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Abstract—This paper studies the robust optimal control design
for uncertain nonlinear systems from a perspective of robust
adaptive dynamic programming (robust-ADP). The objective is
to fill up a gap in the past literature of ADP where dynamic
uncertainties or unmodeled dynamics are not addressed. A key
strategy is to integrate tools from modern nonlinear control the-
ory, such as the robust redesign and the backstepping techniques
as well as the nonlinear small-gain theorem, with the theoryof
ADP. The proposed robust-ADP methodology can be viewed as
a natural extension of ADP to uncertain nonlinear systems. A
practical learning algorithm is developed in this paper, and has
been applied to a sensorimotor control problem.

I. I NTRODUCTION

Reinforcement learning (RL) [30] is an important branch in
machine learning theory. It is concerned with how an agent
should modify its actions based on the reward from its reactive
unknown environment so as to achieve a long term goal. In
1968, Werbos pointed out that the policy iteration technique
devised in [6] for dynamic programming can be employed to
perform RL [34]. Starting from then, many real-time RL meth-
ods for finding online optimal control policies have emerged
and they are broadly called approximate/adaptive dynamic
programming (ADP) [35], [36] or neurodynamic programming
[5]. See [1], [2], [7], [22], [24], [31], [32], [33], for some
recently developed results.

In the past literature of ADP, it is commonly assumed that
the system order is known and the state variables are either
fully available or reconstructible from the output; see [21], [22]
and reference therein. However, in practice, the system order
may be unknown due to the presence of dynamic uncertainties
(or unmodeled dynamics), which are motivated by engineering
applications in situations where the exact mathematical model
of a physical system is not easy to be obtained. Of course,
dynamic uncertainties also make sense for the mathematical
modeling in other branches of science such as biology and
economics. This problem, often formulated as robust control,
cannot be viewed as a special case of output feedback control,
and the ADP methods developed in the past literature may
not only fail to guarantee optimality, but also the stability
of the closed-loop system when dynamic uncertainty occurs.
To fill up the above-mentioned gap in the past literature of
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ADP, we recently developed a new theory of robust adaptive
dynamic programming (robust-ADP) [8], [10], [11], which can
be viewed as a natural extension of ADP to linear and partially
linear systems with dynamic uncertainties.

The primary objective of this paper is to study robust-
ADP designs for genuinely nonlinear systems in the presence
of dynamic uncertainties. We first decompose the open-loop
system into two parts: Thesystem model(ideal environment)
with known system order and fully accessible state, and
the dynamic uncertainty, with unknown system order and
dynamics, interacting with the ideal environment. In order
to handle the dynamic interaction between two systems, we
then resort to the gain assignment idea [14], [15], [26]. More
specifically, we need to assign a suitable gain for the system
model with disturbance in the sense of Sontag’s input-to-state
stability (ISS) [29]. The backstepping, robust redesign, and
small-gain techniques in modern nonlinear control theory are
incorporated into the robust-ADP theory, such that the system
model is made ISS with an arbitrarily small gain. At last, the
nonlinear small-gain theorem [15] is applied to analyze the
stability for the interconnected systems.

Throughout this paper, vertical bars| · | represent the Eu-
clidean norm for vectors, or the induced matrix norm for ma-
trices. For any piecewise continuous functionu, ‖u‖ denotes
sup{|u(t)|, t ≥ 0}. A function γ : R+ → R+ is said to be of
classK if it is continuous, strictly increasing withγ(0) = 0.
It is of classK∞ if additionally γ(s) → ∞ as s → ∞. A
function β : R+ × R+ → R+ is of classKL if β(·, t) is of
classK for every fixedt ≥ 0, andβ(s, t) → 0 as t → ∞ for
each fixeds ≥ 0. The notationγ1 > γ2 meansγ1(s) > γ2(s),
∀s > 0.

II. PRELIMINARIES

In this section, let us review a policy iteration technique to
solve optimal control problems [27].

To begin with, consider the system

ẋ = f(x) + g(x)u (1)

wherex ∈ R
n is the system state,u ∈ R is the control input,

f, g : Rn → R
n are locally Lipschitz functions. For any initial

condition x0 ∈ R
n, the cost function associated with (1) is
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defined as

J(x0) =

∫ ∞

0

[

Q(x) + ru2
]

dt, x(0) = x0 (2)

whereQ(·) is a positive definite function, andr > 0 is a
constant. In addition, assume there exists anadmissiblecontrol
policy u = u0(x) in the sense that, under this policy, the
system (1) is globally asymptotically stable and the cost (2) is
finite. By [20], the control policy that minimizes the cost (2)
can be solved from the following Hamilton-Jacobi-Bellman
(HJB) equation:

