelerate temporal convolution work-
loads, whose kernel size is 9 × 1. Fig. 6 shows the detailed
information of TCM. Similarly, feature buffer stores decoded
data from data-fetch. However, buffer width is turned from
25-data into 9-data, and the depth is tuned for holding an
9 × 25 × in c area of feature tensor. Additionally, feature’s
one-hot code is sent from data-fetch to feature hot storage as
well. Valid weight together with its masks is stored on chip.
As depicted in Fig. 3, several balanced fine-grained pruning
schemes are conducted on leftover filters in recurrent ways,
providing opportunities for structured weight storage. One
temporal filter is divided into several 1 × 1 × 16 sub-filters,
thus, parameters can be folded into sub-filters format and then
be stored in a recurrent mode. Moreover, Dyn-Mult-PEs are
put across input channel and parallelizes on filter’s rows. There
are two reasons: (i) This parallel scheme can directly skip the
abandoned filters in coarse-grained pruning, (ii) Each row of
sub-filters is taken by one Dyn-Mult-PE and each function part
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Fig. 6. Illustration of TCM’s dataflow.

handles one row of weight tensor. In this way, one Dyn-Mult-
PE only needs to process weights derived from static cavity
mask, such as four or six weights in Fig. 6. This design further
eliminates data irregularity and scheduling uncontrollability.

Shown in Fig. 6, one row of a sub-filter is assigned to
a Dyn-Mult-PE, which includes four or six waiting queues
and several DSPs. Logic and operantion is performed first
on weight mask and feature mask to skip the zero-feature
and dropped weights. Then, valid feature enters one waiting
queue, which is bonded to a non-zero weight in the sub-
filter. To decrease the use of DSPs, dynamic data scheduling
is designed by dispatching data from busy waiting lines to
empty DSPs. Because multiplication in a Dyn-Mult-PE is part
of the intra-filter computation, results need to be summed up
and afterwards sent to the adder-tree. While dynamic data
scheduling has advantages on saving DSP resource, it may
increase the working delay at workloads-intensive cases. With
the help of recurrent fine-grained pruning and statistic sparsity,
we calculate the expectation of valid computation in one sub-
filter and use it to guide the DSP occupation. The detailed
method is illustrated in (6), where the number of kept weight in
a sub-filter is assumed as six and s stands for feature sparsity.

E(D) =
∑

d×p(d) = 3(1−s)3+3s2(1−s)+6s(1−s)2 (6)

C. Runtime Sparse Feature Compress

Despite layer-pipelined architecture poses great advantages
on throughput, it has to store massive temporal computing
results for shortcut task. RFC is presented to address this
issue. Encoding, compact storage and decoding are included
in RFC structure. Encoding process is combined with ReLU
while decoding is embedded in data-fetch module. The whole
structure of RFC is displayed in Fig. 7.

Encoding: At first, one feature vector is divided into several
banks across channels. The width of each bank is 16 data-wise.
ReLU function parts perform on banks, providing activation
and one 16-bit hot code, which denotes the positive/zero value.
Then valid elements are gathered at higher bits while unused
bits are padded with zero. After that, mini-bank-hot code
(mbhot) is generated according to the number of non-zero
data in bank. Mbhot indicates which mini-banks are used in
the bank storage. Encoding parts work in pipeline and during
several working cycles, the whole vector is finally turned into
compact format. Instead of compressing one vector as whole,
we lower the encoding cost by setting bank as the finest grain
of ReLU and encoding process.
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Storage: The compact storage consist of bank storage units,
which includes mini-banks, mini-bank-hot storage, data-hot
storage and address controller pt. The key insight of bank
storage design is to keep access regularity on data-width di-
mension and reduce useless storage on data-depth dimension.
When input data and hot codes are valid, mbhot sends enabling
signal to every mini-banks and related pts. For example, if the
input data-hot code is 0001 1100 0000 0111, meaning there
are five non-zero data in the high bits of input data stream
and the mbhot is 1100. The first mini-bank receives and stores
four valid data, the second mini-bank keeps fifth valid data and
three zero data. Their pt will self-add after this data-writing.
Other mini-banks and their pt are not started. Similarly, when
we need to load data from bank storage in order, mbhot enables
related mini-banks and pts to output correct data. The output of
disabled mini-banks is covered by zero. Without any random
access schemes, compact data can be both stored and loaded
in only one cycle.

