
FieldHAR: A Fully Integrated End-to-end RTL
Framework for Human Activity Recognition with

Neural Networks from Heterogeneous Sensors
Mengxi Liu∗, Bo Zhou∗†, Zimin Zhao∗†, Hyeonseok Hong‡,

Hyun Kim‡, Sungho Suh∗†, Vitor Fortes Rey∗† and Paul Lukowicz∗†
∗German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany

†Department of Computer Science, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
‡Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Korea

Abstract—In this work, we propose an open-source scalable
end-to-end RTL framework FieldHAR, for complex human activ-
ity recognition (HAR) from heterogeneous sensors using artificial
neural networks (ANN) optimized for FPGA or ASIC integration.
FieldHAR aims to address the lack of apparatus to transform
complex HAR methodologies often limited to offline evaluation to
efficient run-time edge applications. The framework uses parallel
sensor interfaces and integer-based multi-branch convolutional
neural networks (CNNs) to support flexible modality extensions
with synchronous sampling at the maximum rate of each sensor.
To validate the framework, we used a sensor-rich kitchen scenario
HAR application which was demonstrated in a previous offline
study. Through resource-aware optimizations, with FieldHAR
the entire RTL solution was created from data acquisition to
ANN inference taking as low as 25% logic elements and 2%
memory bits of a low-end Cyclone IV FPGA and less than 1%
accuracy loss from the original FP32 precision offline study. The
RTL implementation also shows advantages over MCU-based
solutions, including superior data acquisition performance and
virtually eliminating ANN inference bottleneck.

Index Terms—FPGA, Sensor Fusion, Human Activity Recog-
nition, Neural Networks

I. INTRODUCTION

Human activity recognition (HAR) is an application-
oriented discipline that focuses on developing systems capable
of inferring the semantic context of human activities from
information sources such as sensors using machine learning
(ML) algorithms [1], [2]. HAR has become increasingly
relevant with the rise of smart devices, services, and systems,
as it enables tailored and context-aware services. Sensor-based
HAR often utilizes ML algorithms, such as pattern recognition
and artificial neural networks (ANN), to associate sensor
signals with physical activities. As elaborated in Section II-A,
the complexity of the real world has resulted in the multi-
modal, multifaceted, and temporal-sensitive nature of HAR
applications. Complementary sensing modalities and sensor
fusion are commonly used in HAR to account for the unique
sensor outputs associated with different physical activities [2],
[3]. As human activities are composed of complex sequences
of motor movements, capturing these temporal dynamics with
a stable high sampling rate is fundamental in HAR [4].

With the growth of smart wearable and home devices, HAR
has gained interest in edge computing systems, where sensor
data acquisition (DAQ), processing, and ML prediction are
performed on embedded processors. However, while many
HAR methodologies have shown promise in offline studies
involving heterogeneous sensing of high data quality, few have
been transitioned to edge devices for run-time inference in the
field, and most are restricted to limited sensors, such as inertial
measurement units (IMUs). Current microprocessor (MCU)
architectures struggle with maintaining a high sampling rate
or data throughput when more sensor instances, modalities,
or larger ML models are deployed to the workload of the
same processor. As most ML algorithms in HAR are temporal
sensitive, maintaining stable sampling rates independent of
these system expansions is a basic requirement for run-
time HAR systems. As MCUs execute sequential instruc-
tions, increasing sensors may also introduce lag between
modalities and simultaneous data collection cannot be guar-
anteed, which may further negatively impact the recognition
result and even lead to catastrophic failure. Compared to
MCUs, field programmable gate arrays (FPGAs) with many
advantages including reconfigurability and parallelism, which
support hardware-algorithm co-optimization, have become an
interesting embedded platform candidate for complex run-time
HAR systems [5]. For relatively small systems, FPGAs can
also contain all data on-chip, eliminating the bottlenecks of
moving data between the off-chip memory [6]. However, the
knowledge barriers between HAR data science and hardware-
specific FPGA application development have so far hindered
more edge implementations of complex HAR methodologies,
even with available high-level synthesis (HLS) tools [7].

To overcome these limitations, we propose a fully integrated
Register Transfer Level (RTL) end-to-end framework, named
FieldHAR, that covers the entire HAR pipeline from DAQ by
heterogeneous sensors to activity prediction by ANNs. With
FieldHAR, the embedded system can reach high performance
in both DAQ and ANN inference throughput independent from
any system extensions. In summary, we developed FieldHAR
with the following contributions:

ar
X

iv
:2

30
5.

12
82

4v
1

 [
ee

ss
.S

P]
 2

2
M

ay
 2

02
3

1) An end-to-end framework from sensor inputs to ANN
model activation fully integrated into FPGAs. The
framework includes a scalable heterogeneous parallel
sensor interface that guarantees the sampling rate and
RTL implementation of the ANN model.

2) An ANN model designed for scalable heterogeneous
temporal data based on branched convolutional neural
networks (CNNs) for sensor fusion and RTL micro-
architectures optimized for its inference.

3) Validation with a kitchen scenario HAR application
which was demonstrated in an offline study [8]. Through
resource-aware optimizations and performance evalua-
tions, we demonstrate the effectiveness of FieldHAR
in transforming complex offline HAR methodologies to
run-time edge systems.