0 = ∇V (x)f(x) +Q(x)−
1

4r
[∇V (x)g(x)]

2 (3)

with the boundary conditionV (0) = 0. Indeed, if the solution
V ∗(x) of (3) exists, the optimal control policy is given by

u∗(x) = −
1

2r
g(x)T∇V ∗(x)T . (4)

In general, the analytical solution of (3) is difficult to be
solved. However, ifV ∗(x) exists, it can be approximated using
the policy iteration technique [27]:

1) Find an admissible control policyu0(x).
2) For any integeri ≥ 0, solve forVi(x), with Vi(0) = 0,

using

0 = ∇Vi(x) [f(x)+g(x)ui(x)]+Q(x)+rui(x)
2. (5)

3) Update the control policy using

ui+1(x) = −
1

2r
g(x)T∇Vi(x)

T . (6)

Convergence of the policy iteration (5) and (6) is concluded
in the following theorem, which can be seen as a trivial
extension of Theorem 4 in [27].

Theorem 2.1: ConsiderVi(x) andui(x) defined in (5) and
(6). Then, for alli = 0, 1, · · · ,

Vi+1(x) ≤ Vi(x), ∀x ∈ Rn (7)

andui(x) is admissible. In addition, if the solutionV ∗(x) of
(3) exists, then for each fixedx, Vi(x) and ui(x) converge
pointwise toV ∗(x) andu∗(x), respectively.

III. O NLINE LEARNING VIA ROBUST-ADP

In this section, we develop the robust-ADP methodology
for nonlinear systems as follows:

ẇ = ∆w(w, x) (8)

ẋ = f(x) + g(x) [u+∆(w, x)] (9)

wherex ∈ R
n is the measured component of the state available

for feedback control,w ∈ R
p is the unmeasurable part of

the state with unknown orderp, u ∈ R is the control input,
∆w : Rp×R

n → R
p, ∆ : Rp×R

n → R are unknown locally
Lipschitz functions,f andg are defined the same as in (1) but
are assumed to be unknown.

Our design objective is to find online the control policy
which stabilizes the system at the origin. Also, in the absence
of the dynamic uncertainty (i.e.,∆ = 0 and thew-subsystem is
absent), the control policy becomes the optimal control policy
that minimizes (2).

A. Online policy iteration

The iterative technique introduced in Section 2 relies on the
knowledge off(x) andg(x). To remove this requirement, we
develop a novel online policy iteration technique, which can
be viewed as the nonlinear extension of [7].

To begin with, notice that (9) can be rewritten as

ẋ = f(x) + g(x)ui(x) + g(x)vi (10)

wherevi = u + ∆ − ui. For eachi ≥ 0, the time derivative
of Vi(x) along the solutions of (10) satisfies

V̇i(x) = −Q(x)− ru2i (x)− 2rui+1(x)vi. (11)

Integrating both sides of (11) on any time interval[t, t+T ],
it follows that

Vi(x(t+ T ))− Vi(x(t))

=

∫ t+T

t

[

−Q(x)− ru2i (x)− 2rui+1(x)vi
]

dt. (12)

Notice that ifui(x) is given, the unknown functionsVi(x)
andui+1(x) can be approximated using (12). To be more spe-
cific, for any given compact setΩ ⊂ R

n containing the origin
as an interior point, let{φj(x)}∞j=1 be an infinite sequence
of linearly independent smooth basis functions onΩ, where
φj(0) = 0 for all j = 1, 2, · · · . Then, for eachi = 0, 1, · · · ,
the cost function and the control policy are approximated

by V̂i(x) =
N1
∑

j=1

ĉi,jφj(x), and ûi+1(x) =
N2
∑

j=1

ŵi,jφj(x),

respectively, whereN1 > 0, N2 > 0 are two sufficiently large
integers, and̂ci,j , ŵi,j are constant weights to be determined.

ReplacingVi(x), ui(x), and ui+1(x) in (12) with their
approximations, we obtain

N1
∑

j=1

ĉi,j [φj(x(tk+1))− φj(x(tk))]

= −

∫ tk+1

tk

2r

N2
∑

j=1

ŵi,jφj(x)v̂idt (13)

−

∫ tk+1

tk

[

Q(x) + rû2i (x)
]

dt+ ei,k

where û0 = u0, v̂i = u + ∆ − ûi, and{tk}
l
k=0 is a strictly

increasing sequence withl > 0 a sufficiently large integer.
Then, the weightŝci,j and ŵi,j can be solved in the sense of
least-squares (i.e., by minimizing

∑l

k=0 e
2
i,k).

Now, starting fromu0(x), two sequences{V̂i(x)}∞i=0, and
{ûi+1(x)}

∞
i=0 can be generated via the online policy itera-

tion technique (13). Next, we show the convergence of the
sequences toVi(x) andui+1(x), respectively.

