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Abstract—This paper studies the robust optimal control design ADP, we recently developed a new theory of robust adaptive
for uncertain nqnllnear systems from a perspective pf rpbg‘s dynamic programming (robust-ADR)I[8], [10], [11], whichrca
adaptive dynamic programming (robust-ADP). The objectiveis  q iewed as a natural extension of ADP to linear and paytiall

to fill up a gap in the past literature of ADP where dynamic l t ith d . tainti
uncertainties or unmodeled dynamics are not addressed. A ke 'IN€ar systems wi ynamic uncertainties.

strategy is to integrate tools from modern nonlinear contrd the- The primary objective of this paper is to study robust-
ory, such as the robust redesign and the backstepping techmies  ADP designs for genuinely nonlinear systems in the presence
as well as the nonlinear small-gain theorem, with the theoryof ¢ dynamic uncertainties. We first decompose the open-loop

ADP. The proposed robust-ADP methodology can be viewed as : . : ;
a natural extension of ADP to uncertain nonlinear systems. A system into two parts: Theystem modefideal environment)

practical learning algorithm is developed in this paper, ami has With known system order and fully accessible state, and

been applied to a sensorimotor control problem. the dynamic uncertainty with unknown system order and
dynamics, interacting with the ideal environment. In order
I. INTRODUCTION to handle the dynamic interaction between two systems, we

Reinforcement learning (RL) [30] is an important branch if/'€n resort to the gain assignment idea [14]] [15]) [26]. &lor

machine learning theory. It is concerned with how an ageﬁeecifica_lly, we need to .assign a suitable gain fo_r the system
should modify its actions based on the reward from its reactimOdel with disturbance in the sense of Sontag's inputtest

unknown environment so as to achieve a long term goal. ﬂ;pbility (1SS) [29]. The backstepping, robust redesignd a

1968, Werbos pointed out that the policy iteration techaigFMall-gain techniques in modern nonlinear control theaey a
devised in[6] for dynamic programming can be employed {§corPorated into the robust-ADP theory, such that theesgst
perform RL [34]. Starting from then, many real-time RL meth[md_el is made ISS with an arb|trar|.ly smaI.I gain. At last, the
ods for finding online optimal control policies have emerge'?ionl,'r,‘ear smalljgam theorem [15] is applied to analyze the
and they are broadly called approximate/adaptive dynanﬁ@b'“ty for the interconnected systems.

programming (ADP)[35],[36] or neurodynamic programming _Throughout this paper, verticz_;\I bats| repre_sent the Eu-
[5]. See [1], I2], [7], [22], [24], [31], [32], [33], for some clidean norm for vectors, or the induced matrix norm for ma-

recently developed results trices. For any piecewise continuous functien||«| denotes

In the past literature of ADP, it is commonly assumed thatPilu(t)[,¢ > 0}. A functiony : R, — R is said to be of
the system order is known and the state variables are eitG&SSK if it is continuous, strictly increasing withy(0) = 0.
fully available or reconstructible from the output; see][722] !t IS Of classKw if additionally y(s) — oo ass — oo. A
and reference therein. However, in practice, the systerarordnction 5 : Ry x Ry — Ry is of classKL if 5(-,?) is of
may be unknown due to the presence of dynamic uncertaintid@SSK for every fixed: > 0, and 5(s, ) — 0 ast — oo for
(or unmodeled dynamics), which are motivated by engingerifiach fixeds > 0. The notatiom > 7, meansyi (s) > 72(s),
applications in situations where the exact mathematicaleho Vs > 0.
of a physical system is not easy to be obtained. Of course,
dynamic uncertainties also make sense for the mathematical Il. PRELIMINARIES
modeling in other branches of science such as biology and , ) . o . .
economics. This problem, often formulated as robust cgntro " this section, let us review a policy iteration techniqae t
cannot be viewed as a special case of output feedback contrgfV€ Optimal control problems [27].
and the ADP methods developed in the past literature may'© Pegin with, consider the system
not only fail to guarantee optimality, but also the stailit .
of the closed-loop system when dynamic uncertainty occurs. & = f(z) + g(z)u 1)
To fill up the above-mentioned gap in the past literature (3\1;

herex € R"™ is the system state;, € R is the control input,

This work is supported in part by the U.S. National Sciencerfgation, fr9 Rn — R™ are IocaIIy LIpSChIt? functlons_. For apy 'n't'a_l
under grants DMS-0906659 and ECCS-1101401. conditionzy € R", the cost function associated withl (1) is
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defined as A. Online policy iteration