II. RELATED WORK

A. Sensor-based HAR Methodologies

In recent years, there has been a considerable amount of
work on sensor-based HAR. The IMU is one of the most
commonly used sensors in HAR applications [9]–[11]. Ronao
and Cho [12] proposed using CNNs to leverage the intrinsic
properties of human activities and time-series signals from the
accelerometer and gyroscope on a smartphone. Their approach
enables efficient, effective, and data-adaptive recognition of
human activities. Apart from the IMU sensors, the electric
field-based sensor is also explored in the HAR task. Bian et
al. [13] developed a human body capacitive-based sensor with
microwatt-level power consumption to recognize and count
gym workouts, which achieved an average counting accuracy
of 91%. Cheng et al. [14] used conductive textile-based
electrodes to measure changes in capacitance inside the human
body, by which the human activities, such as chewing, swal-
lowing, speaking, sighing (taking a deep breath), as well as
different head motions and positions, can be recognized. The
concurrent use of multiple sensing modalities enjoys many ad-
vantages over a single modality [2], like better robustness and
more complex information extraction. For example, motion-
related activity is usually recognized by analyzing IMU time
series; the human physiological information like heart rate,
respiratory, and emotion can be extracted by bio-signals like
ECG and EEG within a time window. Thus, multi-modalities
sensing and sensor fusion in HAR have become a popular
research direction. Zhang et al. [15] designed a necklace using
multiple sensor data from a proximity sensor, an ambient
light sensor, and an IMU sensor to detect chewing activity
and eating episodes. Bharti et al. [3] proposed a multi-modal
and multi-positional system called ”HuMan” to recognize and
classify the 21 complex at-home activities of humans with
results up to 95%. The system consists of practical feature
set extraction from specifically selected multi-modal sensor
suites, a novel two-level structured classification algorithm
that improves accuracy by leveraging sensors in multiple
body positions, and improved refinement in the classification
of complex activities with minimal external infrastructure
support. Although many proposed HAR methodologies have

demonstrated remarkable performance based on the multiple
sensing modalities and efficient neural networks, most of them
still stay in offline evaluation on general-purpose computing
hardware and lack evaluation of real-world real-time inference
on edge devices.

B. Field Implementations of HAR Applications

Field implementations of HAR Applications are crucial for
a truly pervasive solution bridging the gap between HAR re-
search and real-world adaptation. Although supporting such AI
applications on mobile and embedded hardware that is ubiqui-
tous across consumer devices poses important challenges [5],
with the help of the growing ANN frameworks for MCU-
based hardware platforms like TensorFlow Lite Micro [16],
MicroTVM [17], CMix-NN [18], CMSIS-NN [19], and STM
X-Cube-AI [20], more and more works for real-time HAR
on MCU-based edge devices have been presented [21]–[23].
For example, the work [23] developed a capacitive-sensing
wristband that utilizes four single-end electrodes for onboard
hand gesture recognition. By deploying a single convolutional
hidden layer as the classifier on the Arduino nano sense
platform with a 64 MHz CortexM4 MCU integrated with an
FPU, 1 MB flash, 256 KB RAM, this wristband can accurately
identify seven hand gestures from a single user with 96.4%
accuracy in real-time. However, the MCU hardware resource
constraints often limit more sophisticated implementations
from many aspects including data throughput, selection of
sensor modalities, and ANN complexity, which are all proven
important in offline HAR studies as mentioned in Section II-A.

Compare to MCUs, the parallel data processing capability,
flexible data representation, and reconfigurability of FPGAs
have attracted the attention of many researchers as an alterna-
tive hardware platform for field implementations of HAR ap-
plications. Generally, FPGAs provide higher energy efficiency
than GPUs and higher performance than CPUs [24]. Existing
studies mainly focused on deploying the neural networks on
FPGA efficiently [25], [26] or designing a hardware archi-
tecture with uniform modality sensing input [27], the former
usually requires additional data reading devices, the latter lacks
flexibility. The work SensorNet [28] also proposed a scalable
and low-power embedded CNN for multi-channel time series
signal classification, time series from multiple channels were
converted to a 2D array, and then the 2D deep CNN was
applied to extract features and classify the activities, this
architecture can only support sensor fusion from data input
level which is not optimal for heterogeneous sensors. On the
other hand, data acquisition from heterogeneous sensors is a
complex task crucial for providing high-quality data input for
the ANNs, and thus shall not be overlooked. Yet most field
implementation studies focus on efficient ANN execution with
hardware accelerators [29].

To the best of our knowledge, our FieldHAR framework is
the first complete end-to-end architecture that includes from
heterogeneous sensor data acquisition to data processing with
ANNs designed for heterogeneous sensor fusion on FPGAs
for HAR applications.

Sensor Interface 1

Sensor Interface 2

Sensor Interface n

.

.

.

Peripheral Driver

Sensor Driver

FIFO

Sensor Data RAM

Sensor Interface
Module

Debug Interface (UART)

CNN Feature
Extraction Module

Dense Layers

Weight ROM

Feature RAM

NN Arctecture
Controller

Interference Block
Top Module

Data Stream
Controller

Sensor
Controller

Inference
Controller

Top Controller Module

Data Stream
Controller

Sensor
Controller

Inference
Controller

Top Controller Module

Fig. 1. The overall structure of FieldHAR

III. FRAMEWORK STRUCTURE

This framework includes not only a sensor driver hardware
library to support flexible extension, rapid implementation, and
synchronous sampling at the maximum rate of each sensor but
also an adaptive integer-based multi-channel branched CNN
that supports both data fusion and feature fusion architecture.
The open-sourced framework is described by SystemVerilog
without using any proprietary IP cores. Therefore, it supports
flexible migration between different FPGAs or ASICs.

Fig. 1 illustrates the high-level block diagram of our pro-
posed end-to-end RTL framework, which mainly comprises
three primary modules: the scalable sensor interface, top
controller module, and ANN inference module. Our RTL
framework’s design is guided by the following objectives:

• Fully integrated end-to-end RTL framework: It includes
both data acquisition and ML, including automatic feature
extraction from heterogeneous sensor data and human
activity classification.

• Flexibility and scalability: It supports further heteroge-
neous sensors integrated into the framework easily.