Assumption 3.1: There existl0 > 0 and δ > 0, such that
for all l ≥ l0, we have

1

l

l
∑

k=0

θTi,kθi,k ≥ δIN1+N2
(14)



where

θTi,k =































φ1(x(tk+1))− φ1(x(tk))
φ2(x(tk+1))− φ2(x(tk))

...
φN1

(x(tk+1))− φN1
(x(tk))

2r
∫ tk+1

tk
φ1(x)v̂i(x)dt

2r
∫ tk+1

tk
φ2(x)v̂i(x)dt

...
2r

∫ tk+1

tk
φN2

(x)v̂i(x)dt































∈ R
N1+N2 .

Assumption 3.2: For all t ≥ 0, we havex(t) ∈ Ω.
Notice that, Assumption 3.2 is not very restrictive and can

be satisfied ifΩ is an invariant set for thex-subsystem. This
issue will be further elaborated in Section V.

Theorem 3.1: Under Assumptions 3.1 and 3.2, for each
i ≥ 0, we have

lim
N1,N2→∞

V̂i(x) = Vi(x), (15)

lim
N1,N2→∞

ûi+1(x) = ui+1(x), (16)

for all x ∈ Ω.
Proof: See the Appendix.

Corollary 3.1: Under Assumptions 3.1 and 3.2, for any
arbitrary ǫ > 0, there exist integersi∗ > 0, N∗

1 > 0 and
N∗

2 > 0, such that

|V̂i(x) − V ∗(x)| ≤ ǫ, and |ûi+1(x) − u∗(x)| ≤ ǫ,

for all x ∈ Ω, if i > i∗, N1 > N∗
1 , andN2 > N∗

2 .

B. Robust redesign

In the presence of the dynamic uncertainty, we redesign
the approximated optimal control policy so as to achieve
asymptotic stability. This method is an integration of optimal
control theory [20] with the gain assignment technique [15],
[26]. To begin with, let us assume the following:

Assumption 3.3: There exists a functionα of classK∞,
such that fori = 0, 1, · · · ,

α(|x|) ≤ Vi(x), ∀x ∈ R
n. (17)

In addition, assume there exists a constantǫ > 0 such that
Q(x)− ǫ2|x|2 is a positive definite function.

Notice that, we can also find a classK∞ function ᾱ, such
that for i = 0, 1, · · · ,

Vi(x) ≤ ᾱ(|x|), ∀x ∈ R
n. (18)

Assumption 3.4: Consider (8). There exist functions
λ, λ̄ ∈ K∞, κ1, κ2, κ3 ∈ K, and positive definite functions
W andκ4, such that for allw ∈ R

p andx ∈ R
n, we have

λ(|w|) ≤W (w) ≤ λ̄(|w|), (19)

|∆(w, x)| ≤ max{κ1(|w|), κ2(|x|)}, (20)

together with the following implication:

W (w) ≥ κ3(|x|) ⇒ ∇W (w)∆w(w, x) ≤ −κ4(w). (21)

Assumption 3.4 implies that thew-system (8) is input-to-state
stable (ISS) [29] whenx is considered as the input, i.e.,

|w(t)| ≤ βw(|w(0)|, t) + γw(‖x‖) (22)

whereβw is of classKL andγw is of classK.
Now, consider the following type of control policy

uro(x) =
[

1 +
r

2
ρ2(|x|2)

]

ûi∗+1(x) (23)

where i∗ > 0 is a sufficiently large integer as defined in
Corollary 3.1,ρ is a smooth, non decreasing function, with
ρ(s) > 0 for all s ≥ 0. Notice thaturo can be viewed as a
robust redesign of the approximated optimal control lawûi∗+1.

As in [14], let us define a classK∞ function γ by

γ(s) =
1

2
ǫρ(s2)s, ∀s ≥ 0. (24)

In addition, define

ero(x) =
r

2
ρ2(|x|2) [ûi∗+1(x)− ui∗+1(x)]

+ûi∗+1(x)− ui∗(x). (25)

Theorem 3.2: Under Assumptions 3.3 and 3.4, suppose

γ > max{κ2, κ1 ◦ λ
−1 ◦ κ3 ◦ α

−1 ◦ ᾱ}, (26)

and the following implication holds for some constantd > 0:

0 < Vi∗(x) ≤ d⇒ |ero(x)| < γ(|x|). (27)

Then, the closed-loop system composed of (8), (9), and (23)
is asymptotically stable at the origin. In addition, there exists
σ ∈ K∞, such thatΩi∗ = {(w, x) : max [σ(Vi∗ (x)),W (w)] ≤
σ(d)} is an estimate of the region of attraction of the closed-
loop system.

