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Abstract—Video super-resolution (VSR) technology excels in 

reconstructing low-quality video, avoiding unpleasant blur 

effect caused by interpolation-based algorithms. However, vast 

computation complexity and memory occupation hampers the 

edge of deplorability and the runtime inference in real-life 

applications, especially for large-scale VSR task. This paper 

explores the possibility of real-time VSR system and designs an 

efficient and generic VSR network, termed EGVSR. The 

proposed EGVSR is based on spatio-temporal adversarial 

learning for temporal coherence. In order to pursue faster VSR 

processing ability up to 4K resolution, this paper tries to choose 

lightweight network structure and efficient upsampling method 

to reduce the computation required by EGVSR network under 

the guarantee of high visual quality. Besides, we implement the 

batch normalization computation fusion, convolutional 

acceleration algorithm and other neural network acceleration 

techniques on the actual hardware platform to optimize the 

inference process of EGVSR network. Finally, our EGVSR 

achieves the real-time processing capacity of 4K@29.61FPS. 

Compared with TecoGAN, the most advanced VSR network at 

present, we achieve 85.04% reduction of computation density 

and 7.92× performance speedups. In terms of visual quality, the 

proposed EGVSR tops the list of most metrics (such as LPIPS, 

tOF, tLP, etc.) on the public test dataset Vid4 and surpasses 

other state-of-the-art methods in overall performance score. 

The source code of this project can be found on 

https://github.com/Thmen/EGVSR. 

Keywords—video super-resolution, real-time system, neural 

network acceleration 

I. INTRODUCTION 

Video super-resolution (VSR) is developed from image 
super-resolution, and it is one of the hot topics in the field of 
computer vision. VSR technology reconstructs degraded 
video, restores the definition of video, and improves the 
subjective visual quality. VSR is of great significance for 
improving the quality of early low-resolution video resources. 
At present, high-resolution such as 4K or even 8K display 
technology is relatively mature, however, the mainstream 
video sources are still dominated by low-resolution such as 
1080P or 720P, which limits the quality of video system from 
the source end. In the near future, 4K and even higher 
resolution will surely replace Full HD (FHD) as the 
mainstream format. Therefore, there is an urgent real-life 
demand for efficient and lightweight VSR technology to 
upgrade a mass of low-resolution (LR) videos to high-
resolution (HR) ones. 

The research object of VSR technology is the image 
sequence of video resources. The image sequence is 
composed of a series of static images and forms into 
continuous frames. Since some objects in the video move at a 
fast speed and appear as a motion blur effect in a single image, 
there will be sub-pixel displacements between target frames 

and its adjacent frames. Therefore, it is crucially important for 
VSR systems to align the adjacent frames using effective 
motion compensation algorithms. This is a difficult and 
challenging problem in the field of current VSR research. In 
addition, super-resolution technology still has the following 
formidable challenges and urgent research directions: 

• Large scale and unknown corruption, still lack of 
effective algorithms. 

• Lightweight and real-time architecture, where deep 
VSR models are still difficult to deploy on hardware. 

Deep Learning algorithms are considered to be excel at 
solving many unsupervised problems, and essential to solve 
the aforementioned challenges. This paper explores the 
solutions of large-scale VSR and pursues the goal of 4K high-
resolution in VSR system.  

For large-scale VSR, challenges in the computational 
complexity and memory consumption impede the real-time 
and low latency performance of video processing. Although 
advanced deep models have achieved high quality on VSR, 
these models are still difficult to be deployed in practical 
applications due to the huge amount of parameters and 
calculations. In order to solve this problem, we need to design 
a lightweight VSR model, or refine the existing VSR model 
with fewer parameters and sparse structures. 

Generally, in the field of VSR, main research direction lies 
in the pursuit of video quality, while few focus on fast and 
real-time VSR methods. Real-time VSR requires to consider 
both of quality and speed. In this paper, we propose a VSR 
network that can handle large-scale and high-performance, 
and investigate hardware-friendly accelerating architectures 
for VSR network inference, thereby allowing real-time 
processing without the sacrifice of VSR quality. The 
contributions of this paper are summarised as follows: 

1. We present a lightweight and efficient VSR network to 

improve the performance of VSR quality and running 

speed. 