• Resource-efficiency: It supports hardware-algorithms co-
optimization to achieve high resource efficiency.

A. Scalable Sensor Interface

Fig. 2 shows the architecture of the scalable sensor interface,
which is consisted of three levels: peripheral driver level,
sensor driver level, and data level.

At the peripheral driver level, the peripheral driver module
directly connects to the sensor and implements the peripheral
interface protocol. To this end, FieldHAR supports Inter-
Integrated Circuit (I2C) and Serial Peripheral Interface (SPI)
bus, which are the two primary peripheral protocols used in
commercial sensors for HAR.

The sensor driver level performs a function similar to that
of the sensor software driver library, which involves two state
machines. The first state machine controls data transactions
between the I2C/SPI master control modules and the sensors,
including single-byte read/write and multiple-byte read/write

Sensor 1

I2C Master
Controller

SDA SCL

Sensor W/R
Controller

FIFO

SDA SCL

CBus IntBus

CBus IntBus

 Push Full Data Start

Push Full Data

Sensor 2

SPI Master
Controller

CS MI MO CLK

Sensor W/R
Controller

FIFO

CBus IntBus

CBus IntBus

Push Full Data

Sensor 2

SPI Master
Controller

CS MI MO CLK

Sensor W/R
Controller

FIFO

CBus IntBus

CBus IntBus

Push Full Data

CS SO SI CLK

Sensor 2

SPI Master
Controller

CS MI MO CLK

Sensor W/R
Controller

FIFO

CBus IntBus

CBus IntBus

Push Full Data

CS SO SI CLK

Sensor n

I2C Master
Controller

SDA SCL

Sensor W/R
Controller

FIFO

SDA SCL

CBus IntBus

CBus IntBus

Push Full Data

Data
Level

Sensor
Driver
Level

Periphral
Driver
Level

...

...

...

...

 Push Full Data Start Push Full Data Start

Sensor 1

I2C Master
Controller

SDA SCL

Sensor W/R
Controller

FIFO

SDA SCL

CBus IntBus

CBus IntBus

 Push Full Data Start

Push Full Data

Sensor 2

SPI Master
Controller

CS MI MO CLK

Sensor W/R
Controller

FIFO

CBus IntBus

CBus IntBus

Push Full Data

CS SO SI CLK

Sensor n

I2C Master
Controller

SDA SCL

Sensor W/R
Controller

FIFO

SDA SCL

CBus IntBus

CBus IntBus

Push Full Data

Data
Level

Sensor
Driver
Level

Periphral
Driver
Level

...

...

...

...

 Push Full Data Start Push Full Data Start

Top Controller Module

Pop Empty Data Pop Empty Data Pop Empty Data

Fig. 2. Architecture of the parallel sensor interface

operations. The second state machine completes register oper-
ations of sensors, such as control register configuration and
sensor status/data registers read. As different sensors have
distinct register address maps and operation flows, users need
to reorder the state transitions and redefine the registered
address in the package file when integrating a new sensor
into the framework. The retrieved sensor data is pushed into
the data-level FIFO, and a start signal from the top controller
module synchronizes data reads across multiple sensors. The
depth corresponds to the time steps.

B. Top Controller Module

FieldHAR’s workflow is managed by the top controller
module with three components:

• The sensor controller ensures simultaneous operations
among different sensor interfaces.

• The data stream controller combines the heterogeneous
sensor FIFOs with different sampling rates to a single
sensor data RAM.

• The interface controller handles ANN activation upon the
sensor data RAM ready signal from the data stream con-
troller, and interfaces with external devices via a UART
interface, including receiving start/stop commands, send-
ing out inference results or sensor data.

In HAR, sliding window is the common approach as there
are typically no clear signs of the start and stop of activity
instances. This is implemented with the sensor data RAM
so that the window size and step are independent from the
individual sensor FIFOs.

C. Neural Networks Inference Module

The ANN inference module is specially designed for a quan-
tized branched CNN feature fusion model native supporting
heterogeneous sensors as later discussed in Section IV-B. As
shown in Fig. 3 it comprises a convolution layer module for
feature extraction, a dense layer module for classification, and
ANN architecture controller. The ANN model is effectively

stored in the weight ROM, and the feature RAM facilitates
run-time calculation.

Both the convolution and dense layers consist of a Weight
Read State Machine and a Feature Read State Machine to
prime the multiply–accumulate unit (MAC) for matrix mul-
tiplication. A quantization (Q) module handles the output
requantization required in quantized on-device inference [30].
The non-linear activation (ReLU in this case) is folded inside
the Q module.

The convolution layer has an additional shift S operation
and counter C module to facilitate the stepped operation of
kernel convolution. Max pooling (M) of the same kernel size,
or global max pooling, is also folded inside the convolution
layer by comparators to better utilize the stepped operation,
selectable by a multiplexer. The convolution kernel size and
output channels are implemented in parallel, so the convolution
operation scales linearly with input channels. While the input
channels can also be paralleled at the cost of channel-times the
resource, our evaluation results in Section IV-E show that the
current convolution layer implementation is already providing
negligible inference time in HAR applications. Thus we decide
to trade input channel parallelism with hardware resources for
more ANN model complexity.

To achieve efficient on-chip memory utilization, resource-
aware ANN optimization is applied to reduce the required
memory size of the neural networks. Firstly, as dense layers
take the majority of trainable parameters, using only two dense
layer with a small input size after several pooling operations
reduces the model size. Secondly, quantization [30] is applied
to reduce the parameter precision and thus data buffer size
with negligible performance loss. Thirdly, inspired by the
work in [31], the bias in the ANN is removed through tensor
normalization, which further reduces the trainable parameters.
These techniques collectively reduce the memory require-
ments, leading to lower energy consumption and latency by
avoiding off-chip memory access during model inference [6].