Proof: See the Appendix.
Remark 3.1: In the absence of the dynamic uncertainty

(i.e., ∆ = 0 and thew-system is absent), the control policy
(23) can be replaced bŷui∗+1(x), which is an approxima-
tion of the optimal control policyu∗(x) that minimizes the
following cost function

J(x0) =

∫ ∞

0

[

Q(x) + ru2
]

dt, x(0) = x0. (28)

IV. ROBUST-ADP WITH UNMATCHED DYNAMIC

UNCERTAINTY

In this section, we extend the robust-ADP methodology to
nonlinear systems with unmatched dynamic uncertainties. To
begin with, consider the system:

ẇ = ∆w(w, x) (29)

ẋ = f(x) + g(x) [z +∆(w, x)] (30)

ż = f1(x, z) + u+∆1(w, x, z) (31)

where[xT , z]T ∈ R
n × R is the measured component of the

state available for feedback control;w, u, ∆w, f , g, and∆
are defined in the same way as in (8)-(9);f1 : Rn × R → R

and∆1 : Rp × R
n × R → R are locally Lipschitz functions

and are assumed to be unknown.



Assumption 4.1: There exist classK functionsκ5, κ6, κ7,
such that the following inequality holds:

|∆1(w, x, z)| ≤ max{κ5 (|w|) , κ6 (|x|) , κ7 (|z|)}. (32)

A. Online learning

Let us define a virtual control policyξ = uro, as defined
in (23). Then, a state transformation can be performed asζ =
z − ξ. Along the trajectories of (30)-(31), it follows that

ζ̇ = f̄1(x, z) + u+∆1 − ḡ1(x)∆ (33)

wheref̄1(x, z) = f1(x, z)−
∂ξ
∂x
f(x)− ∂ξ

∂x
g(x)z, and ḡ1(x) =

∂ξ
∂x
g(x) are two unknown functions that can be approx-

imated by f̂1(x, z) =
∑N3

j=1 ŵf,jψj(x, z) and ĝ1(x) =
∑N4−1

j=0 ŵg,jφj(x), respectively, where{ψj(x, z)}
∞
j=1 is a

sequence of linearly independent basis functions on some
compact setΩ1 ∈ R

n+1 containing the origin as its interior,
φ0(x) ≡ 1, ŵf,j and ŵg,j are constant weights to be trained.
As in the matched case,Ω1 is selected to be an invariant set
for the system (30) and (31).

1) Phase-one learning:To approximate the virtual control
input ξ for the x-subsystem, the same procedure as in (13)
can be applied, witĥvi = z +∆− ûi.

2) Phase two learning:To approximate the unknown func-
tions f̄1 and ḡ1, The constant weights can be solved, in the
sense of least-squares, from

1

2
ζ2(t′k+1)−

1

2
ζ2(t′k)

=

∫ t′
k+1

t′
k





N3
∑

j=1

ŵf,jψj(x, z)−

N4−1
∑

j=0

ŵg,jφj(x)∆



 ζdt

+

∫ t′
k+1

t′
k

(u+∆1)ζdt+ ēk (34)

where {t′k}
l
k=1 is a strictly increasing positive constant se-

quence withl > 0 a sufficiently large integer, and̄ek denotes
the approximation error. Similarly as in the previous section,
let us introduce the following assumption:

Assumption 4.2: There existl1 > 0 andδ1 > 0, such that
for all l ≥ l1, we have

1

l

l
∑

k=0

θ̄Tk θ̄k ≥ δ1IN3+N4
(35)

where

θ̄Tk =









































∫ t′
k+1

t′
k

ψ1(x, z)ζdt
∫ t′

k+1

t′
k

ψ2(x, z)ζdt

...
∫ t′

k+1

t′
k

ψN3
(x, z)ζdt

∫ t′
k+1

t′
k

φ0(x)∆ζdt
∫ t′

k+1

t′
k

φ1(x)∆ζdt

...
∫ t′

k+1

t′
k

φN4−1(x)∆ζdt









































∈ R
N3+N4 .

Theorem 4.1: Consider (x(0), z(0)) ∈ Ω1. Then, under
Assumption 4.2 we have

lim
N3,N4→∞

f̂(x, z) = f̄1(x, z), (36)

lim
N3,N4→∞

ĝ(x) = ḡ1(x), ∀(x, z) ∈ Ω1. (37)

Theorem 4.1 can be proved following the same idea as in the
proof of Theorem 3.1, and is omitted here for want of space.