2. We investigate various network acceleration strategies 

tailored for large-scale VSR system to meet the 

requirements of real-time inference. 

3. We propose an unified method to quantify different 

metrics of VSR quality for efficient automated 

evaluation across vast test samples. 

II. RELATED WORK 

A. Deep Learning Based Video Super Resolution 

From the perspective of technical route, super-resolution 
(SR) technology can be summarized into three categories: 
interpolation based SR, super-resolution reconstruction based 
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SR, and learning based SR [1]. In the last few years, interests 
in deep learning (DL) based SR algorithms research have risen 
rapidly. It is difficult for traditional algorithms to make 
breakthroughs for higher performance, while DL-based SR 
algorithms have achieved significant improvements of SR 
quality [2]. In addition, compared to single-image SR, video 
SR problems provide more available information from 
multiple frames, with both spatial dependence of intra-frame 
and temporal dependence of inter-frame. Therefore, the 
existing work mainly focuses on how to make an efficient use 
of spatio-temporal correlation, which refers to explicit motion 
compensation (MC) and recursive feedback mechanism to 
fuse additional image information from multi-frames. 

In terms of MC based VSR methods, Liao et al. [3] used 
multiple optical flow methods to generate HR candidate 
objects and integrated them into CNNs. VSRnet [3] estimated 
the optical flow through the Druleas algorithm, SOFVSR [4] 
reconstructed the coarse-to-fine optical flow through the 
OFRnet network. Both used multiple continuous frames as the 
input of CNNs to predict HR frames. Besides, some methods 
tried to learn MC directly. VESPCN [5] used a trainable 
spatial transformer to learn MC between adjacent frames, and 
input multiple frames into a spatio-temporal network ESPCN 
[6] for end-to-end prediction. BRCN [7] proposed a bi-
directional framework that using CNN, RNN, and conditional 
Generative Adversarial Network (GAN) for model spatial, 
temporal, and spatio-temporal dependence, respectively. 
FRVSR [8] and TecoGAN [9] used the previous HR predicted 
frames to reconstruct the subsequent HR frames in a circular 
manner through two DNNs. Another trend started to use 
recursive method to capture spatio-temporal correlations 
without the need for explicit MC. Specifically, DUF [10] used 
an end-to-end deep CNN to generate dynamic upsampling 
filters and residual images to avoid explicit MC processing. 
EDVR [11] used the enhanced deformable convolutions and 
RBPN [12] utilized a recurrent encoder-decoder module to 
improve the fusion of multi-frame information. 

B. Efficient and Real-time VSR Network 

Following the design principle of CNN networks, “the 
deeper, the better”, VSR networks have been developing 
towards a larger and wider network architecture. However, 
large-scale networks bring huge computation, making it 
difficult to be implemented on present-constrained hardware 
platforms and deploy practical VSR networks in real-time. 
Recently, many research studies have investigated 
optimization and acceleration methods of VSR network. For 
example, Chao et al. redesigned and optimized network 
structure in order to accelerate the previous SRCNN model 
[13], therefore, the network complexity of FSRCNN is much 
lower than that of SRCNN. FAST [14] used compression 
algorithm to extract a compact description of the structure and 
pixel correlation, and accelerated the most advanced SR 
algorithm by 15 times with a minimum performance loss (only 
-0.2 dB). The VSRnet proposed by Kappeler et al. used an 
adaptive MC architecture to deal with motion blur problems, 
and the processing time of each frame only needs 0.24s on 
GPU device [15]. 