IV. HAR APPLICATION-SPECIFIC EVALUATION

A. Kitchen Activity Recognition Example

Monitoring human activity in the kitchen can provide valu-
able information for improving people’s health and well-being.
By tracking activities such as meal preparation, cooking, and
eating, a system can provide personalized advice and guidance
to promote healthy eating habits. Additionally, monitoring
activity in the kitchen can also provide useful information for
elderly care, as it allows caregivers to monitor eating patterns
and ensure that individuals are receiving adequate nutrition.
Overall, the kitchen is a critical research area for human
activity monitoring and has the potential to improve health
outcomes and quality of life. Thus, a kitchen HAR dataset
with multiple sensors acquired from [8] was selected as the
ANN training dataset to evaluate the proposed framework.

The kitchen HAR dataset is recorded by a DAQ module with
six sensors (listed in Table I) driven by 2 MCUs. It contains ten
types of kitchen-related activities shown in Table II performed
by ten subjects wearing the DAQ on the chest. In total,

Weight ROM Feature RAM

Weight Read
State Machine

Feature Read
State Machine

Weight
Input

D D D W W WD D D W W W... ...D D D W W W... ...

MAC

D D D W W W... ...

MAC

Feature
Input

Q

Maxpool_En

M 1

0S
C

Convolution Layer

D D D W W WD D D W W W... ...D D D W W W... ...

MAC

D D D W W W... ...

MAC Q

Control LogicWeight
Input

Feature
Input

Weight Read
State Machine

Feature Read
State Machine

Dense Layer

NN Architecture Controller Inference State Machine

Control Logic

Top Module of Inference Block

Fig. 3. Block Diagram of the ANN Inference Module (MAC: multiply-
accumulate unit; C: Counter; Q: Quantization; S: Data Shift; M: Global or
Kernel Max-pooling)

TABLE I
SENSOR LIST

Sensor Function Data Native Sampling
model Channels Rate (Hz)

AS7431 Optical Spectrum 10 20 Hz 1

CCS811 Gas sensor 2 4 Hz
MLX90640 Thermal IR (array) 768 32 Hz
LPS22HB Air pressure sensor 1 75 Hz
LSM9DS1 IMU 9 119 Hz 2 / 20 Hz 3

VL53L0X ToF ranging sensor 1 50 Hz
1 Recommended Speed.
2 Fastest low power mode
3 Sampling rate of the magnetometer.

TABLE II
KITCHEN ACTIVITIES IN THE COLLECTED DATASET

Activity ID Activity Activity ID Activity
1 sitting down 6 opening door
2 standing up 7 boiling water
3 walking 8 washing hand
4 opening microwave oven 9 cutting food
5 opening freezer 10 1 drinking beverage

1 The five different beverage intake activities are grouped into one class 10

there are 791 channels of sensor data with different sampling
rates. After synchronization and interpolation, the equivalent
sampling rate is 6 Hz (downsampled from 12Hz).

B. ANN and Sensor Fusion for HAR Task

To classify kitchen activities using data from multiple
sensors, two sensor fusion methods were employed in the
design of neural networks: data fusion and feature fusion ar-
chitectures, as depicted in Fig. 4. The data fusion architecture
is similar to that of SensorNet [28], where time series data
from various sensors are concatenated into a two-dimensional
matrix (i.e. (W × C), where W and C denote the size
of the sliding window and the number of sensor channels,
respectively) that inputs to a single neural network branch

TABLE III
PERFORMANCE COMPARISON OF THE KITCHEN ACTIVITY RECOGNITION

BETWEEN DATA FUSION AND FEATURE FUSION ARCHITECTURES

Sensor Fusion Methods Features Trainable Parameter Accuracy (%)
Data Fusion 28 71756 85.43

Feature Fusion 28 2900 89.13

directly, allowing for simultaneous capture of correlations
between various modalities. When the connected sensors are
heterogeneous, for example if one sensor has only one channel
while another has several hundred channels, the resulting
neural network model may be dominated by the sensor with
more channels, leading it to ignore the impact of the sensors
with fewer channels or not learn from them at all. The feature
fusion method, on the other hand, uses separate branches
of convolution layers extracting features from each sensor.
Thus the imbalanced influence of sensors can be mediated
by ensuring similar number of output features per modality.
The extracted features from each sensor are then concatenated
before being fed into the dense layers for classification.

Feature fusion has shown better accuracy in the literature
[32], which is also reflected in our evaluation. An offline
experiment with the training data was conducted where two
models based on the data fusion and feature fusion methods
were built, the result of which are presented in Table III. Both
models extracted the same number of features, kernel size, and
dense layer. Thus, the feature fusion architecture was selected
for this kitchen activity recognition task, as it offers a higher
recognition accuracy with much fewer trainable parameters.

In the feature fusion model, data from different sensors were
handled by independent feature extraction layers, as shown
in the bottom half of Fig. 4. Each feature branch has three
convolution layers with the same filter channels and kernel
size, followed by a global max-pooling layer to reduce the
temporal dimension to 1. Then the features are concatenated
and fed to two dense layers for classification. The softmax
activation function of the last dense layer was replaced by
a function that outputs the index of the largest output value
when deploying this model on the FPGA, which can avoid
implementing a division operation on the hardware. The ReLU
activation function is used for the rest of the layers. The filter
channels and kernel sizes are hyperparameters that can be
adjusted to balance between recognition accuracy and model
size. For each sensor, independent normalization was applied
to rescale the data input range between -1 to 1, which is
also prepared for the later quantization step. The ANN model
was built under TensorFlow 2.10.0 framework, and the model
training process was performed on a laptop with the GeForce
RTX 3080 Ti GPU. The sparse categorical cross entropy was
used as the loss function.