B. Robust redesign

Next, we study robust stabilization of the system (29)-(31).
To this end, letκ8 be a function ofK such that

κ8(|x|) ≥ |ξ(x)|, ∀x ∈ R
n. (38)

Then, Assumption 4.1 implies

|∆1| ≤ max{κ5 (|w|) , κ6 (|x|) , κ7 (|z|)}

≤ max{κ5 (|w|) , κ6 (|x|) , κ7 (|ξ|+ κ8(|x|))}

≤ max{κ5 (|w|) , κ9 (|X1|)}

whereκ9(s) = max{κ6, κ7 ◦ κ8 ◦ (2s), κ7 ◦ (2s)}, ∀s ≥ 0. In
addition, we denotẽκ1 = max{κ1, κ5}, κ̃2 = max{κ2, κ9},
γ1(s) =

1
2ǫρ(

1
2s

2)s, and

Ui∗(X1) = Vi∗(x) +
1

2
ζ2. (39)

Notice that, under Assumptions 3.3 and 3.4, there exist
ᾱ1, α1 ∈ K∞, such thatα1(|X1|) ≤ Ui∗(X1) ≤ ᾱ1(|X1|).

The control policy can be approximated by

uro1 = −f̂1(x, z) + 2rûi∗+1(x)

−
ĝ2(x)ρ21(|X1|

2)ζ

4
− ǫ2ζ (40)

−
ρ21(|X1|

2)ζ

4
−
ǫ2ρ2(ζ2)ζ

2ρ2(|x|2)

whereX1 = [xT , ζ]T , andρ1(s) = 2ρ(12s).
Next, define the approximation error as

ero1(X1) = −f̄1(x, z) + f̂1(x, z)

+2r [ui∗+1(x)− ûi∗+1(x)]

−

[

ḡ21(x) − ĝ21(x)
]

ρ21(|X1|
2)ζ

4
(41)

Then, conditions for asymptotic stability are summarized in
the following Theorem:

Theorem 4.2: Under Assumptions 3.3, 3.4, and 4.1, if

γ1 > max{κ̃2, κ̃1 ◦ λ
−1 ◦ κ3 ◦ α

−1
1 ◦ ᾱ1}, (42)

and if the following implication holds for some constantd1 >

0:

0 < Ui∗(X1) ≤ d1 ⇒ max{|ero1(X1)|, |ero(x)|} < γ1(|X1|),

then the closed-loop system comprised of (29)-(31), and (40)
is asymptotically stable at the origin. In addition, there exists
σ1 ∈ K∞, such that

Ω1,i∗ = {(w,X1) : max [σ1(Ui∗(X1)),W (w)] ≤ σ1(d1)}



is an estimate of the region of attraction.
Proof: See the Appendix.

Remark 4.1: In the absence of the dynamic uncertainty
(i.e.,∆ = 0, ∆1 = 0 and thew-system is absent), the smooth
functionsρ andρ1 can all be replaced by0, and the system
dynamics becomes

Ẋ1 = F1(X1) +G1uo1 (43)

whereF1(X1) =

[

f(x) + g(x)ζ + g(x)ξ
−∇Vi∗(x)g(x)

]

, G1 =

[

0
1

]

,

and uo1 = −ǫ2ζ2. As a result, it can be concluded that the
control policy u = uo1 is an approximate optimal control
policy with respect to the cost function

J1(X1(0)) =

∫ ∞

0

[

Q1 (x, ζ) +
1

2ǫ2
u2

]

dt (44)

with X1(0) = [xT0 , z0 − ui∗(x0)]
T andQ1 (x, ζ) = Q (x) +

1
4r [∇Vi∗(x)g(x)]

2
+ ǫ2

2 ζ
2.

V. I MPLEMENTATION ISSUES

In this section, we study a few implementation issues on
the robust-ADP based online learning methodology, and givea
practical algorithm. Due to the space limitation, we will mainly
focus on the systems with matched dynamic uncertainties.
These results can be easily extended to the unmatched case.

A. The compact set for approximation

Assumption 5.1: The closed-loop system composed of (8),
(9), and

u = u0(x) + e (45)

is ISS whene, the exploration noise, is considered to be the
input.

The reason for imposing Assumption 5.1 is two fold. First,
like in many other policy iteration based ADP algorithms,
an initial admissible control policy is desired. In this paper
we further assume the initial control policy is stabilizingin
the presence of dynamic uncertainties. Such an assumption
is feasible and realistic by means of the designs in [14], [26].
Second, by adding the exploration noise, we are able to satisfy
Assumptions 3.1 and 4.2, and at the same time keep the system
solutions bounded.

Under Assumption 5.1, we can find a compact setΩ0 which
is an invariant set of the closed-loop system compose of (8),
(9), andu = u0(x). In addition, we can also letΩ0 contain
Ωi∗ as its subset. Then, the compact set for approximation can
be selected asΩ = {x|∃w, s.t. (x,w) ∈ Ω0}.