J(zo) = /OO [Q(x) +ru?] dt, 2(0) =z 2) The iterative technique introduced in Section 2 relies @n th
0 knowledge off(x) andg(z). To remove this requirement, we
where Q(-) is a positive definite function, and > 0 is a develop a novel online policy iteration technique, whicim ca
constant. In addition, assume there existadmissiblecontrol be viewed as the nonlinear extension [af [7].
policy v = wug(x) in the sense that, under this policy, the To begin with, notice tha{{9) can be rewritten as
system[(ll) is globally asymptotically stable and the dgsig2
finite. By [20], the control policy that minimizes the coEd (2 = [f(z)+g(@)uiz) + g(z)v; (10)

can be solv_ed .from the following Ham|It0n-Jacob|-BeIImavvherevi — u+ A — ;. For eachi > 0, the time derivative
(HJB) equation:

) of V;(z) along the solutions of (10) satisfies
= - — 2)g(z))? :
0=VV(x)f(z)+ Q(x) ar (VV(z)g(z)] 3 Vi(z) = —Q(z)— Tuf(x) — 2ruiy (2);. (11)

with the boundary conditio (0) = 0. Indeed, if the solution

V*(z) of @) exists, the optimal control policy is given by Integrating both sides of (11) on any time inter{iak + 7,

it follows that

* 1 T * T
u (1) = ~5-g(0) 'YV (@) @ Vet £ T) - ViGal®)

In general, the analytical solution df](3) is difficult to be t+T
solved. However, itV *(z) exists, it can be approximated using = / [—Q(z) — ruf (x) — 2rui (x)vi]dt. (12)
the policy iteration techniqué [27]: ¢

1) Find an admissible control policyy(z). Notice that ifu;(x) is given, the unknown functiong;(z)

2) For any integei > 0, solve forV;(z), with V;(0) = 0, andu,1(z) can be approximated using{12). To be more spe-

using cific, for any given compact s€t C R™ containing the origin

e _ N2 as an interior point, lef{¢;(x)}32, be an infinite sequence
0= VVi@) [f(2)+g(@)ui(2)]+Q(x) +rui(x)”. (5) of linearly independent smootrjw basis functions @nwhere
3) Update the control policy using ¢;(0) =0 forall j =1,2,---. Then, for eachh = 0,1, ---,
1 T T the cost function and the control policy are approximated
uip1(z) = ——g(z)" VVi(z)". (6) . Ny . Ny
2r by Vi(z) = 3 ¢ 0i(x), and diqi(x) = 3 by 65(2),
. . . . ] 7] VR
Convergence of the policy iterationl (5) amd (6) is concluded ) j=1 j=1
in the following theorem, which can be seen as a trividfSPectively, wherev, > 0, N, > 0 are two sufficiently large

extension of Theorem 4 i [27]. integers, and; ;, w; ; are constant weights to be determined.
Theorem 2.1: ConsiderV;(z) andu,(z) defined in[(5) and ~ ReplacingVi(z), ui(z), and u;y1(z) in (I2) with their
). Then, for alli = 0,1,---, approximations, we obtain
Vig1(z) < Vi(x), Vx € R" (7) Ny
e [ (w(t — ¢j(x(t
andu;(z) is admissible. In addition, if the solutioi*(z) of ;C 3 103(@(tr1)) = @5 (a(te))
(3) exists, then for each fixed, V;(x) and u;(z) converge . Na
pointwise toV* () andu*(z), respectively. _ _/ o 2 b5 ()bt (13)
[1l. ONLINE LEARNING VIA ROBUSTADP b j=1
. . trta
In thl_s section, we develop the robust-ADP methodology _/ [Q(x) +rﬂ?(:z:)] dt + e;
for nonlinear systems as follows: ty '
W= Ay(w,) (8) wherety = ug, 9; = v+ A — 1;, and {tk}izo is a strictly
&t = f(z)+g9@)[ut+ A(w, )] (9) increasing sequence with> 0 a sufficiently large integer.