C. Resource-aware Optimizations

To facilitate efficient ANN deployment onto the FPGA, op-
timization techniques are employed to reduce the memory and
operation footprint of the ANN inference module, including
removing less relevant modalities and ANN quantization.

CONV

Sensor 1
Sensor 2

Sensor n

C
A
T

Dense Softmax

CONV

CONV

CONV

Sensor 1

Sensor 2

Sensor n

CONV

CONV

CONV

CONV

CONV

CONV

Data Fusion

Feature Fusion

CONV CONV

SoftmaxDense

Pooling

C
A
T

Pooling

Pooling

Pooling

Feature Branch

Classification

.

.

.

.

.

.

Fig. 4. The neural architecture of the HAR task with multiple sensor inputs
(Global Maxpooling was used).

TABLE IV
SENSOR IMPORTANCE FACTOR OF THE TRAINING DATASET

Sensor Channels Importance Factor α ↑
Optical Spectrum 10 0.240
Magnetic (IMU) 3 0.231
Motion (IMU) 6 0.180

ToF Range 1 0.175
Thermal IR (array) 768 0.098

Gas 2 0.061
Barometric 1 0.012

1) Modality Selection: In HAR applications with hetero-
geneous sensor, it is important to select the modalities that
contribute most for the task, as redundant or irrelevant sensors
result in unnecessary computational overhead and larger model
size. To accomplish this, we proposed a method to search for
important sensors. In the feature fusion model, there are n
parallel feature branches for n sensors, as illustrated in Fig. 4.
Each feature branch outputs a 1× 8 feature tensor, which we
denote as Fi. We then assign each sensor a trainable weight
αi that reflects its importance to the classification task. These
weights are multiplied with corresponding features from each
sensor’s feature branch and accumulated into a single tensor,
Fmix, for the final classification.

Fmix =

n∑
i=1

exp {αi}
Σn

j=1 exp {αj}
Fi (1)

After the training, we can remove the less useful sensors
according to αi and retrain the model with only the useful
sensors without αi.

For the specific heterogeneous dataset, the IMU data were
divided into two categories: motion-related data (accelerator
and gyroscope) and magnetic data. Besides, 2D convolutions
were used to extract the feature from the Thermal IR array
as it is analogous to a thermal camera. 1D convolutions were
used for the data from the remaining sensors.

Table IV shows the sensor importance factor of the training
dataset. To validate the modality selection method, five sensor
modality sets were created, where we remove one additional
sensor per iteration according from the bottom of the αi rank-
ing. Fig. 5 presents the influence of different sensor modalities
on recognition results and model size. Despite having less
input information, removing the two most insignificant sensors
with Set B and C, has even slightly improved the recognition

89.13 91.28 90.05 88.42
82.43

0

500

1000

1500

2000

2500

3000

3500

0
10
20
30
40
50
60
70
80
90

100

A B C D E

Tr
ai

nb
le

 P
ar

am
et

er
s

A
cc

ur
ac

y
(%

)

Sensor Modality Set

Trainable Parameters Accuracy

Fig. 5. Influence of sensor modalities on recognition results and model size.
(Set A: includes all seven sensors; Set B: removed Barometric sensor; Set C:
removed Barometric and Gas sensors; Set D: removed Barometric, Gas, and
Thermal IR sensors; Set E: removed Barometric, Gas, Thermal IR array, and
ToF Range sensors)

accuracy compared with the full modality Set A. We find
the most cost-effective combination to be Set D with four
most significant sensors: the ANN recognition accuracy has
a slight decline of around 1%, while the number of trainable
parameters was reduced to almost 1/3 of the full set.

2) Post Training Quantization (PTQ): ANN quantization
is an effective method for reducing both the model size and
computation cost, by which the memory requirement and
power consumption of the model during inference can be
decreased. PTQ specifically does not require retraining the
model and thus can be easily adapted. Reducing the precision
from 32-bit to 8-bit could decrease memory resources by a
factor of 4 and matrix multiplication cost by a factor of 16
[30]. Given the large number of multiplications and values
that need to be stored, such resource savings are crucial
when operating CNNs on small or battery-powered edge
devices. RTL implementations on FPGAs provide even more
flexible bit precision options, while MCU-based architectures
are usually limited to predefined precision like INT8 or INT16.

PTQ was performed after modality selection, which resulted
in a CNN model with four modalities and feature branches. To
find the optimal bit precision, the CNN model was quantized
post-training from a FP32 model to n-bit fixed-point integer
following the methods in [33] with adjustments on tensor
normalization to facilitate the branch concatenation of our
CNN model. The normalization coefficient in the convolution
layers was calculated by Eq. (2) in our work:

Rl = max(|Wl,0|, |Ol,0|, |Wl,1|, |Ol,1|...|Wl,i|, |Ol,i|) (2)

where l indicates the CNN layer, i indicates the feature
extraction branch, W denotes the weights and O denotes the
outputs from the corresponding CNN layer. As there were
three CNN layers from each feature extraction branch, three
rescale coefficients Rl, l = (1, 2, 3) were calculated iteratively.
This arrangement is to ensure the layer-wise scaling does
not change the weight distribution before the concatenation

layer. For the dense layer after concatenating the branched
features, normal quantization scaling was performed according
to related works [30], [33].

Then, the updated weights in fixed-point integer format were
calculated according to the symmetric quantization method
explained in [30] by Eq. (3):

Wint = bWl

Rl
× 2ne (3)

where b·e is the operator for rounding to the nearest integer.
n is the quantized bit precision.