Furthermore, interests in FPGA-based high-performance 
and parallel computing have grown. In the early work [16, 17], 
researchers first implemented large-scale VSR tasks on FPGA, 
i.e. 2Kto8K@60Hz 4× video upscale and 4Kto8K@60Hz 2× 
upscale, however, they still used the non-DL traditional 
interpolation-based algorithm. The energy-efficient DCNNs 

devised by Chang et al. optimized the deconvolutional layer, 
and proposed the FPGA-based CNN accelerator to generate 
UHD video efficiently [18]. Under the same occupation of 
hardware resources, the throughput of the DCNN accelerator 
is 108 times faster than a traditional implementation. 
Yongwoo et al. proposed a hardware-friendly VSR network 
based on FPGA facilitated by quantisation and network 
compression [19]. 

III. OUR METHODS 

A. Efficient and Generic VSR System 

The generative and discriminative modules of GANs can 
play games with each other during the training process to 
produce better perceptual quality than traditional generative 
models. Therefore, GANs are widely used in the SR field. We 
rely on the powerful ability of deep feature learning of GAN 
models to deal with large-scale and unknown degradation 
challenges in VSR tasks. In addition, we refer to the design of 
the TecoGAN [9] method and introduce the spatio-temporal 
adversarial structure to help the discriminator understand and 
learn the distribution of spatio-temporal information, which 
avoids instability effect in temporal domain encountered by 
traditional GANs. 

Moreover, to meet the requirements of super-resolving 
large-scale video up to 4K-resolution, we follow the design 
principles of efficient CNN model to build a more generic and 
high-quality video super-resolution network, termed EGVSR 
(efficient and generic video super-resolution). To allow 
processing 4K video in real-time, we recall the practical 
guidelines of an efficient CNN architecture [20] and build an 
lightweight network structure for EGVSR. The generator part 
is divided into FNet module and SRNet module for optical 
flow estimation and video frame super-resolution, 
respectively. Figure 1 shows the framework of EGVSR’s 
generator part and the data flow during inference stage. 

 

Fig. 1. Overview of EGVSR network. 

The structure of FNet refers to the encoder-decoder 
architecture in RNN to estimate the dense optical flow and 
provide motion compensation information for adjacent frame 
alignment operation (Warp). The encoding part uses three 
encoder units, each of which is composed of {Conv2d→ 
LeakyReLU→Conv2d→LeakyReLU→MaxPool2}, and the 
decoding part uses three decoder units formed by {Conv2d→ 
LeakyReLU→ Conv2d→ LeakyReLU→ BilineraUp×2}. The 
design of SRNet module needs to take into account both 
network capacity and inference speed. We remark that 
multiple network layers are used to ensure the VSR quality, 
while the network complexity should be controlled for real-
time video processing ability. 

Herein, we refer to the structure of ResNet [21] network 
and adopt lightweight residual block (ResBlock) to build 
SRNet. The structure of ResBlock is {(Conv2d→ReLU→ 
Conv2d)+Res}. Considering the balance between quality and 



speed, we use 10 ResBlock to build SRNet, and use 
lightweight sub-pixel convolutional layer in the end of 
EGVSR network as the output upsampling method, with the 
structure of {PixelShuffle×4→ReLU→Conv2d}. 

As for the other modules in our EGVSR, we keep the same 
setup to the previous work [9] for fair comparison, considering 
the balance between the inference speed of the EGVSR 
network and the quality of the VSR. Moreover, a lightweight 
network is introduced without affecting the quality of the VSR. 
The design principle is to simplify the EGVSR network as 
much as possible, and uses the various neural network 
acceleration techniques mentioned below. 