Another issue on compact storage is to determine the
volume of each mini-bank. Like deciding DSP’s utilization, we
can calculate the expectation of useful data based on offline
sparsity. However, there always exists vectors drifting away
from average sparsity. Denser vectors demand deeper mini-
banks on the tail (the rightmost mini-bank in Fig. 7) while the
lighter vectors merely occupy head mini-banks. In ideal cases,
every vector is fit in bank-lines with no mini-banks unused
and no vector truncated, but it is hard to precisely determine
the number of valid data in every vector. Features sparsity
distribution of each layer can help us to adjust the depth
of mini-banks. For example, sparsity of feature is 50% and
25% of vectors has sparsity higher than 75%, 25%’s features
are between 50%-75%, 25%’s data is between 25%-50% and
25% vectors’ are below 25%. The mini-bank arrangement
in Fig. 7 meets the demand of different density feature and
reduces 37.50% storage resource compared with sparse format.
In actual design, BRAM units have variable grains, which
provides more flexibility.

Decoding: The decoding function is integrated in data-
fetch module in SCM and TCM. Data-fetch not only controls
loading address, but also translates compact data into sparse

form. After receiving both data stream and data-hot codes
from bank storages, parallel decoding modules perform on
each banks output. Each translation part processes compressed
feature in four pipeline stages, four data for one stage. Matched
with encoding phase, the output of one bank is seen as the
basic decoding grain, which further decreases the complexity
of decoding circuit.

VI. EXPERIMENTS

In this section, we evaluate our design on both software
and hardware views. Our pruning method is explored on one
V100 GPU using PyTorch, and accelerator architecture is
implemented with Verilog HDL on Vivado 2018.3 IDE.

A. Validations on Hybrid Pruning Method

In experiments, the proposed hybrid pruning method on 2s-
AGCN model is compared with unstructured pruning on NTU-
RGB+D, which contains 37k training and 18k testing data. We
explore the impact of different pruning designs on accuracy,
e.g., various fine-grained pruning schemes for temporal filters
and channel-dropping modes in reorganization phase.

Comparison: Fig. 8 illustrates the contrast between our
hybrid pruning methods and conventional pruning means. Both
unstructured pruning and hybrid pruning can elevate accuracy
for deleting some unimportant weights and improving conver-
gence performance. With same parameters reduction rate, our
method achieves better accuracy performance in most cases.
Additionally, we apply quantization on our pruned models.
With negligible accuracy loss, float data is transformed into
fix-point format, where eight bits are allocated to decimal part
and eight to integer part. To further accelerate the proposed
application-specific system, half of input skeleton vectors are
skipped. Although input-skip method lowers prediction accu-
racy, it brings 50% reduction on total computation. Besides,
the input-skip model with 86% compress ratio still keeps the
accuracy no less than original model, so we choose this model
as final accelerating target.

Exploration: Both data reorganization and fine-grained tem-
poral pruning are fatal to model accuracy. To find the best
pruning scheme, we conduct isolated experiments respectively.
Additionally, based on our dataflow reorganization method,
graph-skipping rate equals channel-dropping rate of this phase.
Guided by feature sparsity in Fig. 9, we first set each layers
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Fig. 9. Exploration on channel dropping.

channel pruning rate roughly equals its sparsity respectively.
For higher parameter reduction ratio, we progressively raise
compressing rate on layers and observe effect on accuracy,
as shown in Fig. 9. Drop-1, Drop-2, and Drop-3 stands for
different channel pruning design. The spatial convolutional
parameter in block 1 is not pruned for it only has three input
channels. Also, mix-grained pruning on temporal convolution
is excluded to validate data reorganization method. It reveals
that with compress rate shifting away from base sparsity,
model reduction is growing while accuracy is decreasing. We
choose the Drop-1, which keeps the best accuracy, as our base
dataflow reorganization design.

The fine-grained method is important in holding accuracy
and keeping balanced-pruning, since coarse-grained means is
totally decided by data reorganization. We carry out several ex-
periments on fine-grained pruning, including different pruning
intervals, offsets and pruning rates. All experiments are based
on Drop-1 model in Fig. 9 and results are shown in Fig. 10.
Pruning schemes in Fig. 10 are named as the combination of
cav (cavity), pruning percent (50, 67 for instance) and intra-
order. The size of rectangles below is 9×8, which denotes
eight 9×1 kernels in loop. Cav-70-1 means the first cavity
patterns with 70% reduction rate. With reduction rates ex-
panding, model bears more accuracy loss in general. However,
cavity patterns play an important role as well. With same
compress ratio of 70%, cav-70-1 performs better than cav-70-2
on accuracy for more balanced weight pruning. Every weight
line in cav-70-1 has two or three sampling chances, while in
cav-70-2, different lines are kept from one time to four times.
Balanced pruning schemes not only provide convenience for
hardware, but also ensure the accuracy performance. The same
situation happens between cav-75-1 and cav-75-2 as well.
Taking both compress ratio and accuracy into consideration,
cav-70-1 is chosen to be the final design.