To evaluate the performance of the model with different
quantization bit precision, we use the quantized accuracy /
FP32 accuracy as a metric shown in Fig. 6. The result indicates
that the weight with 10-bit precision can achieve the same
accuracy as FP32, and further reducing the bit precision will
cause accuracy degradation. Although with as low as 7 bits,
the accuracy loss of 3% is still acceptable, the model of 10-
bit precision can already be comfortably fit inside our selected
FPGA hardware resource as discussed in Section IV-E. Thus,
the feature fusion neural networks for the kitchen activity
recognition task were converted to a 10-bit fixed point format
except for one sign bit (signed 11-bit integer).

D. Parallelism in Model Inference

The branched feature fusion CNN architecture provides
further parallelism potential. Since each branch is bound to
one sensor data source and is independent of each other until
the concatenation layer, concurrent computation among these
branches can further reduce inference latency. In addition, as
mentioned in Section III-C, the convolution layers in this work
are designed to leverage the output channel tiling technique as
it was identified as the optimal form of parallelism, taking into
account both I/O memory bandwidth and computational load,
based on the computation-to-communication (CTC) ratio [34].

E. Hardware Implementation Results and Discussion

The FieldHAR framework with the kitchen scenario ap-
plication was implemented on an Intel FPGA Cyclone IV
EP4CE22F17C8. After optimization, the system has four sen-
sor modalities and the PTQ is set to signed 11-bit integer. Two
types of inference hardware architecture were implemented
based on different task schedules: serial and parallel. In the
serial implementation, feature branches were executed sequen-
tially, while in the parallel implementation, all feature branches
were performed in parallel. The hardware architecture was
described using System Verilog HDL, and the clock frequency
was chosen as 100 MHz.

Table V shows the implementation results for different bit-
precision and architectures, indicating a significant impact of
the number of precision bits on hardware performance. The
hardware implementation must have at least an 11-bit precision
(including 1 sign bit) to match the FP32 model accuracy as
shown in Fig. 6. The required logic elements and total memory
bits scales almost linearly with the bit precision, showing the
flexibility of FPGAs in quantization bit precision as mentioned

0.18

0.41

0.67

0.74 0.90

0.97

0.99

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.00

0.20

0.40

0.60

0.80

1.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

H
ar

dw
ar

e
A

cc
ur

ac
y

Bit Precision

Fig. 6. The relationship between n-bit quantized accuracy with respect to the
FP32 accuracy (without sign bit)

in Section IV-C2. However, the multipliers doubled from 9-
bit to 11-bit, because the input data width of the hardware-
embedded multiplier is 9 bits on the selected FPGA; thus 11-
bit operation requires two concatenated multipliers.

As shown in Fig. 7, the inference speed has a close rela-
tionship with the task schedule strategies, in the serial ANN
implementation, the latency of inference was 0.54 ms, while
it can be reduced to 0.25 ms by the parallel implementation.
The fastest throughput of the inference can be up to 4000
labels per second. However, the maximum sample rate of
most sensors used in HAR is under 1000 Hz, and from the
usecase consideration, most recognition for human activities
at time window intervals of seconds is already considered fine
granularity. Thus with FieldHAR we can consider the ANN
inference is no longer a bottleneck in most HAR applications.
Thus for this specific kitchen scenario application, the 11-bit
Serial ANN implementation is already sufficient in terms of
latency, while leaving more room for adding more modalities
or more complex ANN models in the future. Serial ANN
implementation has less power consumption than parallel
implementation because the former design has less hardware
resource occupation like logic elements and hardware mul-

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

 Serial Implementation on FPGA

 Serial Implementation on MCU (ARM Cortex M4)

 Parallel Implementation on FPGA

Feature Branch 2 Feature Branch 4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Read Sensor 1Read Sensor 1 Read Sensor 2Read Sensor 2 Read Sensor 3Read Sensor 3 Read Sensor 4Read Sensor 4

Feature Branch 1Feature Branch 1

Feature Fusion and ClassificationFeature Fusion and Classification

. . .

Time

Time

Time

Prediction Prediction

Prediction Prediction

Prediction

TInference = 0.25 ms Twait

TLoadData = 168 ms

TInference = 0.54 ms Twait

No Overlap:
Twait = TLoadData - TInference

For sliding window overlap:
Toverlap = TLoadData - Twait - TInference

. . .

. . .

. . .

TLoadData = 3.3 s TInference= 37.81 ms

Next Cycle

TLoadData = 168 ms

TLoadData = 168 ms TLoadData = 168 ms

Fig. 7. Comparison of the HAR Task Schedule between FPGA and MCU,
all implementations correspond to 20 samples for the fastest sensor (119Hz
possible on the FPGA in this work, and 12Hz possible on the MCU [8])

TABLE V
IMPLEMENTATION RESULT ON INTEL FPGA CYCLONE IV

Metrics/Precision 11 bits 9 bits
Wn/FP32 Accuracy 100% 99%

Architecture Serial Parallel Serial Parallel
Inference Block

Logic Element 4473 13063 3743 10916
(in percentage) 20% 59% 17% 49%

Total memory bits 11440 35024 9306 28656
(in percentage) 2% 6% 2% 5%

Entire System
Logic Elements 6239 18948 5501 16207
(in percentage) 28% 85% 25% 73%

Total Memory Bits 15840 35024 12960 28659
(in percentage) 3% 6% 2% 5%

Hardware Multiplier 40 106 20 53
Clock (MHz) 100 100 100 100
Latency1 (ms) 0.54 0.25 0.54 0.25

Throughput2 (labels/s) 1851 4000 1851 4000
Total Power3 (mW) 107.24 132.67 106.50 124.08

1 Latency of inference block.
2 Throughput of inference block.
3 reported by the Quartus Power Analyzer

tipliers. In general, the power consumption of the hardware
implementation with different configurations (bit precision and
parallelism) is under 140 mW, which is slightly more than an
ARM Cortex M4 MCU but is suitable for battery-powered
edge devices.