B. Two-loop optimization scheme

In general cases, it may be difficult to determine the number
of basis functions to be used for approximation. In this paper
we propose a two-loop online optimization scheme as shown
in Fig. 1. In the inner loop, least-squares method is used to
train the weights. If the residual sum of errors is greater than
a given threshold̄ǫ > 0, in the outer loop the number of basis
functions are increased and online data are recollected to solve
the minimization problem until sufficient small residual error
can be obtained.

Fig. 1. Two-loop online optimization scheme

C. Robust-ADP algorithm

The robust-ADP algorithm is given in Algorithm 1.

Algorithm 1 Robust-ADP Algorithm

1. Let(w(0), x(0)) ∈ Ωi∗ , employ the initial control policy
(45) and collect the system state and input information.

2. Apply the online policy iteration using (13), and re-
design the control policy using (23).

3. Terminate the exploration noisee.
4. If (w(t), x(t)) ∈ Ωi∗ , apply the approximate robust

optimal control policy (23).

VI. A PPLICATION TO A SINGLE-JOINT HUMAN ARM

MOVEMENT CONTROL PROBLEM

In this section, we apply the proposed online learning
strategy to study a sensorimotor control problem. A linear
version of this problem has been studied in [12].

Consider a single-joint arm movement as shown in Fig. 2,
where the position of the elbow is fixed. The dynamic model
is shown below [28].

Iθ̈ = −mgl cos(θ) + n+ Tm (46)

wherem is the mass of segment,I is the inertia,g is the
gravitational constant,l is the distance of the center of mass
from the joint,θ is the joint angular position,Tm is the input to
the muscle from the motorneurons, andn denotes the inputs
from the neural integrator, which can be modeled by a low
pass filter as follows with a time constantτN .

ṅ = −
n

τN
+ Tm. (47)

Let us definex1 = θ−θ0, x2 = θ̇, w = n− τNmgl cos(θ0)
τN+1 −

Ix2, u = Tm − mgl cos(θ0)
τN+1 , whereθ0 is the desired end point

angular position. Then, the system can be converted to

ẇ = −
1 + τN

τN
(w + Ix2) (48)

−2mgl sin(
x1

2
) sin(

x1

2
+ θ0) (49)

ẋ1 = x2 (50)

ẋ2 =
2mgl

I
sin(

x1

2
) sin(

x1

2
+ θ0) (51)

+
1

I
(u+ Ix2 + w)



Fig. 2. Single-joint arm movement control problem.
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To apply the proposed robust-ADP method, the basis func-
tions we used are polynomials with degrees less than or equal
to five. The invariant set is chosen to contain the region
{(w, x1, x2) : |w| ≤ 1, |x1| ≤ 0.8, |x2| ≤ 3.5}. Only for
simulation purpose, we setθ0 = π

4 , m = 1.65, l = 0.179,
g = 9.81, I = 0.0779. An initial control policy is set to
be u0 = −0.5x1 − 0.5x2. The initial condition is set to be
w(0) = 1, x1(0) = −π

4 , andx2(0) = 0. The optimal cost is
specified asJ =

∫∞

0

(

100x21 + x22 + u2
)

dt.
In this simulation, the convergence is attained after10

iterations. It can be seen from Fig. 3 that the approximated
cost functionV̂10(x) is remarkably reduced compared with
the initial approximated cost̂V0(x). Also, in Fig. 4, we
compare the speed curves under the initial control policy, the
policy after two iterations, and the policy after 10 iterations.
Clearly, after enough iteration steps, the speed profile becomes
a bell-shaped curve which is consistent with experimental
observations (see, for example, [3]).

VII. C ONCLUSIONS

In this paper, computational robust optimal controller de-
sign has been studied for nonlinear systems with dynamic
uncertainties. Both the matched and the unmatched cases are
studied. We have presented for the first time a recursive,
online, adaptive optimal controller design when dynamic un-
certainties, characterized by input-to-state stable systems with
unknown order and states/dynamics, are taken into consid-
eration. We have achieved this goal by integration of ap-
proximate/adaptive dynamic programming (ADP) theory and
several tools recently developed within the nonlinear control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

V
el

oc
ity

 (
ra

d/
s)

 

 

Intial performance

After 10 iterations

Fig. 4. Comparison of the speed profiles.

community. Systematic robust-ADP based online learning al-
gorithm has been developed. Rigorous stability analysis based
on Lyapunov and small-gain techniques is carried out. The
effectiveness of the proposed methodology has been validated
by its application to a single-joint arm movement control
problem.

APPENDIX

PROOF OFTHEOREM 3.1

To begin with, givenûi, let Ṽi(x) be the solution of the
following equation withṼi(0) = 0.