wherex € R" is the measured component of the state availaq-wen’ the Welg_htsi’j and_uw_ can lbe 52"’80' In the sense of
for feedback controlw € RP? is the unmeasurable part of east-squares (i.e., by minimizing;_ ¢; ;) .
the state with unknown order, u € R is the control input,  Now, starting fromu(z), two sequence$V;(z)}:2,, and
A, :RP xR - RP, A : R? x R — R are unknown locally {@i+1(2)}{Z, can be generated via the online policy itera-
Lipschitz functionsf andg are defined the same as i (1) bution technique[(T3). Next, we show the convergence of the
are assumed to be unknown. sequences t¥;(z) andu;;1(z), respectively.

Our design objective is to find online the control policy Assumption 3.1: There existly > 0 andd > 0, such that
which stabilizes the system at the origin. Also, in the absenfor all I > Iy, we have
of the dynamic uncertainty (i.eA = 0 and thew-subsystem is .
absent), the control policy becomes the optimal contraicgol 1 Z 07,0, 1 > 6In, o N, (14)
that minimizes[(R). S



where Assumptior. 3.4 implies that the-system[(B) is input-to-state
b1 (z(thsr)) — d1(2(ty)) T stable (ISS)[[29] whenr: is considered as the input, i.e.,
(

) w(t)] < Bulw(0)],£) + vu([2]) (22)

where 3, is of classKL and~,, is of classk.
Now, consider the following type of control policy

o, (2(th)) — b, ((t))

bl =1 2r (" gy (2)ps(w)at | ERVT .
2T,f k41 (]52(1‘)’[7(1‘)(% Upro(2) = [1 4+ _p2(|x|2)} Ui 41() (23)
th i 2
: where i* > 0 is a sufficiently large integer as defined in
o ttk+1 O, ()03 (z)dt Corollary[3.1,p is a smooth, non decreasing function, with
k - p(s) > 0 for all s > 0. Notice thatu,, can be viewed as a
Assumption 3.2: For allt > 0, we havex(t) € Q. robust redesign of the approximated optimal control{aw; ; .

Notice that, Assumption 3.2 is not very restrictive and can As in [14], let us define a class., function~ by
be satisfied if2 is an invariant set for the-subsystem. This

1
issue will be further elaborated in Sectioh V. ~v(s) = Eep(sz)s, Vs > 0. (24)
Theorem 3.1: Under Assumption§ 3.1 ard 8.2, for each N )
i >0, we have In addition, define
. T .
lim Vi) = Vi(x), (15) ero(@) = 5p%(|2f) [l 41(2) = wi g1 ()]
N17N2—)OO ~
im  d1(2) = wip(o), (16) i1 (@) — e (). (25)
N1,Ny—o00 .
Theorem 3.2: Under Assumptions 3.3 arid 8.4, suppose
for all z € Q. )
Proof: See the Appendix. [ v > max{ra, k1 02" okgoa " oal, (26)

Qorollary 3.1 Under Assgmptlon@].l arld 8.2, for aMand the following implication holds for some constant 0:
arbitrary ¢ > 0, there exist integers* > 0, Ny > 0 and

N3 > 0, such that 0 < Vis(z) <d=lero(x)] < v(z|)- 27)
[Vi(z) = V*(z)| < e, and |iiqi(z) —u*(z)| <e, Then, the closed-loop system composed[df (8), (9), (23)

o . . is asymptotically stable at the origin. In addition, therésts
forall z € Q, if i > i*, Ny > N, and Ny > Nj. 0 € Koo, sUch thatds. — { (w, z) : max [o(Vi- (z)), W (w)] <
B. Robust redesign o(d)} is an estimate of the region of attraction of the closed-