B. Batch Normalization Fusion 

In order to ensure real-time processing capability of our 
EGVSR system, further optimizations are made in EGVSR 
system without sacrificing the quality of VSR. Batch 
Normalization (BN) technology is most commonly used in the 
field of deep learning to improve the generalization of the 
network and prevent the side effect of over-fitting. The 
mathematical formula for the calculation of BN processing 
can be briefly described as Eq. (1). It can be seen that the 
calculation of BN is quite complicated, and the mean (𝜇) and 
variance (𝜎2) value of a batch of samples need to be counted 
first. The FNet module in our EGVSR network also makes 
extensive use of the BN layer. We need to optimize it to 
improve the speed of network training and inferencing. 
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First of all, we transform the BN calculation into matrix 
form, as expressed in (2): 

  (2) 

We can see that the transformed BN layer is similar to the 
formation of the 1×1 convolution 𝑓(𝑥⃑) = 𝑊 ∗ 𝑥⃑ + 𝑏, then we 
can utilize the 1×1 convolutional layer to realize and replace 
the layer of BN. Finally, we can fuse the 1×1 convolutional 
layer with the previous convolutional layer, so that we can 
eliminate the need of calculating BN. The optimization of BN 
fusion will provide a speed improvement of about 5%. The 
overall transformation process is shown in Figure 2. 

 

Fig. 2. Batch Normalization fusion processing flow. 

C. Efficient Upsampling Method 

Upsampling layer is one of the most important portions in 
SR network, which can be roughly divided into two categories 
according to different technique routes: traditional 
interpolation-based upsampling methods and learning-based 
upsampling methods. All interpolation upsampling methods 
have an obvious defect, which will cause edge blur to the 
image, while various learning-based upsampling methods, 
such as Deconvolution, Sub-pixel Convolution, and Resize 
Convolution, have powerful feature learning capability, and 
show their talents in VSR networks. 

In order to compare the above three intra-network 
upsampling methods to select the best solution, we used the 
control variate method to evaluate the efficiency of these 
upsampling layers in actual SR networks. Specifically, 
ESPCN [6] network is used as the backbone of SR network. 
We only changed the upsampling layer while maintaining the 
other network structures and configurations, and trained 
multiple groups of SRNet with three different upsampling 
methods, i.e. A. Resize convolution (using bilinear 
interpolation); B. Deconvolution; C. Sub-pixel convolution. 
Table I shows the detailed network settings. 

TABLE I.  THE NETWORK SETTING OF THREE CONTROL SRNETS 

Structure Layer Output Shape Param# 

Backbone 

1-Conv2d+Tanh [1,64,800,800] 1,664 

2-Conv2d+Tanh [1,32,800,800] 18,464 

3-Conv2d+Tanh [1,32,800,800] 9,248 

Upsample-A 
4-Interpolation [1,32,2400,2400] 0 

5-Conv2d [1,1,2400,2400] 33 

Upsample-B 5-ConvTranspose2d [1,1,2400,2400] 801 

Upsample-C 
4-Conv2d [1,9,800,800] 297 

5-PixelShuffle [1,1,2400,2400] 0 

Table II records the performance metrics of different 
SRNets. It can be seen that the sub-pixel convolution has the 
best quality performance in both the training and testing stages, 
except for PSNR metric in testing stage, which is slightly 
lower than that of deconvolution (-0.02dB). Besides, we test 
the average running time of different SRNets for 3× super-
resolving single test image with the size of 800×800 under the 
same testing environment. Although the SRNet with resize 
convolution has the least weight parameters, the processing 
time bottleneck lies in both CPU and GPU platforms, due to 
the high computational complexity of interpolation. Sub-pixel 
convolution performs better than method A and B, which is 
1.77 times faster (CPU) and 1.58 times faster (GPU) than that 
of method A. 

TABLE II.  EXPERIMENTAL COMPARISON RESULTS OF VARIOUS 

UPSAMPLING METHODS 

Up- 

sample 

Method 

Total 

Param# 

Train Test CPU 

time 

(ms) 

GPU 

time 

(ms) 
Loss PSNR PSNR SSIM 

A 29,409 0.0055 22.61 25.45 0.72 415.8 9.860 

B 30,177 0.0048 23.20 26.52 0.76 253.4 8.203 

C 29,673 0.0047 23.28 26.50 0.77 234.9 6.234 

D. Convolutional Computation Acceleration 

In order to further improve the inference speed of EGVSR 
network, we explore the core of computation in the neural 
network. From the perspective of actual engineering 



deployment, it points out that convolutional computation is 
the key to CNNs, accounting for more than 90% of the total 
computation, which consumes most of the calculation time, 
therefore, it is necessary to improve the computational 
efficiency of convolution. We should design an efficient 
convolutional algorithm suitable for hardware deployment. 