∇Ṽi(x) (f(x) + g(x)ûi(x)) +Q(x) + rû2i (x) = 0 (52)

and denotẽui+1(x) = −
1

2r
g(x)T∇Ṽi(x)

T .

Lemma A.1: For eachi ≥ 0, we have lim
N1,N2→∞

V̂i(x) =

Ṽi(x), lim
N1,N2→∞

ûi+1(x) = ũi+1(x), ∀x ∈ Ω.

Proof: By definition

Ṽi(x(tk+1))− Ṽi(x(tk))

= −

∫ tk+1

tk

[Q(x) + rû2i (x) + 2rũi+1(x)v̂i(x)]dt (53)

Let c̃i,j andw̃i,j be the constant weights such thatṼi(x) =
∑∞

j=1 c̃i,jφj(x) and ũi+1(x) =
∑∞

j=1 w̃i,jφj(x). Then, by
(13) and (53), we haveei,k = θTi,kW̄i + ξi,k, where

W̄i =
[

c̃i,1 c̃i,2 · · · c̃i,N
1
w̃i,1 w̃i,2 · · · w̃i,N

2

]T

−
[

ĉi,1 ĉi,2 · · · ĉi,N
1
ŵi,1 ŵi,2 · · · ŵi,N

2

]T
,

ξi,k =

∞
∑

j=N1+1

c̃i,j [φj(x(tk+1))− φj(x(tk))]

+
∞
∑

j=N2+1

w̃i,j

∫ tk+1

tk

2rφj(x)v̂idt.

Since the weights are found using the least-squares method,
we have

l
∑

k=1

e2i,k ≤

l
∑

k=1

ξ2i,k



Also notice that,

l
∑

k=1

W̄T
i θ

T
i,kθi,kW̄i =

l
∑

k=1

(ei,k − ξi,k)
2

Then, under Assumption 3.1, it follows that

¯|Wi|
2
≤

4|Ξi,l|
2

lδ
=

4

δ
max
1≤k≤l

ξ2i,k.

Therefore, given any arbitraryǫ > 0, we can findN10 > 0
andN20 > 0, such that whenN1 > N10 andN2 > N20, we
have

|V̂i(x)− Ṽi(x)| (54)

≤

N1
∑

j=1

|ci,j − ĉi,j ||φj(x)|+

∞
∑

j=N1+1

|ci,jφj(x)| (55)

≤
ǫ

2
+
ǫ

2
= ǫ, ∀x ∈ Ω. (56)

Similarly, |ûi+1(x)− ũi+1(x)| ≤ ǫ. The proof is complete.
We now prove Theorem 3.1 by induction:

1) If i = 0 we haveṼ0(x) = V0(x), and ũ1(x) = u1(x).
Hence, the convergence can directly be proved by Lemma A.1.
2) Suppose for somei > 0, we havelimN1,N2→∞ V̂i−1(x) =
Vi−1(x), limN1,N2→∞ ûi(x) = ui(x), ∀x ∈ Ω. By definition,
we have

|Vi(x(t)) − Ṽi(x(t))|

= r|

∫ ∞

t

[

ûi(x)
2 − ui(x)

2
]

dt|

+ 2r|

∫ ∞

t

ui+1(x)g(x) [ûi(x) − ui(x)] dt|

+ 2r|

∫ ∞

t

[ûi+1(x) − ui+1(x)] g(x)v̂idt|, ∀x ∈ Ω.

By the induction assumptions, we known

lim
N1,N2→∞

∫ ∞

t

[

ûi(x)
2 − ui(x)

2
]

dt = 0 (57)

lim
N1,N2→∞

∫ ∞

t

ui+1(x)g(x) [ûi(x)− ui(x)] dt = 0 (58)

Also, by Assumption 3.1, we conclude

lim
N1,N2→∞

|ui+1(x) − ûi+1(x)| = 0 (59)

and

lim
N1,N2→∞

|Vi(x)− Ṽi(x)| = 0. (60)

Finally, since

|V̂i(x) − Vi(x)| ≤ |Vi(x)− Ṽi(x)| + |Ṽi(x) − V̂i(x)|

and by the induction assumption, we have

lim
N1,N2→∞

|Vi(x)− V̂i(x)| = 0. (61)

The proof is thus complete.