In the presence of the dynamic uncertainty, we redesib(hop syste.m. )
the approximated optimal control policy so as to achieve ProOf: Se? the Appendix. _ n
asymptotic stability. This method is an integration of ol Remark 3.1: In the absence of the dynamic uncertainty

control theory [[20] with the gain assignment technique ,[1535" A =0 and thew-syAstem is abs_ent),. the control policy
[26]. To begin with, let us assume the following: ) can be replaced by;-.(z), which is an approxima-

Assumption 3.3: There exists a functiom of class /., tion of the optimal control policyu*(x) that minimizes the
such that fori = 0.1. - - - . following cost function

a(|z]) < Vi(z), vz eR" (17) (o) = / [Q(x) +ru?]dt, x(0)=w.  (28)
0
In addition, assume there exists a constant 0 such that
Q(r) — €2|x|? is a positive definite function.
Notice that, we can also find a claks, function @, such

IV. ROBUST-ADP WITH UNMATCHED DYNAMIC
UNCERTAINTY

that fori = 0.1. - - - In this section, we extend the robust-ADP methodology to
o nonlinear systems with unmatched dynamic uncertainties. T
Vi(z) < a(|z|), Vo eR™ (18) begin with, consider the system:
Assumption 3.4: Consider [(B). There exist functions W o= Ay(w,z) (29)
MA € Kooy K1,k2,k3 € K, and positive definite functions i = f(x)+9@) [+ Aw, )] (30)
W and k4, such that for alkw € RP andz € R™, we have . ’
} 2 = filz,2) +u+ Ar(w,z,2) (32)
A <WwW <A 19 .
Aljwl) = W(w) < Alhwl), (19) where [z 2]7 € R" x R is the measured component of the
|A(w, 2)| < max{ri(jw]), w2 (|z])}, (20)  state available for feedback contraf; u, A, f, g, and A

together with the following implication: are defined in the same way as 0 @)-(9);: R" x R — R
andA; : R? x R™ x R — R are locally Lipschitz functions

W(w) > r3(|z]) = VIW(w)Ay(w,z) < —ka(w).  (21)  and are assumed to be unknown.



Assumption 4.1: There exist clas& functionsks, k¢, k7, Theorem 4.1: Consider (z(0), 2(0)) € €. Then, under

such that the following inequality holds: Assumptior 4.2 we have
A (w,,2)] < max{rs (), xo (J2]) a7 (=)} (32) Jlim fz) = fie2), (36)
3,[Ng—00
A. Online learning lim  §(z) = Gi(x), Y(z,2)€Q. (37)

Let us define a virtual control polic§ = u,,, as defined N3, Na—o0

in (23). Then, a state transformation can be performe¢i-as Theoren{ 4]l can be proved following the same idea as in the
z — £. Along the trajectories of(30)-(B1), it follows that proof of Theorem 3.1, and is omitted here for want of space.

(= filz,2) +u+A— 91( )A (33) B. Robust redesign
where f;(x, 2) = fi(x,2) — f( ) — X g(z)z, and g (z) = Next, we study robust stabilization of the systéml (29)-(31)
% g(x) are two unknown functions that can be approxI0 this end, letss be a function ofC such that
imated by fi(r.2) = Y0 iy uy(e2) and gi(x) = rs(lal) > l¢(@)|, Vo e R, (38)

ZN“O’lw”@( ), respectively, where{y;(z,2)}32, is a
sequence of linearly independent basis functions on sorﬂéen Assumption 411 implies
compact sef?; € R**! containing the origin as its interior, A4 max{rs (|w|), re (|2]) , 57 (|2])}
¢o(z) = 1, Wy ; andw, ; are constant weights to be trained. max{xs ([w]), 56 (|2]) , w7 (1] + ks (lz])}
As in the matched cas€); is selected to be an invariant set 5 "6 T 8
for the system[{30) and (B1). max{rs (|w]) , ko (| X1])}