F. Further discussion and limitations

From Fig. 7 we can see that the FPGA implementations
of FieldHAR can guarantee existing DAQ operations if new
tasks, either more sensors or ANN operations, are added, while
MCU-based solution struggles in this respect as different tasks

need to be scheduled with limited cores. Even if the tasks
can be pipelined with more cores, the FPGA implementation
also provides synchrony across modalities. The training dataset
from [8] was limited by the MCU during data collection
and thus is restricted to 12Hz taking 3.3s for a complete
ANN input frame, while the FPGA implementation takes
significantly less time (168ms) to collect the input frame.
Even the slower serial ANN is no longer the bottleneck,
with 0.54ms latency, 20% LE and 2% memory bits. Thus
there is sufficient room for evaluating more complex ANN
models with larger input frame with finer time granularity.
Compared with related works with FPGA implementations
like [28], [33], [35], FieldHAR is designed for heterogeneous
sensor modalities with different sampling rates, from adaptable
sensor interface, branched CNN model with feature fusion, to
the optimization step of modality selection; whereas existing
works are limited to uniform modality, thus not applicable for
the growing sensor fusion based HAR methodologies [2].

However, the proposed version of FieldHAR to this end
has several limitations. The ANN inference module is limited
to convolution, max pooling, concatenation, and dense layers.
Although multi-channel temporal convolution has proven ef-
fective in many HAR applications [2], there are also other
ANN architectures, such as recurrent networks. The MCU-
based platforms mentioned in Section II-B typically support
broader selections of layers. However, they usually require
specific MCU types while FPGA in this regard is more generic.
While PTQ has already significantly reduced the hardware
resource footprint of the ANN model, there are other methods
such as quantization-aware training (QAT) that can improve
prediction accuracy with lower bits at the cost of additional
training for every bit precision.

V. CONCLUSION

In conclusion, FieldHAR presents an end-to-end RTL
framework for multi-modal HAR applications, integrating
sensor DAQ and ANN model prediction into FPGAs. Both
the DAQ and ANN modules are designed with modality-wise
parallelism through concurrent sensor interfaces and branched
CNN models. The proposed framework is evaluated with a
sensor-rich kitchen HAR application scenario from a published
offline HAR study. Through optimization steps of modality
selection and PTQ, we derived a system with four sensors
and signed 11-bit integer quantization precision with less than
1% accuracy loss from the full seven-modality FP32 model.

FieldHAR accommodates the transitions of HAR method-
ologies which are usually limited with offline evaluations on
general purpose computers, to online runtime applications
on edge devices. The parallelism of FPGAs are especially
beneficial for multi-modal applications in terms of throughput
capability and system robustness against increasing modalities.

REFERENCES

[1] S. Bian, “Human activity recognition with field sensing technique,”
Ph.D. dissertation, Technische Universität Kaiserslautern, 2022.

[2] S. Qiu et al., “Multi-sensor information fusion based on machine
learning for real applications in human activity recognition: State-of-the-
art and research challenges,” Information Fusion, vol. 80, pp. 241–265,
2022.

[3] P. Bharti, D. De, S. Chellappan, and S. K. Das, “Human: Complex
activity recognition with multi-modal multi-positional body sensing,”
IEEE Transactions on Mobile Computing, vol. 18, no. 4, pp. 857–870,
2018.

[4] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[5] S. I. Venieris, I. Panopoulos, I. Leontiadis, and I. S. Venieris, “How
to reach real-time ai on consumer devices? solutions for programmable
and custom architectures,” in 2021 IEEE 32nd International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2021, pp. 93–100.

[6] J. Banerjee, S. Islam, W. Wei, C. Pan, D. Zhu, and M. Xie, “Memory-
aware efficient deep learning mechanism for iot devices,” in 2021
IEEE 32nd International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 2021, pp. 187–194.

[7] D. A. Fernandes and J. M. Cardoso, “Accelerating human activity recog-
nition systems on fpgas through a dsl approach,” in FSP Workshop 2019;
Sixth International Workshop on FPGAs for Software Programmers.
VDE, 2019, pp. 1–8.

[8] M. Liu, S. Suh, B. Zhou, A. Gruenerbl, and P. Lukowicz, “Smart-
badge: A wearable badge with multi-modal sensors for kitchen activity
recognition,” arXiv preprint arXiv:2210.00888, 2022.

[9] M. Kim, J. Cho, S. Lee, and Y. Jung, “Imu sensor-based hand gesture
recognition for human-machine interfaces,” Sensors, vol. 19, no. 18, p.
3827, 2019.

[10] S. Jiang, B. Lv, W. Guo, C. Zhang, H. Wang, X. Sheng, and P. B.
Shull, “Feasibility of wrist-worn, real-time hand, and surface gesture
recognition via semg and imu sensing,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 8, pp. 3376–3385, 2017.

[11] A. S. Kundu, O. Mazumder, P. K. Lenka, and S. Bhaumik, “Hand gesture
recognition based omnidirectional wheelchair control using imu and emg
sensors,” Journal of Intelligent & Robotic Systems, vol. 91, pp. 529–541,
2018.

[12] C. A. Ronao and S.-B. Cho, “Human activity recognition with smart-
phone sensors using deep learning neural networks,” Expert systems with
applications, vol. 59, pp. 235–244, 2016.

[13] S. Bian, V. F. Rey, P. Hevesi, and P. Lukowicz, “Passive capacitive
based approach for full body gym workout recognition and counting,”
in 2019 IEEE International Conference on Pervasive Computing and
Communications (PerCom. IEEE, 2019, pp. 1–10.