B. Hardware implement

Dyn-MultPE: Dyn-MultPE works on the cav-70-1 cavity
pattern, which means there are three Dyn-MultPEs needing
to six waiting queues and six facing four waiting queues.
Based on (6), different numbers of DSPs are settled in each
layers Dyn-MultPEs. We also adjust the number of temporal
convolutional PE to keep balance between pipeline stages. We
choose some detail information to show in Table. II, where our

TABLE II
UTILIZATION, WORKING EFFICIENCY AND MAX DELAY OF DYN-MULTPE.

layer DSP in one PE total DSP efficiency max delay
1 4/6 63 66.79% 0.00%
2 4/6 126 83.76% 3.70%
3 4/6 126 80.96% 0.00%
4 2/3 126 83.46% 7.40%

total 882 75.38% 6.48%
static 1149 57.86% 0.00%

TABLE III
FEATURE SPARSITY DISTRIBUTION OF SOME LAYERS

layer I II III IV
l1.sconv <0.01% 29.35% 70.64% <0.01%
l1.tconv 0.02% 94.73% 5.25% 0.00%
l2.sconv 0.00% 0.73% 75.79% 23.48%
l2.tconv <0.01% 34.24% 65.76% 0.00%

dynamic data scheduling trades only 6.48% of longer delay for
DSP reduction of 23.24%.

RFC: As stated above, RFC design relies on sparsity dis-
tribution. To optimize runtime compress storage, we refer to
pruned model’s offline sparsity distribution, as is partly shown
in Table. III. Feature vectors are divided into four categories
by their sparsity: 75%-100% (I), 50%-75% (II), 25%-50% (III)
and 0%-25% (IV). According to our RFC design, vector of first
category occupies one mini-bank, ones in II takes two, III takes
three and IV takes four mini-banks. We can thus get the total
BRAM blocks used for RFC structure. Comparison in Fig.
11 indicates that our RFC design brings 35.93% reduction on
occupied BRAM blocks. Moreover, with almost same amount
of used BRAM elements, RFC can finish data-loading in one
cycle and encoding/decoding in four cycles, while CSC format
usually needs 64 cycles to load data or decoding data serially.
With less extra hardware cost and similar storage compress
ratio, RFC structure achieves more regular data-access.

Overall performance: Our architecture is implemented on

Fig. 10. Exploration on fine-grained pruning schemes.
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Xilinx XCKU-115 with frequency of 172MHz. The resource
utilization is demonstrated in Table. IV, together with com-
parison with [10]. Experiments have proved that our design
has superiority on peak performance, throughput and DSP
efficiency. In Table. V, we compare the peak performance of
ours and two GPUs. The original means testing program is
the original version of 2s-AGCN, and the skip means w/oC
together with input-skipping is applied. To fully use the mem-
ory in GPUs, target model runs with 200 or 700 samples in
one batch on 2080Ti and V100, respectively. Although V100
has 14TFLOPS of peak performance, our pruning methods
provides 86% parameter reductions and 88% computation
skipping efficiency. Moreover, our layer-pipelined structure
does not need to exchange data with DRAM except for loading
original input, which further boosts performance. Compared
with two main-stream GPUs, our accelerator provides 1.36x-
9.19x of speedup, showing competitive performance.

VII. CONCLUSION

In this article, we propose a software-hardware co-design
for action recognition GCNs: RFC-HyPGCN, including hy-
brid pruning method and a runtime sparse feature compress
architecture. Firstly, a hybrid pruning method is explored on
2s-AGCN. Secondly, we propose an architecture based on the
balanced pruned model. Finally, a runtime sparse feature com-
pact format is designed to reduce zero-storage between layers.
Experiments demonstrate that compared with conventional
unstructured pruning, our method achieves better accuracy
performance in most cases. The accelerator is implemented on
Xilinx XCKU-115 FPGA. At the cost of negligible working
delay, RFC reduces 35.93% of used BRAM and 23.24% of
DSPs. Ours provides 22.62x speed-up and 59.41% elevation
on DSP efficiency over another work on accelerating action
recognition GCNs. On contrast to high-end GPUs, RFC-
HyPGCN achieves 1.36x-9.47x speed-up on throughput.

TABLE IV
UTILIZATION & PERFORMANCE COMPARISON BETWEEN OURS AND [10].

dsp bram blocks LUT dsp efficiency peak perf frequency fps
ours 3544 1806 176776 0.322GOP/s/DSP 1142GOP/S 172Mhz 271.25
[10] 228 151 44457 0.202GOP/s/DSP 46GOP/S 188Mhz 11.99

TABLE V
PERFORMANCE COMPARISON BETWEEN OURS AND HIGH-END GPUS.

ours 2080Ti-original V100-original 2080Ti(w/o C) V100(w/o C) 2080Ti-skip V100-skip
throughput 271.25 29.53 69.38 45.42 98.87 104 199.09
speed-up 9.19 3.91 5.97 2.74 2.61 1.36
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