PROOF OFTHEOREM 3.2

Define

ēro(x) =

{

ero(x), Vi∗(x) ≤ d

0, Vi∗(x) > d
(62)

and

u(x) = ui∗(x) +
r

2
ρ2(|x|2)ui∗+1(x) + ēro(x) (63)

Then, along the solutions of (9), by completing the squares,
we have

V̇i∗(x)

≤ −Q(x) +
1

ρ2(|x|2)
(∆ + ēro(x))

2

= −(Q(x)− ǫ2|x|2)−
4γ2 − (∆ + ēro(x))

2

ρ2(|x|2)

≤ −Q0(x) − 4
γ2 −max{κ21(|w|), κ

2
2(|x|), ē

2
ro(|x|)}

ρ2(|x|2)

whereQ0(x) = Q(x) − ǫ2|x|2 is a positive definite function
of x.

Therefore, under Assumptions 3.3, 3.4 and the gain condi-
tion (26), we have the following implication:

Vi∗(x) ≥ ᾱ◦γ−1◦κ1◦λ
−1(W (w))

⇒ |x| ≥ γ−1 ◦ κ1 ◦ λ
−1 (W (w))

⇒ γ (|x|) ≥ κ1 (|w|) (64)

⇒ γ (|x|) ≥ max{κ1 (|w|) , κ2 (|x|) , ēro (|x|)}

⇒ V̇i∗(x) ≤ −Q0(x).

Also, under Assumption 3.4, we have

W (w) ≥ κ3 ◦ α
−1(Vi∗(x))

⇒ W (w) ≥ κ3(|x|)

⇒ ∇W (w)∆w(w, x) ≤ −κ4(|w|). (65)

Finally, under the gain condition (26), it follows that

γ(s) > κ1 ◦ λ
−1 ◦ κ3 ◦ α

−1 ◦ ᾱ(s)

⇒ γ ◦ ᾱ−1(s′) > κ1 ◦ λ
−1 ◦ κ3 ◦ α

−1(s′) (66)

⇒ s′ > ᾱ ◦ γ−1 ◦ κ1 ◦ λ
−1 ◦ κ3 ◦ α

−1(s′)

wheres′ = ᾱ(s). Hence, the following small-gain condition
holds:
[

ᾱ ◦ γ−1 ◦ κ1 ◦ λ
−1

]

◦
[

κ3 ◦ α
−1(s)

]

< s, ∀s > 0. (67)

By Theorem 3.1 in [13], the system (8), (9), (63) is globally
asymptotically stable at the origin.

Next, denoteχ1 = ᾱ ◦ γ−1 ◦ κ1 ◦ λ
−1, andχ2 = κ3 ◦ α

−1.
Also, let χ̂1 be a function of classK∞ such that

1) χ̂1(s) ≤ χ−1
1 (s), ∀s ∈ [0, lim

s→∞
χ1(s)),

2) χ2(s) ≤ χ̂1(s), ∀s ≥ 0.
Then, as shown in [13], there exists a continuously differ-

entiable classK∞ function σ(s) satisfying σ′(s) > 0 and
χ2(s) < σ(s) < χ̂1(s), ∀s > 0, such that the set

Ωi∗ = {(w, x) : max [σ(Vi∗(x)),W (w)] ≤ d} (68)



is an estimate of the region of attraction of the closed-loop
system composed of (8), (9), and (23).

The proof is thus complete.

PROOF OFTHEOREM 4.2

Define

ēro1(X1) =

{

ero1(X1), Ui∗(X1) ≤ d1,

0, Ui∗(X1) > d1,

¯̄ero(x) =

{

ero(x), Ui∗(X1) ≤ d1,

0, Ui∗(X1) > d1,

Along the solutions of (29)-(31) with the control policy

u = −f̄1(x, z) + 2rûi∗+1(x)−
ḡ2(x)ρ21(|X1|

2)ζ

4

−
ρ21(|X1|

2)ζ

4
−
ǫ2ρ2(ζ2)ζ

2ρ2(|x|2)
− ǫ2ζ − ēro1(X1),

it follows that

U̇i∗(X1) ≤ −Q0(x)−
1

2
ǫ2ζ2

−
γ21(|X1|)−max{κ̃21(|w|), κ̃

2
2(|X1|), ¯̄e

2
ro(x)}

1
4ρ

2(|x|2)

−
γ21(|X1|)−max{κ̃21(|w|), κ̃

2
2(|X1|), ¯̄e

2
ro(x)}

1
4ρ

2
1(|X1|2)

−
γ21(|X1|)−max{κ̃21(|w|), κ̃

2
2(|X1|), ē

2
ro1(X1)}

1
4ρ

2
1(|X1|2)

As a result,

Ui∗(X1) ≤ max{ᾱ1◦γ
−1
1 ◦κ̃1◦λ

−1(W (w)), ᾱ1◦γ
−1
1 (|v|)}

⇒ U̇i∗(X1) ≤ −Q0(x) +
1
2ǫ

2|ζ|2 .

The rest of the proof follows the same reasoning as in the
proof of Theorem 3.2.
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