[14] J. Cheng, O. Amft, and P. Lukowicz, “Active capacitive sensing:
Exploring a new wearable sensing modality for activity recognition,”
in Pervasive Computing: 8th International Conference, Pervasive 2010,
Helsinki, Finland, May 17-20, 2010. Proceedings 8. Springer, 2010,
pp. 319–336.

[15] S. Zhang, Y. Zhao, D. T. Nguyen, R. Xu, S. Sen, J. Hester, and
N. Alshurafa, “Necksense: A multi-sensor necklace for detecting eating
activities in free-living conditions,” Proceedings of the ACM on inter-
active, mobile, wearable and ubiquitous technologies, vol. 4, no. 2, pp.
1–26, 2020.

[16] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

[17] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated {End-to-End}
optimizing compiler for deep learning,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), 2018, pp.
578–594.

[18] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “Cmix-nn: Mixed
low-precision cnn library for memory-constrained edge devices,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5,
pp. 871–875, 2020.

[19] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[20] V. Falbo, T. Apicella, D. Aurioso, L. Danese, F. Bellotti, R. Berta,
and A. D. Gloria, “Analyzing machine learning on mainstream micro-
controllers,” in International Conference on Applications in Electronics

Pervading Industry, Environment and Society. Springer, 2019, pp. 103–
108.

[21] S. Bian, X. Wang, T. Polonelli, and M. Magno, “Exploring automatic
gym workouts recognition locally on wearable resource-constrained
devices,” in 2022 IEEE 13th International Green and Sustainable
Computing Conference (IGSC). IEEE, 2022, pp. 1–6.

[22] B. Coffen and M. S. Mahmud, “Tinydl: edge computing and deep
learning based real-time hand gesture recognition using wearable sen-
sor,” in 2020 IEEE International Conference on E-health Networking,
Application & Services (HEALTHCOM). IEEE, 2021, pp. 1–6.

[23] S. Bian and P. Lukowicz, “Capacitive sensing based on-board hand
gesture recognition with tinyml,” in Adjunct Proceedings of the 2021
ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2021 ACM International Symposium
on Wearable Computers, 2021, pp. 4–5.

[24] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and
improving gpu energy efficiency,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, pp. 1–23, 2014.

[25] J. Loh, J. Wen, and T. Gemmeke, “Low-cost dnn hardware accelerator
for wearable, high-quality cardiac arrythmia detection,” in 2020 IEEE
31st International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). IEEE, 2020, pp. 213–216.

[26] A. De Vita, D. Pau, L. Di Benedetto, A. Rubino, F. Pétrot, and G. D. Lic-
ciardo, “Low power tiny binary neural network with improved accuracy
in human recognition systems,” in 2020 23rd Euromicro Conference on
Digital System Design (DSD). IEEE, 2020, pp. 309–315.

[27] A. N. Mazumder, H. Ren, H.-A. Rashid, M. Hosseini, V. Chandrareddy,
H. Homayoun, and T. Mohsenin, “Automatic detection of respiratory
symptoms using a low-power multi-input cnn processor,” IEEE Design
& Test, vol. 39, no. 3, pp. 82–90, 2021.

[28] A. Jafari, A. Ganesan, C. S. K. Thalisetty, V. Sivasubramanian, T. Oates,

and T. Mohsenin, “Sensornet: A scalable and low-power deep con-
volutional neural network for multimodal data classification,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1,
pp. 274–287, 2018.

[29] S. Mittal, “A survey of fpga-based accelerators for convolutional neural
networks,” Neural computing and applications, vol. 32, no. 4, pp. 1109–
1139, 2020.

[30] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
arXiv preprint arXiv:2106.08295, 2021.

[31] N. Mitschke, M. Heizmann, K.-H. Noffz, and R. Wittmann, “A fixed-
point quantization technique for convolutional neural networks based
on weight scaling,” in 2019 IEEE International Conference on Image
Processing (ICIP). IEEE, 2019, pp. 3836–3840.

[32] S. Münzner, P. Schmidt, A. Reiss, M. Hanselmann, R. Stiefelhagen, and
R. Dürichen, “Cnn-based sensor fusion techniques for multimodal hu-
man activity recognition,” in Proceedings of the 2017 ACM international
symposium on wearable computers, 2017, pp. 158–165.

[33] R. Solovyev, A. Kustov, D. Telpukhov, V. Rukhlov, and A. Kalinin,
“Fixed-point convolutional neural network for real-time video processing
in fpga,” in 2019 IEEE Conference of Russian Young Researchers in
Electrical and Electronic Engineering (EIConRus). IEEE, 2019, pp.
1605–1611.

[34] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays, 2015, pp. 161–170.

[35] A. N. Mazumder, H.-A. Rashid, and T. Mohsenin, “An energy-efficient
low power lstm processor for human activity monitoring,” in 2020 IEEE
33rd International System-on-Chip Conference (SOCC). IEEE, 2020,
pp. 54–59.

	I Introduction
	II Related Work
	II-A Sensor-based HAR Methodologies
	II-B Field Implementations of HAR Applications

	III Framework Structure
	III-A Scalable Sensor Interface
	III-B Top Controller Module
	III-C Neural Networks Inference Module

	IV HAR Application-Specific Evaluation
	IV-A Kitchen Activity Recognition Example
	IV-B ANN and Sensor Fusion for HAR Task
	IV-C Resource-aware Optimizations
	IV-C1 Modality Selection
	IV-C2 Post Training Quantization (PTQ)

	IV-D Parallelism in Model Inference
	IV-E Hardware Implementation Results and Discussion
	IV-F Further discussion and limitations

	V Conclusion
	References