1) Phase-one learningTo approximate the virtual control wherex

o(s) = max{ke, k7 0 kg 0 (28), k70 (25)}, Vs > 0. In

input ¢ for the z-subsystem, the same procedure as[id uﬁ)}ldmon we denoté; — max{r1, s}, Fo — max{Ka, ko),
can be applied, withy; = z + A — ;. 1 (s) = Lep(Ls?)s, and ’ ’

2) Phase two learningTo approximate the unknown func- EA

IN A CIA

. = - . . 1
tions f; and g;, The constant weights can be solved, in the U (X1) = Vi (2) + =C2. (39)
sense of least-squares, from
1.5, 1,5, Notice that, under Assumptiorls_B.3 and]3.4, there exist
3¢ () = 5 () a1, 0 € Koo, such thata, (|X1]) < Ui (X1) < a1 (| X1 ]).
th) Ny—1 The control policy can be approximated by
/ [Z wf]d}j “ Z ZO wg,jd)j(x)A Cdt Urol = —fl(ZC,Z) + 2Tﬁi*+l(x)
J= ~2 2 2
- _w € (40)
+ / (u+ Ay)Cdt + e, (34)
t, G RS
where {t}}._, is a strictly increasing positive constant se- 4 2p2(|[?)

quence withl > 0 a sufficiently large integer, ang, denotes where X, = [z7,¢]7, andp, (s) = Qp(%s)_

the approximation error. Similarly as in the previous sBtti  Next, define the approximation error as
let us introduce the following assumption:

Assumption 4.2: There exist/; > 0 andd; > 0, such that ero1(X1) = —f1(z,2) + fi(w, 2)
for all [ > [y, we have +27 [t 41 (x) — Ui 41 ()]
1 52 _ A2 2 X |2)<
1 N _ [91 (x) — g1 (17)] p1(1 X1
1 D 000k = 1INy, (35) 4 (41)

Then, conditions for asymptotic stability are summarized i

where i i the following Theorem:
tfkﬂ Py (@, 2)Cdt Theorem 4.2: Under Assumptions 3.8, 3.4, ahd 4.1, if
tk“ wz( z)(dt Y1 > max{ka, k10N okzoa;oar}, (42)
: and if the following implication holds for some constaht >
0:
. tk+1 UN, (2, 2)(dt  RNo+Na
B tt,kﬂ do(z)Aldt ) 0 < Up(X1) < di = max{|eqo1(X1)], lero(®)|} < 71(|X1]),
by é1(2)ACdt then the closed-loop system comprised[ofl (29)-(31), andl (40
b is asymptotically stable at the origin. In addition, therésts
: 01 € Koo, such that
thiq
L ft;:wr ¢N471(I)A<dt ] Ql,i* = {(w,Xl) cmax [01 (Ul* (Xl)),W(w)] < o1 (dl)}



is an estimate of the region of attraction. (Increase N, and N,.
Proof: See the Appendix. u LThen, recollect online data.
Remark 4.1: In the absence of the dynamic uncertainty
(i.,e., A =0, A; =0 and thew-system is absent), the smooth
functionsp andp; can all be replaced by, and the system
dynamics becomes

X1 = Fi(X1) + Giun (43) Outer loop
where Fi(X;) = { @) +9(2)C + g(x)¢ ] G = 0 , ! _ N
—VV;- (I)Q(I) 1 Fig. 1. Two-loop online optimization scheme
andu,; = —€2¢%. As a result, it can be concluded that the
control policy u = u,; IS an approximate optimal control
policy with respect to the cost function C. Robust-ADP algorithm

& 1 The robust-ADP algorithm is given in Algorithid 1.
nao) = | [Ql (2,0) + Fﬂ] at o (44) ° ) )
0

H _ T T _

VETV)&((%;J)Q]:% ’foﬁg;z* (o)l and Qs (@, ¢) = Q(2) + 1. Let(w(0),z(0)) € -, employ the initial control policy

ar ! 2 (45) and collect the system state and input information.