According to basic calculation process of the traditional 
naïve convolution (ConV), a large number of loop structures 
(6 loops) are used, and the computation efficiency is quite low. 
In terms of two-dimensional convolutional layer with a 3×3 
kernel, we need to traverse from top left to bottom right on the 
input feature map based on the traditional sliding window 
method to obtain the output feature map, as shown in Fig. 3. 

 

Fig. 3. Use matrix multiplication to accelerate convolutional computation. 

We consider using the matrix multiplication (MatMul) 
algorithm to improve it, following the process in the second 
line of Figure 3. First, input data of each activation zone is 
extracted according to the size of convolutional filter, and 
converted from original 2D matrix with 3×3 size into single 
row vector. When the length of sliding step is one, there are 
four activation zones in total, thus four 1D row vectors can be 
obtained. All vector constitutes a 2D matrix with a size of 4×9. 
We call this conversion as im2col (i.e. feature map to column 
vector or image to column), and this optimization method was 
first proposed by Jia [22]. Similarly, the 2D convolutional 
filter with the size of 3×3 is straightened directly and 
transformed into the 1D column vector with the size of 9×1. 
Such a conversion does not consume computation, and it is 
only a rearrangement of the memory in reading order. There 
will be duplicated data elements in the converted matrix, 
which will increase the memory usage. 

We find that MatMul computation of two transformed 
matrices identify with the results of a convolutional 
computation, and no additional calculation is required. The 
desired output feature results can be obtained through the 
inverse col2im conversion. The convolution operation in CNN 
is essentially a multiple dimensional correlation computation. 
In our actual hardware implementation, the method mentioned 
above is adopted to convert convolutional computation into 
matrix multiplication, which saves inference time by memory 
space to boost higher computational efficiency. 

We also aim to accelerate our proposed EGVSR network 
on FPGAs using convolution accelerators. We recall our 
previous work WinoConv [23], a FPGA-based convolution 
accelerator, and analyse the feasibility of EGVSR’s edge 
deployment on FPGA, where Winograd algorithm [24] is used 
to reduce the complexity of convolutional computation, 
decreased from O(𝑛3) to O(𝑛2.376). 

IV. EXPERIMENTS AND DISCUSSION 

A. Evalution of Image Quality 

Firstly, we evaluated and compared the actual super-
resolution performance of image quality on the standard 
testing dataset VID4 with previous VSR networks under 
different technical routes, including: 1).VESPCN [5] and 
SOFVSR [4] networks based on non-GAN method with MC; 
2). DUF [10] network based on non-GAN method without 
explicit MC; and 3). our EGVSR network based on GAN 
method and optical flow based MC.  

In order to facilitate comparison, we captured the actual 
image results from different VSR methods and focus more on 
the detail textural features. Figure 4 exhibits the reconstruction 
results produced by various VSR networks on VID4 dataset, 
and the group of detail images on the right side represents the 
image results from LR (low-resolution), VESPCN, SOFVSR, 
DUF, EGVSR and GT (ground-truth) respectively. From the 
subjective results, EGVSR’s results are the closest to the GT 
images and achieve higher image detail reconstruction quality. 
VESPCN and SOFVSR networks performed relatively fuzzy 
in the overall picture and seriously lost most image edge 
details. EGVSR against the DUF network that currently has 
state-of-the-art performance of image quality in VSR field. 