V. IMPLEMENTATION ISSUES 2. Apply the online policy iteration usind (13), and re-

In this section, we study a few implementation issues on  design the control policy usin (23).

the robust-ADP based online learning methodology, andgive 3. Terminate the exploration noige

practical algorithm. Due to the space limitation, we willinig 4. If (w(t),z(t)) € 4, apply the approximate robust

focus on the systems with matched dynamic uncertainties. optimal control policy [(2B).

These results can be easily extended to the unmatched case:

Algorithm 1 Robust-ADP Algorithm

A. The compact set for approximation
VI. APPLICATION TO A SINGLE-JOINT HUMAN ARM

Assumption 5.1: The closed-loop system composed|[df (8), MOVEMENT CONTROL PROBLEM

@), and

In this section, we apply the proposed online learning
u=up(z) +e (45) strategy to study a sensorimotor control problem. A linear
is 1SS whene, the exploration noise, is considered to be théersion of this problem has been studiedlin/[12].
input. Consider a single-joint arm movement as shown in Eg. 2,

The reason for imposing Assumptibns.1 is two fold. First_’,"here the position of the elbow is fixed. The dynamic model
like in many other policy iteration based ADP algorithmgS Shown below[[28].
an initial admissible cor_1tr_o_| policy is de;ireq. In thi_s_pap 10 = —mgl cos(0) +n + Tpn (46)
we further assume the initial control policy is stabiliziig
the presence of dynamic uncertainties. Such an assumptitere m is the mass of segment, is the inertia,g is the
is feasible and realistic by means of the design$ in [14]).[2@ravitational constant, is the distance of the center of mass
Second, by adding the exploration noise, we are able tdsati§om the joint,¢ is the joint angular positiori),, is the input to
Assumption§ 3]1 arld 4.2, and at the same time keep the systBghmuscle from the motorneurons, andienotes the inputs
solutions bounded. from the neural integrator, which can be modeled by a low
Under Assumptiofi5l1, we can find a compact@gwhich  pass filter as follows with a time constany.
is an invariant set of the closed-loop system composé&lof (8), ) n
@), andu = up(z). In addition, we can also le®, contain L + T (47)
Q;~ as its subset. Then, the compact set for approximation can , . nmal cos
be selected a& = {z|3w, s.t. (z,w) € Q}. Let us definer; = 0, xp = 0, w = — Pl -
Ize, u="T, — M, wheref, is the desired end point

B. Two-loop optimization scheme v+l

angular position. Then, the system can be converted to
In general cases, it may be difficult to determine the number 147
of basis functions to be used for approximation. In this pape woo= - N (w+ Iz9) (48)
we propose a two-loop online optimization scheme as shown ™ " .
in Fig.[. In the inner loop, least-squares method is used to —2mgl sin(é)sin(% +6o) (49)
train the weights. If the residual sum of errors is greatanth i = 9 (50)
a given threshold > 0, in the outer loop the number of basis . omgl . 1. . a1
functions are increased and online data are recollectenlve s T2 = 7 Sln(g) Sm(; + o) (51)

the minimization problem until sufficient small residuataar 1
can be obtained. +7 (u+ Tz + w)
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community. Systematic robust-ADP based online learning al
gorithm has been developed. Rigorous stability analyseda
on Lyapunov and small-gain techniques is carried out. The
effectiveness of the proposed methodology has been vatidat
by its application to a single-joint arm movement control
problem.