For a more objective assessment of VSR image quality, we 
used three most common metrics: PSNR, SSIM and LPIPS. 
The specific experimental results are shown in Table III. The 
objective testing results are consistent with the previous 
subjective results, and it can be seen that DUF and EGVSR 
seem equally matched in three metrics. Generally, DUF 
performs slightly better in PSNR and SSIM metrics, while our 
EGVSR performs better in LPIPS. Regarding to the 
evaluation of image super-resolving quality, Blau and 
Michaeli have proved that the measurement using PSNR or 
SSIM metric to assess the human visual perception quality has 
an inherent distortion [25]. DL-based feature mapping metric 
LPIPS can capture more high-level image semantic structures, 
and the LPIPS metric is close to the subjective evaluation of 
human eyes. Therefore, LPIPS is more accurate than the first 
two metrics, and our EGVSR has a significant performance 
improvement of 48.15% compared with DUF in LPIPS, 
according to the average results on the VID4 dataset. 

TABLE III.  OBJECTIVE EVALUTION RESULTS OF IMAGE QUALIT ON 

VID4 TEST DATASET 

Sequence 

Name 
Metric VESPCN SOFVSR DUF Ours 

Calendar 

PSNR↑ 14.67 18.39 23.59 23.60 

SSIM↑ 0.19 0.50 0.80 0.80 

LPIPS↓ 0.57 0.41 0.33 0.17 

City 

PSNR↑ 19.38 22.03 27.63 27.31 

SSIM↑ 0.14 0.69 0.79 0.79 

LPIPS↓ 0.48 0.21 0.27 0.16 

Foliage 

PSNR↑ 16.22 22.96 26.15 24.79 

SSIM↑ 0.09 0.46 0.77 0.73 

LPIPS↓ 0.54 0.36 0.35 0.14 

Walk 

PSNR↑ 15.28 20.91 29.90 27.84 

SSIM↑ 0.32 0.45 0.91 0.86 

LPIPS↓ 0.34 0.44 0.14 0.09 

Average 

PSNR↑ 16.20 21.02 26.82 25.88 

SSIM↑ 0.19 0.53 0.82 0.80 

LPIPS↓ 0.48 0.36 0.27 0.14 



 
Fig. 4. Subjective comparison results from various VSR methods (Testing on Vid4 dataset, video sequence name: Calendar/City/Foliage/Walk). 

B. Evalution of Video Quality and Temporal Coherence 

In this section, we will investigate the objective evaluation 
of video quality for our VSR system. In order to acquire the 
qualitative comparison result of temporal consistency, we 
introduced two temporal metrics, tOF and tLP, used in 
previous work [9]. tOF measures the pixel-wise difference of 
motions estimated from sequences, and tLP measures 
perceptual changes over time using deep feature map: 
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Pixel differences and perceptual variations are critical to 
quantifying actual temporal coherence, therefore, tOF and tLP 

will measure the difference between the VSR results and the 
corresponding GT reference ones. The smaller the score is, the 
closer it is to the true result, which providing a more pleasant 
and fluent subjective perceptual experience. In addition to the 
VESPCN and SOFVSR networks (DUF is excluded, mainly 
because it is not based on explicit MC), two latest VSR 
networks, FRVSR [8] and TecoGAN [9], are used. We 
conducted testing experiment on three datasets, VID4, TOS3 
and GVT72. The specific experiment results are shown in 
Figure 5 and Figure 6. The results of the temporal metrics 
show that the spatio-temporal adversarial model has better 
performance than the traditional model. EGVSR network can 
recover more spatial details with a satisfied temporal coherent, 
meeting the subjective perception of human eyes. 



 
   (a) LPIPS(↓);          (b) tOF(↓);     (c) tLP100(↓); 

Fig. 5. Averaged VSR metric evaluations for three dataset with the following metrics：LPIPS, tOF, tLP. 

 

Fig. 6. VSR comparisons for detial views of captured image (“Bridge” video sample in TOS3 dataset) in order to compare to previous work. 