APPENDIX
PROOF OFTHEOREM 3.1
To begin with, giveni;, let f/i(:v) be the solution of the
To apply the proposed robust-ADP method, the basis fungilowing equation withV;(0) = 0.
tions we used are polynomials with degrees less than or equal R >
to five. The invariant set is chosen to contain the region VVi(z) (f(z) + g(2)ti(2)) + Q(z) + rij(x) =0 (52)
{(w,z1,22) : Jw| < 1,]z1] < 0.8,|z2] < 3.5}. Only for B 1 T
simulation purpose, we s& = Z, m = 1.65, [ = 0.179, and denotei;+ (z) = —o-g(z)” VVi(z)".
g = 9.81, I = 0.0779. An initial control policy is set to  Lemma A.1: For eachi > 0, we have lim Vi(z) =

Fig. 3. Comparison of the approximated cost functions.

be up = —0.5z; — 0.5z5. The initial condition is set to be - 5 R o glvNﬁ“’
w(0) = 1, #1(0) = —Z, andz»(0) = 0. The optimal cost is Vi(x), Ny N o0 uifl_(_x) = Ui (2), Vo € €.
specified as/ = [~ (10023 + =3 + u?) dt. Proof: By definition
In this simulation, the convergence is attained after o o
iterations. It can be seen from Figl 3 that the approximated W“’“E’;ﬁl)) Vi@ (te))
cost functionVio(z) is remarkably reduced compared with — _/ [Q(x) + ri?(x) + 2ri 1 (z)0; (x)]dt  (53)
the initial approximated cost;(z). Also, in Fig.[4, we tr

compare the speed curves under the initial control poltoy, t | & andw; ; be the constant weights such tﬂé(:c) _

policy after two iterations, and the policy after 10 iteoais. 0o =" ) and i N Then. b
Clearly, after enough iteration steps, the speed profileies %é)_laf:&]:;) we h:\l/gfl o7 %:_VFJ: le’: ¢\)7\/(rlgce)r.e » Y
t ’ ik — Vg pVVi i,k

a bell-shaped curve which is consistent with experimen

i T ~ ~ ~ ~ ~ ~ T
observations (see, for examplel [3]). Wi = [Ga Gp o Gn, @Wig Wip - Wi, |
” ” ~ ~ N N T
VII. CONCLUSIONS —[ @a G2 -GN, Win Wiz - Win, |,
o0

In this paper, computational robust optimal controller de: -
sign has l::)eloen studiepd for nonlinear s;stems with dynanﬁt’;’C - Z Ciyj [0 (@(tes1)) — ¢5(x(tr))]
uncertainties. Both the matched and the unmatched cases are J:Nlti .
studied. We have presented for the first time a recursive, LY / e o ()it
online, adaptive optimal controller design when dynamie un I t ! ’
certainties, characterized by input-to-state stableegystwith i ) ,
unknown order and states/dynamics, are taken into considSince the weights are found using the least-squares method,
eration. We have achieved this goal by integration of af€ have .
proximate/adaptive dynamic programming (ADP) theory and Zegk < ngk
several tools recently developed within the nonlinear nt % -

j=N2+1

=1



Also notice that,
l

!
Z W0 0; Wi = Z(ei,k —&n)?

k=1 k=1
Then, under Assumptidn 3.1, it follows that
=. |2
2 < 4|_4171| 4
5 6 1<k<l

glk

Therefore, given any arbitrary> 0, we can findNyo > 0
and Nog > 0, such that whenV; > Ny and Ny > Nog, we

have

Vi(2) - Vi(z)]

o0

(54)

Ny
< Z|Ci,j—éz'.,j||¢j(il?)|+ > leiidi(@)| (55)

j=Ni+1

< £
_2+

Similarly, |@;41(x
We now prove Theorem 3.1 by induction:

=¢ Vre.

\/ N)Im

(56)

— @41 ()| < e. The proof is completem

1) If i = 0 we haveVy(z) = Vo(z), and @y (z) = uy(x).
Hence, the convergence can directly be proved by Lemma Atibn (28), we have the following implication:
2) Suppose for somé> 0, we havelimy, N, 00 Vi—1(z) =

Vici(z), imp, Ny—oo Gi(x) = ui(z), Vo € Q. By definition,

we have
— Vi(x(t))|
(x)

= rl/ —ui(z)?] dt]
Lo / w1 (2)g(e) [

i(w) — ui(x)] di|

+ 27 /too [Git1(x) — wip1(x)] g(x)0;dt], Va € Q.