TecoGAN model stands out in all temporal performance 
test of TOS3 dataset. There is still a slight gap between our 
EGVSR and TecoGAN model, where a reduction 
performance of -4.74%~-11.01% is shown in evaluation result. 
However, it is difficult to distinguish their difference from the 
aspect of subjective perception, as shown in Figure 6. Besides, 
EGVSR is even slightly better in some representation details, 
such as the reconstruction of brick texture details marked in 
the yellow box of the “Bridge” sample in Figure 6. Images 
generated by EGVSR are closer to the GT ones. EGVSR has 
an advantage over TecoGAN in some respects, or even overall 
exceeds TecoGAN on VID4, maintaining a performance 
advantage of +5.53% to +12.35%. The performance of our 
EGVSR network in temporal domain is significantly better 
than that of the previous methods and is comparable to that of 
TecoGAN, the SOTA VSR model by far. 

C. Runtime Speed on GPU 

This section will test the running frame rate of different 
VSR models during inference. The experimental results are 
shown in Table IV. The 2nd line lists the parameters of each 
VSR networks, line 3 counts the statistics of corresponding 
computation cost, and the last two lines show the average FPS 
that can be achieved during 4× VSR in different resolutions. 
The results show that, the total computation cost required by 
our EGVSR is only 29.57% of VESPCN, 12.63% of SOFVSR, 
and 14.96% of FRVSR and TecoGAN. In terms of using CPU 
only, we achieve the increase of speed-up by 8.25× to 9.05× 
compared to TecoGAN. As for using GPU for acceleration, 
we realize the EGVSR system in real-time at a speed of 
720p/70.0FPS, 1080p/66.9FPS, 4K/29.6FPS, which has 2.25×, 
4.45×, and 7.92× performance speed-up compared to 
TecoGAN. Due to our lightweight design of VSR network and 
various optimization strategies, the efficiency of EGVSR on 

CPU/GPU hardware platform is improved greatly. In contrast, 
other DL-based VSR methods have limited runtime efficiency 
when dealing with large-scale VSR tasks such as 1080p and 
4K resolution, which cannot meet the runtime ability (above 
25FPS). 

D. Overall Performance 

Although the above experimental discussion provides the 
test result for evaluating the visual quality and running speed 
of our VSR system, these test experiments are compared on 
their own dimension independently. An unified quantitative 
metric is essential for efficient automated evaluation across a 
large number of test samples. In this section, we consider the 
balance between visual quality and running speed of VSR 
network for generating high-resolution video. Therefore, we 
propose a novel and unified VSR visual quality assessment 
metric to quantify LPIPS in spatial domain and tOF and tLP 
in temporal domain. Specifically, Eq. (4) is used to normalize 
the value of all metrics of each network in different datasets. 

 min max min( ) ( )norM M M M M= − −  (4) 

The weighted sum method is used to quantify different 

metrics, and finally the comprehensive visual quality score of 

VSR network is calculated by 
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where, the value of the score ranges from 0 to 1, a higher score 
indicating that the VSR system achieves a better visual quality. 

Figure 7 depicts the comprehensive performance of video 
quality score and network running speed of various VSR 
methods. In addition to VESPCN, SOFVSR, DUF, FRVSR, 



TABLE IV.  THE RUNTIME SPEED OF DIFFERENT VSR NETWORKS ON CPU AND GPU 

Performance Source Target VESPCN SOFVSR FRVSR TecoGAN 
Ours: 

EGSVR 

Speed-up 

vs. 

TecoGAN Parameters(M) -- -- 0.879 1.640 2.589 2.589 2.681 

FLOPs(G) 

320×180 720p 96.56 226.12 190.81 190.81 28.55 -- 

480×270 1080p 221.08 508.78 429.30 429.30 64.06 -- 

960×540 4K 886.47 2035.11 1718.65 1718.65 257.01 -- 

FPS(CPU) 

320×180 720p 3.053 1.039 1.152 1.150 9.487 8.25× 

480×270 1080p 1.201 0.443 0.485 0.485 4.389 9.05× 

960×540 4K 0.289 0.106 0.112 0.112 0.958 8.55× 

FPS(GPU) 

320×180 720p 48.48 13.31 31.16 31.15 70.04 2.25× 

480×270 1080p 24.76 5.993 15.10 15.05 66.90 4.45× 

960×540 4K 6.78 1.734 3.76 3.74 29.61 7.92× 

TABLE V.  SYNTHESIS RESULTS ON FPGA 

Input 

Size 

Method 2019 [26] Method 2017 [27] Ours: WinoConv 

LUT-based 

Direct Convolution 

DSP-based 

Direct Convolution 

LUT-based 

Winograd Convolution 

Max 

FLOPs 

(T) FF LUT Latency DSP FF LUT Latency FF LUT Latency 

4×4 191 493 39 2 383 658 11 343 827 6 2.839 

5×5 243 635 85 3 681 2055 22 1138 2682 10 0.821 

6×6 253 666 148 4 853 2888 31 1794 4242 12 0.623 

7×7 233 654 229 5 1150 3834 48 5111 10214 16 0.264 

8×8 233 515 328 6 1239 4862 60 8055 16499 17 0.201 

 

TecoGAN and EGVSR mentioned above, we also obtained 
the specific performance of EDVR [11] and RBPN [12] from 
the public data. In terms of running speed, the average running 
of various VSR networks on the GPU for 4× video super-
resolution with target resolution of 4K is tested. As shown in 
Figure 7, the closer to the upper right corner, the better visual 
performance and faster running speed can VSR network 
achieve. The color and size of the bubble represents the 
computational complexity and parameter number of network, 
respectively. In summary, the overall visual quality of 
EGVSR network is at the advanced level, second only to 
TecoGAN network (lower 0.011/1.14%), while it is the only 
VSR network that is capable of processing 4K video in real-
time (29.61FPS). 

 

Fig. 7. Overall performance comparison of various VSR networks. 

E. FPGA Deployment Estimation 

We have deployed the prototype design of the convolution 
accelerator, WinoConv mentioned above, on a Xilinx KC705 

development platform. And, in this section, we tested and 
evaluated the WinoConv convolution accelerator on KC705 
under 300MHz. We compared our WinoConv with previous 
work: LUT-based convolution method [26] and DSP-based 
convolution method [27]. Table V shows the hardware 
synthesis results of different methods to achieve 3×3 
convolution. 

Experimental results show that, WinoConv has the lowest 
computational latency and has great advantages in terms of 
convolutional computation speed. The delay of LUT-based 
direct convolution method is unacceptable among three 
methods. Compared to DSP-based convolution method, our 
method can reduce the latency at least 1.83×, and yields more 
speed-up gains with larger convolution size. Besides, we have 
calculated the max FLOPs by the following formulas: 

 
2• • • •wino i i i oFLOPs C H W K C=  (6) 

 #

#

total
F wino

wino wino

LUT Frequency
MAX LOPs FLOPs

LUT Latency
=    (7) 

The last column of Table V indicates the maximal FLOPs 
provided by different WinoConv accelerators. Combined with 
the computation cost required by the EGVSR network given 
in Table IV, the implementation of the whole EGVSR network 
on FPGA edge deployment could realize the runtime speed of 
720p/99.44FPS, 1080p/44.32FPS, 4K/11.05FPS in the way of 
theoretical estimation. We remark that implementing the 
entire VSR system on FPGAs would meet the demands of 
edge and low-energy computing, as a task in the future. 

V. CONCLUSIONS 

In this paper, we have conducted an in-depth study in the 
VSR field to address the 4K-resolution VSR tasks and 
efficient VSR processing in real-time. Using various 
optimization strategies, the proposed EGVSR method reduces 



the computation load to the lowest requirement, under the 
premise of high visual quality of VSR, and realizes a real-time 
4K VSR implementation on hardware platforms. The balance 
between quality and speed performance is improved 
effectively. Even though we have designed the accelerator for 
convolutional computation on FPGAs, while it is considerable 
to deploy the whole system on FPGA platform to further 
achieve the possibility of edge inference for VSR systems. 
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