By the induction assumptions, we known

/ [4;(2)? — ui(z)?] dt =0
t

[ i @) (o) = i) dt =0
t

Also, by Assumptiori 311, we conclude

lim
N1,N2—>OO
lim
N1,N2—>OO

g (2) = g (2)] = 0
and
v |Vi(w) - Vi) = 0.

Finally, since

Vi) = Vi(z)| < [Vi(e) = Vi(2)| + |Vi(z) —
and by the induction assumption, we have
|Vi(z) = Vi(x)| = 0.

The proof is thus complete.

Vi(x)|

lim
Nl.,NQ*)OO

(57)

(58)

(59)

(60)

(61)

PROOF OFTHEOREM 3.2
Define

Vi (z) <
v (62)
and

u(@) = we (2) + 30 (e Yuse41(@) + Zro(a)

Then, along the solutions of](9), by completing the squares,
we have

(63)

Vi (2)
= —Q<$>+m<A+ému))?
— Q) — ) - = ;A( |:|§)m<w>>2
< —Qofw) 4T —max{ﬁ%(lpt;gxfz;lxl), &2, ()

whereQo(z) = Q(x) —
of x.
Therefore, under Assumptiohs B[3,13.4 and the gain condi-

e2|z|? is a positive definite function

Vie(x) > @0y~ Tor1oA”
1

LW (w))
= |zl =~ (W (w))
= 7 (lz]) = K1 (Jw])
= 7 (lz]) =2 max{r1 (Jw]) , k2 (|z]) , €ro (|2])}
= Vi () < —Qo(x).
Also, under Assumptioh 3.4, we have
W(w) 2 k3 0a™ (Vi (2))
= W(w) = rs(|lz|)
= VIW(w)Ay(w,z) < —rqa(|w]).

0K1O0A

(64)

(65)
Finally, under the gain condition (6), it follows that

v(s) > k1 oA okzoatoal(s)

Y(s') > k1o~
-1

= ~oa~ Yokgoa l(s')  (66)

= s >aoy ok o)d  okzoa l(s)

wheres’ = a(s). Hence, the following small-gain condition
holds:

[d oy toky OA_I} o |:K,3 ogfl(s)} <s, Vs>0. (67)

By Theorem 3.1 in[[13], the systefl (8)] (4).{63) is globally
asymptotically stable at the origin.

Next, denotey; = @ovy loky o A7}, andys = k3o~
Also, let x; be a function of clas&., such that

1) x1(s) < x7'(s), Vs € [0’51320 x1(8)),

2) x2(s) < xa(s), Vs > 0.

Then, as shown in_[13], there exists a continuously differ-
entiable classK., function o(s) satisfying¢’(s) > 0 and
x2(s) < o(s) < x1(s), Vs > 0, such that the set

Qi = {(w, 2) : max [o(Vi- (2)), W(w)] < d}

1

(68)



is an estimate of the region of attraction of the closed-logm]

system composed of(8].1(9), arid123).
The proof is thus complete.

PROOF OFTHEOREM4.2
Define
_ _ ero1(X1), Up(X1) < dy,
€rol (Xl) - { 07 U (Xl) > dl,
= _ e’r‘o(x)v UZ* (Xl) S d17
ero(iC) - { 0, U (Xl) > d17

Along the solutions of[{29):(31) with the control policy

g ()i (IX1]*)¢

u = —f_l(I, Z) + 27”&1‘*+1(I) — 1

RIXP)C @) )
T g )
it follows that
0 (X)) < —Qola) — 2e2¢2

2
221X ]) —max{#ER (Jwl), A3 (1X1 ), 60 (2)}
10 (|1=[?)
_ (X)) —max{ R (jw]), A3 (1 X3 )), €70 ()}
1P (1X1]?)
i (IXa]) —max{#R (Jw)), £ (1 X0 1), €01 (X1)}
111X ?)

As a result,
Ui (X1) < max{@; o7y "of10A™ (W (w)), arory; ([v])}
= Ui (X1) < —Qolz) + 12|

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

The rest of the proof follows the same reasoning as in the

proof of Theorem 3.2.
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